// SPDX-License-Identifier: GPL-2.0 #include "bcachefs.h" #include "replicas.h" #include "super-io.h" struct bch_replicas_entry_padded { struct bch_replicas_entry e; u8 pad[BCH_SB_MEMBERS_MAX]; }; static int bch2_cpu_replicas_to_sb_replicas(struct bch_fs *, struct bch_replicas_cpu *); /* Replicas tracking - in memory: */ static inline int u8_cmp(u8 l, u8 r) { return (l > r) - (l < r); } static void replicas_entry_sort(struct bch_replicas_entry *e) { bubble_sort(e->devs, e->nr_devs, u8_cmp); } #define for_each_cpu_replicas_entry(_r, _i) \ for (_i = (_r)->entries; \ (void *) (_i) < (void *) (_r)->entries + (_r)->nr * (_r)->entry_size;\ _i = (void *) (_i) + (_r)->entry_size) static inline struct bch_replicas_entry * cpu_replicas_entry(struct bch_replicas_cpu *r, unsigned i) { return (void *) r->entries + r->entry_size * i; } static void bch2_cpu_replicas_sort(struct bch_replicas_cpu *r) { eytzinger0_sort(r->entries, r->nr, r->entry_size, memcmp, NULL); } static void replicas_entry_to_text(struct printbuf *out, struct bch_replicas_entry *e) { unsigned i; pr_buf(out, "%s: %u/%u [", bch2_data_types[e->data_type], e->nr_required, e->nr_devs); for (i = 0; i < e->nr_devs; i++) pr_buf(out, i ? " %u" : "%u", e->devs[i]); pr_buf(out, "]"); } void bch2_cpu_replicas_to_text(struct printbuf *out, struct bch_replicas_cpu *r) { struct bch_replicas_entry *e; bool first = true; for_each_cpu_replicas_entry(r, e) { if (!first) pr_buf(out, " "); first = false; replicas_entry_to_text(out, e); } } static void extent_to_replicas(struct bkey_s_c k, struct bch_replicas_entry *r) { struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); const union bch_extent_entry *entry; struct extent_ptr_decoded p; r->nr_required = 1; bkey_for_each_ptr_decode(k.k, ptrs, p, entry) { if (p.ptr.cached) continue; if (p.ec_nr) { r->nr_devs = 0; break; } r->devs[r->nr_devs++] = p.ptr.dev; } } static void stripe_to_replicas(struct bkey_s_c k, struct bch_replicas_entry *r) { struct bkey_s_c_stripe s = bkey_s_c_to_stripe(k); const struct bch_extent_ptr *ptr; r->nr_required = s.v->nr_blocks - s.v->nr_redundant; for (ptr = s.v->ptrs; ptr < s.v->ptrs + s.v->nr_blocks; ptr++) r->devs[r->nr_devs++] = ptr->dev; } static void bkey_to_replicas(struct bkey_s_c k, struct bch_replicas_entry *e) { e->nr_devs = 0; switch (k.k->type) { case KEY_TYPE_btree_ptr: e->data_type = BCH_DATA_BTREE; extent_to_replicas(k, e); break; case KEY_TYPE_extent: e->data_type = BCH_DATA_USER; extent_to_replicas(k, e); break; case KEY_TYPE_stripe: e->data_type = BCH_DATA_USER; stripe_to_replicas(k, e); break; } replicas_entry_sort(e); } static inline void devlist_to_replicas(struct bch_devs_list devs, enum bch_data_type data_type, struct bch_replicas_entry *e) { unsigned i; BUG_ON(!data_type || data_type == BCH_DATA_SB || data_type >= BCH_DATA_NR); e->data_type = data_type; e->nr_devs = 0; e->nr_required = 1; for (i = 0; i < devs.nr; i++) e->devs[e->nr_devs++] = devs.devs[i]; replicas_entry_sort(e); } static struct bch_replicas_cpu * cpu_replicas_add_entry(struct bch_replicas_cpu *old, struct bch_replicas_entry *new_entry) { struct bch_replicas_cpu *new; unsigned i, nr, entry_size; entry_size = max_t(unsigned, old->entry_size, replicas_entry_bytes(new_entry)); nr = old->nr + 1; new = kzalloc(sizeof(struct bch_replicas_cpu) + nr * entry_size, GFP_NOIO); if (!new) return NULL; new->nr = nr; new->entry_size = entry_size; for (i = 0; i < old->nr; i++) memcpy(cpu_replicas_entry(new, i), cpu_replicas_entry(old, i), old->entry_size); memcpy(cpu_replicas_entry(new, old->nr), new_entry, replicas_entry_bytes(new_entry)); bch2_cpu_replicas_sort(new); return new; } static bool __replicas_has_entry(struct bch_replicas_cpu *r, struct bch_replicas_entry *search) { return replicas_entry_bytes(search) <= r->entry_size && eytzinger0_find(r->entries, r->nr, r->entry_size, memcmp, search) < r->nr; } static bool replicas_has_entry(struct bch_fs *c, struct bch_replicas_entry *search, bool check_gc_replicas) { struct bch_replicas_cpu *r, *gc_r; bool marked; rcu_read_lock(); r = rcu_dereference(c->replicas); marked = __replicas_has_entry(r, search) && (!check_gc_replicas || likely(!(gc_r = rcu_dereference(c->replicas_gc))) || __replicas_has_entry(gc_r, search)); rcu_read_unlock(); return marked; } noinline static int bch2_mark_replicas_slowpath(struct bch_fs *c, struct bch_replicas_entry *new_entry) { struct bch_replicas_cpu *old_gc, *new_gc = NULL, *old_r, *new_r = NULL; int ret = -ENOMEM; mutex_lock(&c->sb_lock); old_gc = rcu_dereference_protected(c->replicas_gc, lockdep_is_held(&c->sb_lock)); if (old_gc && !__replicas_has_entry(old_gc, new_entry)) { new_gc = cpu_replicas_add_entry(old_gc, new_entry); if (!new_gc) goto err; } old_r = rcu_dereference_protected(c->replicas, lockdep_is_held(&c->sb_lock)); if (!__replicas_has_entry(old_r, new_entry)) { new_r = cpu_replicas_add_entry(old_r, new_entry); if (!new_r) goto err; ret = bch2_cpu_replicas_to_sb_replicas(c, new_r); if (ret) goto err; } /* allocations done, now commit: */ if (new_r) bch2_write_super(c); /* don't update in memory replicas until changes are persistent */ if (new_gc) { rcu_assign_pointer(c->replicas_gc, new_gc); kfree_rcu(old_gc, rcu); } if (new_r) { rcu_assign_pointer(c->replicas, new_r); kfree_rcu(old_r, rcu); } mutex_unlock(&c->sb_lock); return 0; err: mutex_unlock(&c->sb_lock); kfree(new_gc); kfree(new_r); return ret; } static int __bch2_mark_replicas(struct bch_fs *c, struct bch_replicas_entry *devs) { return likely(replicas_has_entry(c, devs, true)) ? 0 : bch2_mark_replicas_slowpath(c, devs); } int bch2_mark_replicas(struct bch_fs *c, enum bch_data_type data_type, struct bch_devs_list devs) { struct bch_replicas_entry_padded search; if (!devs.nr) return 0; memset(&search, 0, sizeof(search)); BUG_ON(devs.nr >= BCH_REPLICAS_MAX); devlist_to_replicas(devs, data_type, &search.e); return __bch2_mark_replicas(c, &search.e); } int bch2_mark_bkey_replicas(struct bch_fs *c, struct bkey_s_c k) { struct bch_replicas_entry_padded search; struct bch_devs_list cached = bch2_bkey_cached_devs(k); unsigned i; int ret; memset(&search, 0, sizeof(search)); for (i = 0; i < cached.nr; i++) if ((ret = bch2_mark_replicas(c, BCH_DATA_CACHED, bch2_dev_list_single(cached.devs[i])))) return ret; bkey_to_replicas(k, &search.e); return search.e.nr_devs ? __bch2_mark_replicas(c, &search.e) : 0; } int bch2_replicas_gc_end(struct bch_fs *c, int ret) { struct bch_replicas_cpu *new_r, *old_r; lockdep_assert_held(&c->replicas_gc_lock); mutex_lock(&c->sb_lock); new_r = rcu_dereference_protected(c->replicas_gc, lockdep_is_held(&c->sb_lock)); rcu_assign_pointer(c->replicas_gc, NULL); if (ret) goto err; if (bch2_cpu_replicas_to_sb_replicas(c, new_r)) { ret = -ENOSPC; goto err; } bch2_write_super(c); /* don't update in memory replicas until changes are persistent */ old_r = rcu_dereference_protected(c->replicas, lockdep_is_held(&c->sb_lock)); rcu_assign_pointer(c->replicas, new_r); kfree_rcu(old_r, rcu); out: mutex_unlock(&c->sb_lock); return ret; err: kfree_rcu(new_r, rcu); goto out; } int bch2_replicas_gc_start(struct bch_fs *c, unsigned typemask) { struct bch_replicas_cpu *dst, *src; struct bch_replicas_entry *e; lockdep_assert_held(&c->replicas_gc_lock); mutex_lock(&c->sb_lock); BUG_ON(c->replicas_gc); src = rcu_dereference_protected(c->replicas, lockdep_is_held(&c->sb_lock)); dst = kzalloc(sizeof(struct bch_replicas_cpu) + src->nr * src->entry_size, GFP_NOIO); if (!dst) { mutex_unlock(&c->sb_lock); return -ENOMEM; } dst->nr = 0; dst->entry_size = src->entry_size; for_each_cpu_replicas_entry(src, e) if (!((1 << e->data_type) & typemask)) memcpy(cpu_replicas_entry(dst, dst->nr++), e, dst->entry_size); bch2_cpu_replicas_sort(dst); rcu_assign_pointer(c->replicas_gc, dst); mutex_unlock(&c->sb_lock); return 0; } /* Replicas tracking - superblock: */ static struct bch_replicas_cpu * __bch2_sb_replicas_to_cpu_replicas(struct bch_sb_field_replicas *sb_r) { struct bch_replicas_entry *e, *dst; struct bch_replicas_cpu *cpu_r; unsigned nr = 0, entry_size = 0, idx = 0; for_each_replicas_entry(sb_r, e) { entry_size = max_t(unsigned, entry_size, replicas_entry_bytes(e)); nr++; } cpu_r = kzalloc(sizeof(struct bch_replicas_cpu) + nr * entry_size, GFP_NOIO); if (!cpu_r) return NULL; cpu_r->nr = nr; cpu_r->entry_size = entry_size; for_each_replicas_entry(sb_r, e) { dst = cpu_replicas_entry(cpu_r, idx++); memcpy(dst, e, replicas_entry_bytes(e)); replicas_entry_sort(dst); } return cpu_r; } static struct bch_replicas_cpu * __bch2_sb_replicas_v0_to_cpu_replicas(struct bch_sb_field_replicas_v0 *sb_r) { struct bch_replicas_entry_v0 *e; struct bch_replicas_cpu *cpu_r; unsigned nr = 0, entry_size = 0, idx = 0; for_each_replicas_entry(sb_r, e) { entry_size = max_t(unsigned, entry_size, replicas_entry_bytes(e)); nr++; } entry_size += sizeof(struct bch_replicas_entry) - sizeof(struct bch_replicas_entry_v0); cpu_r = kzalloc(sizeof(struct bch_replicas_cpu) + nr * entry_size, GFP_NOIO); if (!cpu_r) return NULL; cpu_r->nr = nr; cpu_r->entry_size = entry_size; for_each_replicas_entry(sb_r, e) { struct bch_replicas_entry *dst = cpu_replicas_entry(cpu_r, idx++); dst->data_type = e->data_type; dst->nr_devs = e->nr_devs; dst->nr_required = 1; memcpy(dst->devs, e->devs, e->nr_devs); replicas_entry_sort(dst); } return cpu_r; } int bch2_sb_replicas_to_cpu_replicas(struct bch_fs *c) { struct bch_sb_field_replicas *sb_v1; struct bch_sb_field_replicas_v0 *sb_v0; struct bch_replicas_cpu *cpu_r, *old_r; if ((sb_v1 = bch2_sb_get_replicas(c->disk_sb.sb))) cpu_r = __bch2_sb_replicas_to_cpu_replicas(sb_v1); else if ((sb_v0 = bch2_sb_get_replicas_v0(c->disk_sb.sb))) cpu_r = __bch2_sb_replicas_v0_to_cpu_replicas(sb_v0); else cpu_r = kzalloc(sizeof(struct bch_replicas_cpu), GFP_NOIO); if (!cpu_r) return -ENOMEM; bch2_cpu_replicas_sort(cpu_r); old_r = rcu_dereference_check(c->replicas, lockdep_is_held(&c->sb_lock)); rcu_assign_pointer(c->replicas, cpu_r); if (old_r) kfree_rcu(old_r, rcu); return 0; } static int bch2_cpu_replicas_to_sb_replicas_v0(struct bch_fs *c, struct bch_replicas_cpu *r) { struct bch_sb_field_replicas_v0 *sb_r; struct bch_replicas_entry_v0 *dst; struct bch_replicas_entry *src; size_t bytes; bytes = sizeof(struct bch_sb_field_replicas); for_each_cpu_replicas_entry(r, src) bytes += replicas_entry_bytes(src) - 1; sb_r = bch2_sb_resize_replicas_v0(&c->disk_sb, DIV_ROUND_UP(bytes, sizeof(u64))); if (!sb_r) return -ENOSPC; bch2_sb_field_delete(&c->disk_sb, BCH_SB_FIELD_replicas); sb_r = bch2_sb_get_replicas_v0(c->disk_sb.sb); memset(&sb_r->entries, 0, vstruct_end(&sb_r->field) - (void *) &sb_r->entries); dst = sb_r->entries; for_each_cpu_replicas_entry(r, src) { dst->data_type = src->data_type; dst->nr_devs = src->nr_devs; memcpy(dst->devs, src->devs, src->nr_devs); dst = replicas_entry_next(dst); BUG_ON((void *) dst > vstruct_end(&sb_r->field)); } return 0; } static int bch2_cpu_replicas_to_sb_replicas(struct bch_fs *c, struct bch_replicas_cpu *r) { struct bch_sb_field_replicas *sb_r; struct bch_replicas_entry *dst, *src; bool need_v1 = false; size_t bytes; bytes = sizeof(struct bch_sb_field_replicas); for_each_cpu_replicas_entry(r, src) { bytes += replicas_entry_bytes(src); if (src->nr_required != 1) need_v1 = true; } if (!need_v1) return bch2_cpu_replicas_to_sb_replicas_v0(c, r); sb_r = bch2_sb_resize_replicas(&c->disk_sb, DIV_ROUND_UP(bytes, sizeof(u64))); if (!sb_r) return -ENOSPC; bch2_sb_field_delete(&c->disk_sb, BCH_SB_FIELD_replicas_v0); sb_r = bch2_sb_get_replicas(c->disk_sb.sb); memset(&sb_r->entries, 0, vstruct_end(&sb_r->field) - (void *) &sb_r->entries); dst = sb_r->entries; for_each_cpu_replicas_entry(r, src) { memcpy(dst, src, replicas_entry_bytes(src)); dst = replicas_entry_next(dst); BUG_ON((void *) dst > vstruct_end(&sb_r->field)); } return 0; } static const char *check_dup_replicas_entries(struct bch_replicas_cpu *cpu_r) { unsigned i; sort_cmp_size(cpu_r->entries, cpu_r->nr, cpu_r->entry_size, memcmp, NULL); for (i = 0; i + 1 < cpu_r->nr; i++) { struct bch_replicas_entry *l = cpu_replicas_entry(cpu_r, i); struct bch_replicas_entry *r = cpu_replicas_entry(cpu_r, i + 1); BUG_ON(memcmp(l, r, cpu_r->entry_size) > 0); if (!memcmp(l, r, cpu_r->entry_size)) return "duplicate replicas entry"; } return NULL; } static const char *bch2_sb_validate_replicas(struct bch_sb *sb, struct bch_sb_field *f) { struct bch_sb_field_replicas *sb_r = field_to_type(f, replicas); struct bch_sb_field_members *mi = bch2_sb_get_members(sb); struct bch_replicas_cpu *cpu_r = NULL; struct bch_replicas_entry *e; const char *err; unsigned i; for_each_replicas_entry(sb_r, e) { err = "invalid replicas entry: invalid data type"; if (e->data_type >= BCH_DATA_NR) goto err; err = "invalid replicas entry: no devices"; if (!e->nr_devs) goto err; err = "invalid replicas entry: bad nr_required"; if (!e->nr_required || (e->nr_required > 1 && e->nr_required >= e->nr_devs)) goto err; err = "invalid replicas entry: invalid device"; for (i = 0; i < e->nr_devs; i++) if (!bch2_dev_exists(sb, mi, e->devs[i])) goto err; } err = "cannot allocate memory"; cpu_r = __bch2_sb_replicas_to_cpu_replicas(sb_r); if (!cpu_r) goto err; err = check_dup_replicas_entries(cpu_r); err: kfree(cpu_r); return err; } static void bch2_sb_replicas_to_text(struct printbuf *out, struct bch_sb *sb, struct bch_sb_field *f) { struct bch_sb_field_replicas *r = field_to_type(f, replicas); struct bch_replicas_entry *e; bool first = true; for_each_replicas_entry(r, e) { if (!first) pr_buf(out, " "); first = false; replicas_entry_to_text(out, e); } } const struct bch_sb_field_ops bch_sb_field_ops_replicas = { .validate = bch2_sb_validate_replicas, .to_text = bch2_sb_replicas_to_text, }; static const char *bch2_sb_validate_replicas_v0(struct bch_sb *sb, struct bch_sb_field *f) { struct bch_sb_field_replicas_v0 *sb_r = field_to_type(f, replicas_v0); struct bch_sb_field_members *mi = bch2_sb_get_members(sb); struct bch_replicas_cpu *cpu_r = NULL; struct bch_replicas_entry_v0 *e; const char *err; unsigned i; for_each_replicas_entry_v0(sb_r, e) { err = "invalid replicas entry: invalid data type"; if (e->data_type >= BCH_DATA_NR) goto err; err = "invalid replicas entry: no devices"; if (!e->nr_devs) goto err; err = "invalid replicas entry: invalid device"; for (i = 0; i < e->nr_devs; i++) if (!bch2_dev_exists(sb, mi, e->devs[i])) goto err; } err = "cannot allocate memory"; cpu_r = __bch2_sb_replicas_v0_to_cpu_replicas(sb_r); if (!cpu_r) goto err; err = check_dup_replicas_entries(cpu_r); err: kfree(cpu_r); return err; } const struct bch_sb_field_ops bch_sb_field_ops_replicas_v0 = { .validate = bch2_sb_validate_replicas_v0, }; /* Query replicas: */ bool bch2_replicas_marked(struct bch_fs *c, enum bch_data_type data_type, struct bch_devs_list devs, bool check_gc_replicas) { struct bch_replicas_entry_padded search; if (!devs.nr) return true; memset(&search, 0, sizeof(search)); devlist_to_replicas(devs, data_type, &search.e); return replicas_has_entry(c, &search.e, check_gc_replicas); } bool bch2_bkey_replicas_marked(struct bch_fs *c, struct bkey_s_c k, bool check_gc_replicas) { struct bch_replicas_entry_padded search; struct bch_devs_list cached = bch2_bkey_cached_devs(k); unsigned i; memset(&search, 0, sizeof(search)); for (i = 0; i < cached.nr; i++) if (!bch2_replicas_marked(c, BCH_DATA_CACHED, bch2_dev_list_single(cached.devs[i]), check_gc_replicas)) return false; bkey_to_replicas(k, &search.e); return search.e.nr_devs ? replicas_has_entry(c, &search.e, check_gc_replicas) : true; } struct replicas_status __bch2_replicas_status(struct bch_fs *c, struct bch_devs_mask online_devs) { struct bch_sb_field_members *mi; struct bch_replicas_entry *e; struct bch_replicas_cpu *r; unsigned i, nr_online, nr_offline; struct replicas_status ret; memset(&ret, 0, sizeof(ret)); for (i = 0; i < ARRAY_SIZE(ret.replicas); i++) ret.replicas[i].redundancy = INT_MAX; mi = bch2_sb_get_members(c->disk_sb.sb); rcu_read_lock(); r = rcu_dereference(c->replicas); for_each_cpu_replicas_entry(r, e) { if (e->data_type >= ARRAY_SIZE(ret.replicas)) panic("e %p data_type %u\n", e, e->data_type); nr_online = nr_offline = 0; for (i = 0; i < e->nr_devs; i++) { BUG_ON(!bch2_dev_exists(c->disk_sb.sb, mi, e->devs[i])); if (test_bit(e->devs[i], online_devs.d)) nr_online++; else nr_offline++; } ret.replicas[e->data_type].redundancy = min(ret.replicas[e->data_type].redundancy, (int) nr_online - (int) e->nr_required); ret.replicas[e->data_type].nr_offline = max(ret.replicas[e->data_type].nr_offline, nr_offline); } rcu_read_unlock(); for (i = 0; i < ARRAY_SIZE(ret.replicas); i++) if (ret.replicas[i].redundancy == INT_MAX) ret.replicas[i].redundancy = 0; return ret; } struct replicas_status bch2_replicas_status(struct bch_fs *c) { return __bch2_replicas_status(c, bch2_online_devs(c)); } static bool have_enough_devs(struct replicas_status s, enum bch_data_type type, bool force_if_degraded, bool force_if_lost) { return (!s.replicas[type].nr_offline || force_if_degraded) && (s.replicas[type].redundancy >= 0 || force_if_lost); } bool bch2_have_enough_devs(struct replicas_status s, unsigned flags) { return (have_enough_devs(s, BCH_DATA_JOURNAL, flags & BCH_FORCE_IF_METADATA_DEGRADED, flags & BCH_FORCE_IF_METADATA_LOST) && have_enough_devs(s, BCH_DATA_BTREE, flags & BCH_FORCE_IF_METADATA_DEGRADED, flags & BCH_FORCE_IF_METADATA_LOST) && have_enough_devs(s, BCH_DATA_USER, flags & BCH_FORCE_IF_DATA_DEGRADED, flags & BCH_FORCE_IF_DATA_LOST)); } int bch2_replicas_online(struct bch_fs *c, bool meta) { struct replicas_status s = bch2_replicas_status(c); return (meta ? min(s.replicas[BCH_DATA_JOURNAL].redundancy, s.replicas[BCH_DATA_BTREE].redundancy) : s.replicas[BCH_DATA_USER].redundancy) + 1; } unsigned bch2_dev_has_data(struct bch_fs *c, struct bch_dev *ca) { struct bch_replicas_entry *e; struct bch_replicas_cpu *r; unsigned i, ret = 0; rcu_read_lock(); r = rcu_dereference(c->replicas); for_each_cpu_replicas_entry(r, e) for (i = 0; i < e->nr_devs; i++) if (e->devs[i] == ca->dev_idx) ret |= 1 << e->data_type; rcu_read_unlock(); return ret; }