/* SPDX-License-Identifier: GPL-2.0+ */ #ifndef _LINUX_OF_H #define _LINUX_OF_H /* * Definitions for talking to the Open Firmware PROM on * Power Macintosh and other computers. * * Copyright (C) 1996-2005 Paul Mackerras. * * Updates for PPC64 by Peter Bergner & David Engebretsen, IBM Corp. * Updates for SPARC64 by David S. Miller * Derived from PowerPC and Sparc prom.h files by Stephen Rothwell, IBM Corp. */ #include #include #include #include #include #include #include #include #include #include #include #include typedef u32 phandle; typedef u32 ihandle; struct property { char *name; int length; void *value; struct property *next; #if defined(CONFIG_OF_DYNAMIC) || defined(CONFIG_SPARC) unsigned long _flags; #endif #if defined(CONFIG_OF_PROMTREE) unsigned int unique_id; #endif #if defined(CONFIG_OF_KOBJ) struct bin_attribute attr; #endif }; #if defined(CONFIG_SPARC) struct of_irq_controller; #endif struct device_node { const char *name; phandle phandle; const char *full_name; struct fwnode_handle fwnode; struct property *properties; struct property *deadprops; /* removed properties */ struct device_node *parent; struct device_node *child; struct device_node *sibling; #if defined(CONFIG_OF_KOBJ) struct kobject kobj; #endif unsigned long _flags; void *data; #if defined(CONFIG_SPARC) unsigned int unique_id; struct of_irq_controller *irq_trans; #endif }; #define MAX_PHANDLE_ARGS 16 struct of_phandle_args { struct device_node *np; int args_count; uint32_t args[MAX_PHANDLE_ARGS]; }; struct of_phandle_iterator { /* Common iterator information */ const char *cells_name; int cell_count; const struct device_node *parent; /* List size information */ const __be32 *list_end; const __be32 *phandle_end; /* Current position state */ const __be32 *cur; uint32_t cur_count; phandle phandle; struct device_node *node; }; struct of_reconfig_data { struct device_node *dn; struct property *prop; struct property *old_prop; }; /* initialize a node */ extern struct kobj_type of_node_ktype; extern const struct fwnode_operations of_fwnode_ops; static inline void of_node_init(struct device_node *node) { #if defined(CONFIG_OF_KOBJ) kobject_init(&node->kobj, &of_node_ktype); #endif fwnode_init(&node->fwnode, &of_fwnode_ops); } #if defined(CONFIG_OF_KOBJ) #define of_node_kobj(n) (&(n)->kobj) #else #define of_node_kobj(n) NULL #endif #ifdef CONFIG_OF_DYNAMIC extern struct device_node *of_node_get(struct device_node *node); extern void of_node_put(struct device_node *node); #else /* CONFIG_OF_DYNAMIC */ /* Dummy ref counting routines - to be implemented later */ static inline struct device_node *of_node_get(struct device_node *node) { return node; } static inline void of_node_put(struct device_node *node) { } #endif /* !CONFIG_OF_DYNAMIC */ /* Pointer for first entry in chain of all nodes. */ extern struct device_node *of_root; extern struct device_node *of_chosen; extern struct device_node *of_aliases; extern struct device_node *of_stdout; extern raw_spinlock_t devtree_lock; /* * struct device_node flag descriptions * (need to be visible even when !CONFIG_OF) */ #define OF_DYNAMIC 1 /* (and properties) allocated via kmalloc */ #define OF_DETACHED 2 /* detached from the device tree */ #define OF_POPULATED 3 /* device already created */ #define OF_POPULATED_BUS 4 /* platform bus created for children */ #define OF_OVERLAY 5 /* allocated for an overlay */ #define OF_OVERLAY_FREE_CSET 6 /* in overlay cset being freed */ #define OF_BAD_ADDR ((u64)-1) #ifdef CONFIG_OF void of_core_init(void); static inline bool is_of_node(const struct fwnode_handle *fwnode) { return !IS_ERR_OR_NULL(fwnode) && fwnode->ops == &of_fwnode_ops; } #define to_of_node(__fwnode) \ ({ \ typeof(__fwnode) __to_of_node_fwnode = (__fwnode); \ \ is_of_node(__to_of_node_fwnode) ? \ container_of(__to_of_node_fwnode, \ struct device_node, fwnode) : \ NULL; \ }) #define of_fwnode_handle(node) \ ({ \ typeof(node) __of_fwnode_handle_node = (node); \ \ __of_fwnode_handle_node ? \ &__of_fwnode_handle_node->fwnode : NULL; \ }) static inline bool of_have_populated_dt(void) { return of_root != NULL; } static inline bool of_node_is_root(const struct device_node *node) { return node && (node->parent == NULL); } static inline int of_node_check_flag(const struct device_node *n, unsigned long flag) { return test_bit(flag, &n->_flags); } static inline int of_node_test_and_set_flag(struct device_node *n, unsigned long flag) { return test_and_set_bit(flag, &n->_flags); } static inline void of_node_set_flag(struct device_node *n, unsigned long flag) { set_bit(flag, &n->_flags); } static inline void of_node_clear_flag(struct device_node *n, unsigned long flag) { clear_bit(flag, &n->_flags); } #if defined(CONFIG_OF_DYNAMIC) || defined(CONFIG_SPARC) static inline int of_property_check_flag(struct property *p, unsigned long flag) { return test_bit(flag, &p->_flags); } static inline void of_property_set_flag(struct property *p, unsigned long flag) { set_bit(flag, &p->_flags); } static inline void of_property_clear_flag(struct property *p, unsigned long flag) { clear_bit(flag, &p->_flags); } #endif extern struct device_node *__of_find_all_nodes(struct device_node *prev); extern struct device_node *of_find_all_nodes(struct device_node *prev); /* * OF address retrieval & translation */ /* Helper to read a big number; size is in cells (not bytes) */ static inline u64 of_read_number(const __be32 *cell, int size) { u64 r = 0; for (; size--; cell++) r = (r << 32) | be32_to_cpu(*cell); return r; } /* Like of_read_number, but we want an unsigned long result */ static inline unsigned long of_read_ulong(const __be32 *cell, int size) { /* toss away upper bits if unsigned long is smaller than u64 */ return of_read_number(cell, size); } #if defined(CONFIG_SPARC) #include #endif #define OF_IS_DYNAMIC(x) test_bit(OF_DYNAMIC, &x->_flags) #define OF_MARK_DYNAMIC(x) set_bit(OF_DYNAMIC, &x->_flags) extern bool of_node_name_eq(const struct device_node *np, const char *name); extern bool of_node_name_prefix(const struct device_node *np, const char *prefix); static inline const char *of_node_full_name(const struct device_node *np) { return np ? np->full_name : ""; } #define for_each_of_allnodes_from(from, dn) \ for (dn = __of_find_all_nodes(from); dn; dn = __of_find_all_nodes(dn)) #define for_each_of_allnodes(dn) for_each_of_allnodes_from(NULL, dn) extern struct device_node *of_find_node_by_name(struct device_node *from, const char *name); extern struct device_node *of_find_node_by_type(struct device_node *from, const char *type); extern struct device_node *of_find_compatible_node(struct device_node *from, const char *type, const char *compat); extern struct device_node *of_find_matching_node_and_match( struct device_node *from, const struct of_device_id *matches, const struct of_device_id **match); extern struct device_node *of_find_node_opts_by_path(const char *path, const char **opts); static inline struct device_node *of_find_node_by_path(const char *path) { return of_find_node_opts_by_path(path, NULL); } extern struct device_node *of_find_node_by_phandle(phandle handle); extern struct device_node *of_get_parent(const struct device_node *node); extern struct device_node *of_get_next_parent(struct device_node *node); extern struct device_node *of_get_next_child(const struct device_node *node, struct device_node *prev); extern struct device_node *of_get_next_available_child( const struct device_node *node, struct device_node *prev); extern struct device_node *of_get_compatible_child(const struct device_node *parent, const char *compatible); extern struct device_node *of_get_child_by_name(const struct device_node *node, const char *name); /* cache lookup */ extern struct device_node *of_find_next_cache_node(const struct device_node *); extern int of_find_last_cache_level(unsigned int cpu); extern struct device_node *of_find_node_with_property( struct device_node *from, const char *prop_name); extern struct property *of_find_property(const struct device_node *np, const char *name, int *lenp); extern int of_property_count_elems_of_size(const struct device_node *np, const char *propname, int elem_size); extern int of_property_read_u32_index(const struct device_node *np, const char *propname, u32 index, u32 *out_value); extern int of_property_read_u64_index(const struct device_node *np, const char *propname, u32 index, u64 *out_value); extern int of_property_read_variable_u8_array(const struct device_node *np, const char *propname, u8 *out_values, size_t sz_min, size_t sz_max); extern int of_property_read_variable_u16_array(const struct device_node *np, const char *propname, u16 *out_values, size_t sz_min, size_t sz_max); extern int of_property_read_variable_u32_array(const struct device_node *np, const char *propname, u32 *out_values, size_t sz_min, size_t sz_max); extern int of_property_read_u64(const struct device_node *np, const char *propname, u64 *out_value); extern int of_property_read_variable_u64_array(const struct device_node *np, const char *propname, u64 *out_values, size_t sz_min, size_t sz_max); extern int of_property_read_string(const struct device_node *np, const char *propname, const char **out_string); extern int of_property_match_string(const struct device_node *np, const char *propname, const char *string); extern int of_property_read_string_helper(const struct device_node *np, const char *propname, const char **out_strs, size_t sz, int index); extern int of_device_is_compatible(const struct device_node *device, const char *); extern int of_device_compatible_match(struct device_node *device, const char *const *compat); extern bool of_device_is_available(const struct device_node *device); extern bool of_device_is_big_endian(const struct device_node *device); extern const void *of_get_property(const struct device_node *node, const char *name, int *lenp); extern struct device_node *of_get_cpu_node(int cpu, unsigned int *thread); extern struct device_node *of_get_next_cpu_node(struct device_node *prev); extern struct device_node *of_get_cpu_state_node(struct device_node *cpu_node, int index); extern u64 of_get_cpu_hwid(struct device_node *cpun, unsigned int thread); #define for_each_property_of_node(dn, pp) \ for (pp = dn->properties; pp != NULL; pp = pp->next) extern int of_n_addr_cells(struct device_node *np); extern int of_n_size_cells(struct device_node *np); extern const struct of_device_id *of_match_node( const struct of_device_id *matches, const struct device_node *node); extern int of_modalias_node(struct device_node *node, char *modalias, int len); extern void of_print_phandle_args(const char *msg, const struct of_phandle_args *args); extern int __of_parse_phandle_with_args(const struct device_node *np, const char *list_name, const char *cells_name, int cell_count, int index, struct of_phandle_args *out_args); extern int of_parse_phandle_with_args_map(const struct device_node *np, const char *list_name, const char *stem_name, int index, struct of_phandle_args *out_args); extern int of_count_phandle_with_args(const struct device_node *np, const char *list_name, const char *cells_name); /* phandle iterator functions */ extern int of_phandle_iterator_init(struct of_phandle_iterator *it, const struct device_node *np, const char *list_name, const char *cells_name, int cell_count); extern int of_phandle_iterator_next(struct of_phandle_iterator *it); extern int of_phandle_iterator_args(struct of_phandle_iterator *it, uint32_t *args, int size); extern void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align)); extern int of_alias_get_id(struct device_node *np, const char *stem); extern int of_alias_get_highest_id(const char *stem); extern int of_machine_is_compatible(const char *compat); extern int of_add_property(struct device_node *np, struct property *prop); extern int of_remove_property(struct device_node *np, struct property *prop); extern int of_update_property(struct device_node *np, struct property *newprop); /* For updating the device tree at runtime */ #define OF_RECONFIG_ATTACH_NODE 0x0001 #define OF_RECONFIG_DETACH_NODE 0x0002 #define OF_RECONFIG_ADD_PROPERTY 0x0003 #define OF_RECONFIG_REMOVE_PROPERTY 0x0004 #define OF_RECONFIG_UPDATE_PROPERTY 0x0005 extern int of_attach_node(struct device_node *); extern int of_detach_node(struct device_node *); #define of_match_ptr(_ptr) (_ptr) /* * struct property *prop; * const __be32 *p; * u32 u; * * of_property_for_each_u32(np, "propname", prop, p, u) * printk("U32 value: %x\n", u); */ const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur, u32 *pu); /* * struct property *prop; * const char *s; * * of_property_for_each_string(np, "propname", prop, s) * printk("String value: %s\n", s); */ const char *of_prop_next_string(struct property *prop, const char *cur); bool of_console_check(struct device_node *dn, char *name, int index); extern int of_cpu_node_to_id(struct device_node *np); int of_map_id(struct device_node *np, u32 id, const char *map_name, const char *map_mask_name, struct device_node **target, u32 *id_out); phys_addr_t of_dma_get_max_cpu_address(struct device_node *np); struct kimage; void *of_kexec_alloc_and_setup_fdt(const struct kimage *image, unsigned long initrd_load_addr, unsigned long initrd_len, const char *cmdline, size_t extra_fdt_size); int ima_get_kexec_buffer(void **addr, size_t *size); int ima_free_kexec_buffer(void); #else /* CONFIG_OF */ static inline void of_core_init(void) { } static inline bool is_of_node(const struct fwnode_handle *fwnode) { return false; } static inline struct device_node *to_of_node(const struct fwnode_handle *fwnode) { return NULL; } static inline bool of_node_name_eq(const struct device_node *np, const char *name) { return false; } static inline bool of_node_name_prefix(const struct device_node *np, const char *prefix) { return false; } static inline const char* of_node_full_name(const struct device_node *np) { return ""; } static inline struct device_node *of_find_node_by_name(struct device_node *from, const char *name) { return NULL; } static inline struct device_node *of_find_node_by_type(struct device_node *from, const char *type) { return NULL; } static inline struct device_node *of_find_matching_node_and_match( struct device_node *from, const struct of_device_id *matches, const struct of_device_id **match) { return NULL; } static inline struct device_node *of_find_node_by_path(const char *path) { return NULL; } static inline struct device_node *of_find_node_opts_by_path(const char *path, const char **opts) { return NULL; } static inline struct device_node *of_find_node_by_phandle(phandle handle) { return NULL; } static inline struct device_node *of_get_parent(const struct device_node *node) { return NULL; } static inline struct device_node *of_get_next_parent(struct device_node *node) { return NULL; } static inline struct device_node *of_get_next_child( const struct device_node *node, struct device_node *prev) { return NULL; } static inline struct device_node *of_get_next_available_child( const struct device_node *node, struct device_node *prev) { return NULL; } static inline struct device_node *of_find_node_with_property( struct device_node *from, const char *prop_name) { return NULL; } #define of_fwnode_handle(node) NULL static inline bool of_have_populated_dt(void) { return false; } static inline struct device_node *of_get_compatible_child(const struct device_node *parent, const char *compatible) { return NULL; } static inline struct device_node *of_get_child_by_name( const struct device_node *node, const char *name) { return NULL; } static inline int of_device_is_compatible(const struct device_node *device, const char *name) { return 0; } static inline int of_device_compatible_match(struct device_node *device, const char *const *compat) { return 0; } static inline bool of_device_is_available(const struct device_node *device) { return false; } static inline bool of_device_is_big_endian(const struct device_node *device) { return false; } static inline struct property *of_find_property(const struct device_node *np, const char *name, int *lenp) { return NULL; } static inline struct device_node *of_find_compatible_node( struct device_node *from, const char *type, const char *compat) { return NULL; } static inline int of_property_count_elems_of_size(const struct device_node *np, const char *propname, int elem_size) { return -ENOSYS; } static inline int of_property_read_u32_index(const struct device_node *np, const char *propname, u32 index, u32 *out_value) { return -ENOSYS; } static inline int of_property_read_u64_index(const struct device_node *np, const char *propname, u32 index, u64 *out_value) { return -ENOSYS; } static inline const void *of_get_property(const struct device_node *node, const char *name, int *lenp) { return NULL; } static inline struct device_node *of_get_cpu_node(int cpu, unsigned int *thread) { return NULL; } static inline struct device_node *of_get_next_cpu_node(struct device_node *prev) { return NULL; } static inline struct device_node *of_get_cpu_state_node(struct device_node *cpu_node, int index) { return NULL; } static inline int of_n_addr_cells(struct device_node *np) { return 0; } static inline int of_n_size_cells(struct device_node *np) { return 0; } static inline int of_property_read_variable_u8_array(const struct device_node *np, const char *propname, u8 *out_values, size_t sz_min, size_t sz_max) { return -ENOSYS; } static inline int of_property_read_variable_u16_array(const struct device_node *np, const char *propname, u16 *out_values, size_t sz_min, size_t sz_max) { return -ENOSYS; } static inline int of_property_read_variable_u32_array(const struct device_node *np, const char *propname, u32 *out_values, size_t sz_min, size_t sz_max) { return -ENOSYS; } static inline int of_property_read_u64(const struct device_node *np, const char *propname, u64 *out_value) { return -ENOSYS; } static inline int of_property_read_variable_u64_array(const struct device_node *np, const char *propname, u64 *out_values, size_t sz_min, size_t sz_max) { return -ENOSYS; } static inline int of_property_read_string(const struct device_node *np, const char *propname, const char **out_string) { return -ENOSYS; } static inline int of_property_match_string(const struct device_node *np, const char *propname, const char *string) { return -ENOSYS; } static inline int of_property_read_string_helper(const struct device_node *np, const char *propname, const char **out_strs, size_t sz, int index) { return -ENOSYS; } static inline int __of_parse_phandle_with_args(const struct device_node *np, const char *list_name, const char *cells_name, int cell_count, int index, struct of_phandle_args *out_args) { return -ENOSYS; } static inline int of_parse_phandle_with_args_map(const struct device_node *np, const char *list_name, const char *stem_name, int index, struct of_phandle_args *out_args) { return -ENOSYS; } static inline int of_count_phandle_with_args(const struct device_node *np, const char *list_name, const char *cells_name) { return -ENOSYS; } static inline int of_phandle_iterator_init(struct of_phandle_iterator *it, const struct device_node *np, const char *list_name, const char *cells_name, int cell_count) { return -ENOSYS; } static inline int of_phandle_iterator_next(struct of_phandle_iterator *it) { return -ENOSYS; } static inline int of_phandle_iterator_args(struct of_phandle_iterator *it, uint32_t *args, int size) { return 0; } static inline int of_alias_get_id(struct device_node *np, const char *stem) { return -ENOSYS; } static inline int of_alias_get_highest_id(const char *stem) { return -ENOSYS; } static inline int of_machine_is_compatible(const char *compat) { return 0; } static inline int of_add_property(struct device_node *np, struct property *prop) { return 0; } static inline int of_remove_property(struct device_node *np, struct property *prop) { return 0; } static inline bool of_console_check(const struct device_node *dn, const char *name, int index) { return false; } static inline const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur, u32 *pu) { return NULL; } static inline const char *of_prop_next_string(struct property *prop, const char *cur) { return NULL; } static inline int of_node_check_flag(struct device_node *n, unsigned long flag) { return 0; } static inline int of_node_test_and_set_flag(struct device_node *n, unsigned long flag) { return 0; } static inline void of_node_set_flag(struct device_node *n, unsigned long flag) { } static inline void of_node_clear_flag(struct device_node *n, unsigned long flag) { } static inline int of_property_check_flag(struct property *p, unsigned long flag) { return 0; } static inline void of_property_set_flag(struct property *p, unsigned long flag) { } static inline void of_property_clear_flag(struct property *p, unsigned long flag) { } static inline int of_cpu_node_to_id(struct device_node *np) { return -ENODEV; } static inline int of_map_id(struct device_node *np, u32 id, const char *map_name, const char *map_mask_name, struct device_node **target, u32 *id_out) { return -EINVAL; } static inline phys_addr_t of_dma_get_max_cpu_address(struct device_node *np) { return PHYS_ADDR_MAX; } #define of_match_ptr(_ptr) NULL #define of_match_node(_matches, _node) NULL #endif /* CONFIG_OF */ /* Default string compare functions, Allow arch asm/prom.h to override */ #if !defined(of_compat_cmp) #define of_compat_cmp(s1, s2, l) strcasecmp((s1), (s2)) #define of_prop_cmp(s1, s2) strcmp((s1), (s2)) #define of_node_cmp(s1, s2) strcasecmp((s1), (s2)) #endif static inline int of_prop_val_eq(struct property *p1, struct property *p2) { return p1->length == p2->length && !memcmp(p1->value, p2->value, (size_t)p1->length); } #if defined(CONFIG_OF) && defined(CONFIG_NUMA) extern int of_node_to_nid(struct device_node *np); #else static inline int of_node_to_nid(struct device_node *device) { return NUMA_NO_NODE; } #endif #ifdef CONFIG_OF_NUMA extern int of_numa_init(void); #else static inline int of_numa_init(void) { return -ENOSYS; } #endif static inline struct device_node *of_find_matching_node( struct device_node *from, const struct of_device_id *matches) { return of_find_matching_node_and_match(from, matches, NULL); } static inline const char *of_node_get_device_type(const struct device_node *np) { return of_get_property(np, "device_type", NULL); } static inline bool of_node_is_type(const struct device_node *np, const char *type) { const char *match = of_node_get_device_type(np); return np && match && type && !strcmp(match, type); } /** * of_parse_phandle - Resolve a phandle property to a device_node pointer * @np: Pointer to device node holding phandle property * @phandle_name: Name of property holding a phandle value * @index: For properties holding a table of phandles, this is the index into * the table * * Return: The device_node pointer with refcount incremented. Use * of_node_put() on it when done. */ static inline struct device_node *of_parse_phandle(const struct device_node *np, const char *phandle_name, int index) { struct of_phandle_args args; if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0, index, &args)) return NULL; return args.np; } /** * of_parse_phandle_with_args() - Find a node pointed by phandle in a list * @np: pointer to a device tree node containing a list * @list_name: property name that contains a list * @cells_name: property name that specifies phandles' arguments count * @index: index of a phandle to parse out * @out_args: optional pointer to output arguments structure (will be filled) * * This function is useful to parse lists of phandles and their arguments. * Returns 0 on success and fills out_args, on error returns appropriate * errno value. * * Caller is responsible to call of_node_put() on the returned out_args->np * pointer. * * Example:: * * phandle1: node1 { * #list-cells = <2>; * }; * * phandle2: node2 { * #list-cells = <1>; * }; * * node3 { * list = <&phandle1 1 2 &phandle2 3>; * }; * * To get a device_node of the ``node2`` node you may call this: * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args); */ static inline int of_parse_phandle_with_args(const struct device_node *np, const char *list_name, const char *cells_name, int index, struct of_phandle_args *out_args) { int cell_count = -1; /* If cells_name is NULL we assume a cell count of 0 */ if (!cells_name) cell_count = 0; return __of_parse_phandle_with_args(np, list_name, cells_name, cell_count, index, out_args); } /** * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list * @np: pointer to a device tree node containing a list * @list_name: property name that contains a list * @cell_count: number of argument cells following the phandle * @index: index of a phandle to parse out * @out_args: optional pointer to output arguments structure (will be filled) * * This function is useful to parse lists of phandles and their arguments. * Returns 0 on success and fills out_args, on error returns appropriate * errno value. * * Caller is responsible to call of_node_put() on the returned out_args->np * pointer. * * Example:: * * phandle1: node1 { * }; * * phandle2: node2 { * }; * * node3 { * list = <&phandle1 0 2 &phandle2 2 3>; * }; * * To get a device_node of the ``node2`` node you may call this: * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args); */ static inline int of_parse_phandle_with_fixed_args(const struct device_node *np, const char *list_name, int cell_count, int index, struct of_phandle_args *out_args) { return __of_parse_phandle_with_args(np, list_name, NULL, cell_count, index, out_args); } /** * of_property_count_u8_elems - Count the number of u8 elements in a property * * @np: device node from which the property value is to be read. * @propname: name of the property to be searched. * * Search for a property in a device node and count the number of u8 elements * in it. * * Return: The number of elements on sucess, -EINVAL if the property does * not exist or its length does not match a multiple of u8 and -ENODATA if the * property does not have a value. */ static inline int of_property_count_u8_elems(const struct device_node *np, const char *propname) { return of_property_count_elems_of_size(np, propname, sizeof(u8)); } /** * of_property_count_u16_elems - Count the number of u16 elements in a property * * @np: device node from which the property value is to be read. * @propname: name of the property to be searched. * * Search for a property in a device node and count the number of u16 elements * in it. * * Return: The number of elements on sucess, -EINVAL if the property does * not exist or its length does not match a multiple of u16 and -ENODATA if the * property does not have a value. */ static inline int of_property_count_u16_elems(const struct device_node *np, const char *propname) { return of_property_count_elems_of_size(np, propname, sizeof(u16)); } /** * of_property_count_u32_elems - Count the number of u32 elements in a property * * @np: device node from which the property value is to be read. * @propname: name of the property to be searched. * * Search for a property in a device node and count the number of u32 elements * in it. * * Return: The number of elements on sucess, -EINVAL if the property does * not exist or its length does not match a multiple of u32 and -ENODATA if the * property does not have a value. */ static inline int of_property_count_u32_elems(const struct device_node *np, const char *propname) { return of_property_count_elems_of_size(np, propname, sizeof(u32)); } /** * of_property_count_u64_elems - Count the number of u64 elements in a property * * @np: device node from which the property value is to be read. * @propname: name of the property to be searched. * * Search for a property in a device node and count the number of u64 elements * in it. * * Return: The number of elements on sucess, -EINVAL if the property does * not exist or its length does not match a multiple of u64 and -ENODATA if the * property does not have a value. */ static inline int of_property_count_u64_elems(const struct device_node *np, const char *propname) { return of_property_count_elems_of_size(np, propname, sizeof(u64)); } /** * of_property_read_string_array() - Read an array of strings from a multiple * strings property. * @np: device node from which the property value is to be read. * @propname: name of the property to be searched. * @out_strs: output array of string pointers. * @sz: number of array elements to read. * * Search for a property in a device tree node and retrieve a list of * terminated string values (pointer to data, not a copy) in that property. * * Return: If @out_strs is NULL, the number of strings in the property is returned. */ static inline int of_property_read_string_array(const struct device_node *np, const char *propname, const char **out_strs, size_t sz) { return of_property_read_string_helper(np, propname, out_strs, sz, 0); } /** * of_property_count_strings() - Find and return the number of strings from a * multiple strings property. * @np: device node from which the property value is to be read. * @propname: name of the property to be searched. * * Search for a property in a device tree node and retrieve the number of null * terminated string contain in it. * * Return: The number of strings on success, -EINVAL if the property does not * exist, -ENODATA if property does not have a value, and -EILSEQ if the string * is not null-terminated within the length of the property data. */ static inline int of_property_count_strings(const struct device_node *np, const char *propname) { return of_property_read_string_helper(np, propname, NULL, 0, 0); } /** * of_property_read_string_index() - Find and read a string from a multiple * strings property. * @np: device node from which the property value is to be read. * @propname: name of the property to be searched. * @index: index of the string in the list of strings * @output: pointer to null terminated return string, modified only if * return value is 0. * * Search for a property in a device tree node and retrieve a null * terminated string value (pointer to data, not a copy) in the list of strings * contained in that property. * * Return: 0 on success, -EINVAL if the property does not exist, -ENODATA if * property does not have a value, and -EILSEQ if the string is not * null-terminated within the length of the property data. * * The out_string pointer is modified only if a valid string can be decoded. */ static inline int of_property_read_string_index(const struct device_node *np, const char *propname, int index, const char **output) { int rc = of_property_read_string_helper(np, propname, output, 1, index); return rc < 0 ? rc : 0; } /** * of_property_read_bool - Find a property * @np: device node from which the property value is to be read. * @propname: name of the property to be searched. * * Search for a property in a device node. * * Return: true if the property exists false otherwise. */ static inline bool of_property_read_bool(const struct device_node *np, const char *propname) { struct property *prop = of_find_property(np, propname, NULL); return prop ? true : false; } /** * of_property_read_u8_array - Find and read an array of u8 from a property. * * @np: device node from which the property value is to be read. * @propname: name of the property to be searched. * @out_values: pointer to return value, modified only if return value is 0. * @sz: number of array elements to read * * Search for a property in a device node and read 8-bit value(s) from * it. * * dts entry of array should be like: * ``property = /bits/ 8 <0x50 0x60 0x70>;`` * * Return: 0 on success, -EINVAL if the property does not exist, * -ENODATA if property does not have a value, and -EOVERFLOW if the * property data isn't large enough. * * The out_values is modified only if a valid u8 value can be decoded. */ static inline int of_property_read_u8_array(const struct device_node *np, const char *propname, u8 *out_values, size_t sz) { int ret = of_property_read_variable_u8_array(np, propname, out_values, sz, 0); if (ret >= 0) return 0; else return ret; } /** * of_property_read_u16_array - Find and read an array of u16 from a property. * * @np: device node from which the property value is to be read. * @propname: name of the property to be searched. * @out_values: pointer to return value, modified only if return value is 0. * @sz: number of array elements to read * * Search for a property in a device node and read 16-bit value(s) from * it. * * dts entry of array should be like: * ``property = /bits/ 16 <0x5000 0x6000 0x7000>;`` * * Return: 0 on success, -EINVAL if the property does not exist, * -ENODATA if property does not have a value, and -EOVERFLOW if the * property data isn't large enough. * * The out_values is modified only if a valid u16 value can be decoded. */ static inline int of_property_read_u16_array(const struct device_node *np, const char *propname, u16 *out_values, size_t sz) { int ret = of_property_read_variable_u16_array(np, propname, out_values, sz, 0); if (ret >= 0) return 0; else return ret; } /** * of_property_read_u32_array - Find and read an array of 32 bit integers * from a property. * * @np: device node from which the property value is to be read. * @propname: name of the property to be searched. * @out_values: pointer to return value, modified only if return value is 0. * @sz: number of array elements to read * * Search for a property in a device node and read 32-bit value(s) from * it. * * Return: 0 on success, -EINVAL if the property does not exist, * -ENODATA if property does not have a value, and -EOVERFLOW if the * property data isn't large enough. * * The out_values is modified only if a valid u32 value can be decoded. */ static inline int of_property_read_u32_array(const struct device_node *np, const char *propname, u32 *out_values, size_t sz) { int ret = of_property_read_variable_u32_array(np, propname, out_values, sz, 0); if (ret >= 0) return 0; else return ret; } /** * of_property_read_u64_array - Find and read an array of 64 bit integers * from a property. * * @np: device node from which the property value is to be read. * @propname: name of the property to be searched. * @out_values: pointer to return value, modified only if return value is 0. * @sz: number of array elements to read * * Search for a property in a device node and read 64-bit value(s) from * it. * * Return: 0 on success, -EINVAL if the property does not exist, * -ENODATA if property does not have a value, and -EOVERFLOW if the * property data isn't large enough. * * The out_values is modified only if a valid u64 value can be decoded. */ static inline int of_property_read_u64_array(const struct device_node *np, const char *propname, u64 *out_values, size_t sz) { int ret = of_property_read_variable_u64_array(np, propname, out_values, sz, 0); if (ret >= 0) return 0; else return ret; } static inline int of_property_read_u8(const struct device_node *np, const char *propname, u8 *out_value) { return of_property_read_u8_array(np, propname, out_value, 1); } static inline int of_property_read_u16(const struct device_node *np, const char *propname, u16 *out_value) { return of_property_read_u16_array(np, propname, out_value, 1); } static inline int of_property_read_u32(const struct device_node *np, const char *propname, u32 *out_value) { return of_property_read_u32_array(np, propname, out_value, 1); } static inline int of_property_read_s32(const struct device_node *np, const char *propname, s32 *out_value) { return of_property_read_u32(np, propname, (u32*) out_value); } #define of_for_each_phandle(it, err, np, ln, cn, cc) \ for (of_phandle_iterator_init((it), (np), (ln), (cn), (cc)), \ err = of_phandle_iterator_next(it); \ err == 0; \ err = of_phandle_iterator_next(it)) #define of_property_for_each_u32(np, propname, prop, p, u) \ for (prop = of_find_property(np, propname, NULL), \ p = of_prop_next_u32(prop, NULL, &u); \ p; \ p = of_prop_next_u32(prop, p, &u)) #define of_property_for_each_string(np, propname, prop, s) \ for (prop = of_find_property(np, propname, NULL), \ s = of_prop_next_string(prop, NULL); \ s; \ s = of_prop_next_string(prop, s)) #define for_each_node_by_name(dn, name) \ for (dn = of_find_node_by_name(NULL, name); dn; \ dn = of_find_node_by_name(dn, name)) #define for_each_node_by_type(dn, type) \ for (dn = of_find_node_by_type(NULL, type); dn; \ dn = of_find_node_by_type(dn, type)) #define for_each_compatible_node(dn, type, compatible) \ for (dn = of_find_compatible_node(NULL, type, compatible); dn; \ dn = of_find_compatible_node(dn, type, compatible)) #define for_each_matching_node(dn, matches) \ for (dn = of_find_matching_node(NULL, matches); dn; \ dn = of_find_matching_node(dn, matches)) #define for_each_matching_node_and_match(dn, matches, match) \ for (dn = of_find_matching_node_and_match(NULL, matches, match); \ dn; dn = of_find_matching_node_and_match(dn, matches, match)) #define for_each_child_of_node(parent, child) \ for (child = of_get_next_child(parent, NULL); child != NULL; \ child = of_get_next_child(parent, child)) #define for_each_available_child_of_node(parent, child) \ for (child = of_get_next_available_child(parent, NULL); child != NULL; \ child = of_get_next_available_child(parent, child)) #define for_each_of_cpu_node(cpu) \ for (cpu = of_get_next_cpu_node(NULL); cpu != NULL; \ cpu = of_get_next_cpu_node(cpu)) #define for_each_node_with_property(dn, prop_name) \ for (dn = of_find_node_with_property(NULL, prop_name); dn; \ dn = of_find_node_with_property(dn, prop_name)) static inline int of_get_child_count(const struct device_node *np) { struct device_node *child; int num = 0; for_each_child_of_node(np, child) num++; return num; } static inline int of_get_available_child_count(const struct device_node *np) { struct device_node *child; int num = 0; for_each_available_child_of_node(np, child) num++; return num; } #define _OF_DECLARE_STUB(table, name, compat, fn, fn_type) \ static const struct of_device_id __of_table_##name \ __attribute__((unused)) \ = { .compatible = compat, \ .data = (fn == (fn_type)NULL) ? fn : fn } #if defined(CONFIG_OF) && !defined(MODULE) #define _OF_DECLARE(table, name, compat, fn, fn_type) \ static const struct of_device_id __of_table_##name \ __used __section("__" #table "_of_table") \ __aligned(__alignof__(struct of_device_id)) \ = { .compatible = compat, \ .data = (fn == (fn_type)NULL) ? fn : fn } #else #define _OF_DECLARE(table, name, compat, fn, fn_type) \ _OF_DECLARE_STUB(table, name, compat, fn, fn_type) #endif typedef int (*of_init_fn_2)(struct device_node *, struct device_node *); typedef int (*of_init_fn_1_ret)(struct device_node *); typedef void (*of_init_fn_1)(struct device_node *); #define OF_DECLARE_1(table, name, compat, fn) \ _OF_DECLARE(table, name, compat, fn, of_init_fn_1) #define OF_DECLARE_1_RET(table, name, compat, fn) \ _OF_DECLARE(table, name, compat, fn, of_init_fn_1_ret) #define OF_DECLARE_2(table, name, compat, fn) \ _OF_DECLARE(table, name, compat, fn, of_init_fn_2) /** * struct of_changeset_entry - Holds a changeset entry * * @node: list_head for the log list * @action: notifier action * @np: pointer to the device node affected * @prop: pointer to the property affected * @old_prop: hold a pointer to the original property * * Every modification of the device tree during a changeset * is held in a list of of_changeset_entry structures. * That way we can recover from a partial application, or we can * revert the changeset */ struct of_changeset_entry { struct list_head node; unsigned long action; struct device_node *np; struct property *prop; struct property *old_prop; }; /** * struct of_changeset - changeset tracker structure * * @entries: list_head for the changeset entries * * changesets are a convenient way to apply bulk changes to the * live tree. In case of an error, changes are rolled-back. * changesets live on after initial application, and if not * destroyed after use, they can be reverted in one single call. */ struct of_changeset { struct list_head entries; }; enum of_reconfig_change { OF_RECONFIG_NO_CHANGE = 0, OF_RECONFIG_CHANGE_ADD, OF_RECONFIG_CHANGE_REMOVE, }; #ifdef CONFIG_OF_DYNAMIC extern int of_reconfig_notifier_register(struct notifier_block *); extern int of_reconfig_notifier_unregister(struct notifier_block *); extern int of_reconfig_notify(unsigned long, struct of_reconfig_data *rd); extern int of_reconfig_get_state_change(unsigned long action, struct of_reconfig_data *arg); extern void of_changeset_init(struct of_changeset *ocs); extern void of_changeset_destroy(struct of_changeset *ocs); extern int of_changeset_apply(struct of_changeset *ocs); extern int of_changeset_revert(struct of_changeset *ocs); extern int of_changeset_action(struct of_changeset *ocs, unsigned long action, struct device_node *np, struct property *prop); static inline int of_changeset_attach_node(struct of_changeset *ocs, struct device_node *np) { return of_changeset_action(ocs, OF_RECONFIG_ATTACH_NODE, np, NULL); } static inline int of_changeset_detach_node(struct of_changeset *ocs, struct device_node *np) { return of_changeset_action(ocs, OF_RECONFIG_DETACH_NODE, np, NULL); } static inline int of_changeset_add_property(struct of_changeset *ocs, struct device_node *np, struct property *prop) { return of_changeset_action(ocs, OF_RECONFIG_ADD_PROPERTY, np, prop); } static inline int of_changeset_remove_property(struct of_changeset *ocs, struct device_node *np, struct property *prop) { return of_changeset_action(ocs, OF_RECONFIG_REMOVE_PROPERTY, np, prop); } static inline int of_changeset_update_property(struct of_changeset *ocs, struct device_node *np, struct property *prop) { return of_changeset_action(ocs, OF_RECONFIG_UPDATE_PROPERTY, np, prop); } #else /* CONFIG_OF_DYNAMIC */ static inline int of_reconfig_notifier_register(struct notifier_block *nb) { return -EINVAL; } static inline int of_reconfig_notifier_unregister(struct notifier_block *nb) { return -EINVAL; } static inline int of_reconfig_notify(unsigned long action, struct of_reconfig_data *arg) { return -EINVAL; } static inline int of_reconfig_get_state_change(unsigned long action, struct of_reconfig_data *arg) { return -EINVAL; } #endif /* CONFIG_OF_DYNAMIC */ /** * of_device_is_system_power_controller - Tells if system-power-controller is found for device_node * @np: Pointer to the given device_node * * Return: true if present false otherwise */ static inline bool of_device_is_system_power_controller(const struct device_node *np) { return of_property_read_bool(np, "system-power-controller"); } /* * Overlay support */ enum of_overlay_notify_action { OF_OVERLAY_INIT = 0, /* kzalloc() of ovcs sets this value */ OF_OVERLAY_PRE_APPLY, OF_OVERLAY_POST_APPLY, OF_OVERLAY_PRE_REMOVE, OF_OVERLAY_POST_REMOVE, }; struct of_overlay_notify_data { struct device_node *overlay; struct device_node *target; }; #ifdef CONFIG_OF_OVERLAY int of_overlay_fdt_apply(const void *overlay_fdt, u32 overlay_fdt_size, int *ovcs_id); int of_overlay_remove(int *ovcs_id); int of_overlay_remove_all(void); int of_overlay_notifier_register(struct notifier_block *nb); int of_overlay_notifier_unregister(struct notifier_block *nb); #else static inline int of_overlay_fdt_apply(void *overlay_fdt, u32 overlay_fdt_size, int *ovcs_id) { return -ENOTSUPP; } static inline int of_overlay_remove(int *ovcs_id) { return -ENOTSUPP; } static inline int of_overlay_remove_all(void) { return -ENOTSUPP; } static inline int of_overlay_notifier_register(struct notifier_block *nb) { return 0; } static inline int of_overlay_notifier_unregister(struct notifier_block *nb) { return 0; } #endif #endif /* _LINUX_OF_H */