summaryrefslogtreecommitdiff
path: root/kernel/irq/matrix.c
AgeCommit message (Collapse)AuthorFilesLines
2021-03-19genirq/matrix: Prevent allocation counter corruptionVitaly Kuznetsov1-1/+3
When irq_matrix_free() is called for an unallocated vector the managed_allocated and total_allocated counters get out of sync with the real state of the matrix. Later, when the last interrupt is freed, these counters will underflow resulting in UINTMAX because the counters are unsigned. While this is certainly a problem of the calling code, this can be catched in the allocator by checking the allocation bit for the to be freed vector which simplifies debugging. An example of the problem described above: https://lore.kernel.org/lkml/20210318192819.636943062@linutronix.de/ Add the missing sanity check and emit a warning when it triggers. Suggested-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/r/20210319111823.1105248-1-vkuznets@redhat.com
2021-03-17irq: Simplify condition in irq_matrix_reserve()Juergen Gross1-3/+2
The if condition in irq_matrix_reserve() can be much simpler. While at it fix a typo in the comment. Signed-off-by: Juergen Gross <jgross@suse.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/r/20210211070953.5914-1-jgross@suse.com
2021-03-16genirq: Fix typos and misspellings in commentsKrzysztof Kozlowski1-1/+1
No functional change. Signed-off-by: Krzysztof Kozlowski <krzysztof.kozlowski@canonical.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/r/20210316100205.23492-1-krzysztof.kozlowski@canonical.com
2020-08-30genirq/matrix: Deal with the sillyness of for_each_cpu() on UPThomas Gleixner1-0/+7
Most of the CPU mask operations behave the same way, but for_each_cpu() and it's variants ignore the cpumask argument and claim that CPU0 is always in the mask. This is historical, inconsistent and annoying behaviour. The matrix allocator uses for_each_cpu() and can be called on UP with an empty cpumask. The calling code does not expect that this succeeds but until commit e027fffff799 ("x86/irq: Unbreak interrupt affinity setting") this went unnoticed. That commit added a WARN_ON() to catch cases which move an interrupt from one vector to another on the same CPU. The warning triggers on UP. Add a check for the cpumask being empty to prevent this. Fixes: 2f75d9e1c905 ("genirq: Implement bitmap matrix allocator") Reported-by: kernel test robot <rong.a.chen@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: stable@vger.kernel.org
2018-11-06genirq/matrix: Improve target CPU selection for managed interrupts.Long Li1-4/+30
On large systems with multiple devices of the same class (e.g. NVMe disks, using managed interrupts), the kernel can affinitize these interrupts to a small subset of CPUs instead of spreading them out evenly. irq_matrix_alloc_managed() tries to select the CPU in the supplied cpumask of possible target CPUs which has the lowest number of interrupt vectors allocated. This is done by searching the CPU with the highest number of available vectors. While this is correct for non-managed CPUs it can select the wrong CPU for managed interrupts. Under certain constellations this results in affinitizing the managed interrupts of several devices to a single CPU in a set. The book keeping of available vectors works the following way: 1) Non-managed interrupts: available is decremented when the interrupt is actually requested by the device driver and a vector is assigned. It's incremented when the interrupt and the vector are freed. 2) Managed interrupts: Managed interrupts guarantee vector reservation when the MSI/MSI-X functionality of a device is enabled, which is achieved by reserving vectors in the bitmaps of the possible target CPUs. This reservation decrements the available count on each possible target CPU. When the interrupt is requested by the device driver then a vector is allocated from the reserved region. The operation is reversed when the interrupt is freed by the device driver. Neither of these operations affect the available count. The reservation persist up to the point where the MSI/MSI-X functionality is disabled and only this operation increments the available count again. For non-managed interrupts the available count is the correct selection criterion because the guaranteed reservations need to be taken into account. Using the allocated counter could lead to a failing allocation in the following situation (total vector space of 10 assumed): CPU0 CPU1 available: 2 0 allocated: 5 3 <--- CPU1 is selected, but available space = 0 managed reserved: 3 7 while available yields the correct result. For managed interrupts the available count is not the appropriate selection criterion because as explained above the available count is not affected by the actual vector allocation. The following example illustrates that. Total vector space of 10 assumed. The starting point is: CPU0 CPU1 available: 5 4 allocated: 2 3 managed reserved: 3 3 Allocating vectors for three non-managed interrupts will result in affinitizing the first two to CPU0 and the third one to CPU1 because the available count is adjusted with each allocation: CPU0 CPU1 available: 5 4 <- Select CPU0 for 1st allocation --> allocated: 3 3 available: 4 4 <- Select CPU0 for 2nd allocation --> allocated: 4 3 available: 3 4 <- Select CPU1 for 3rd allocation --> allocated: 4 4 But the allocation of three managed interrupts starting from the same point will affinitize all of them to CPU0 because the available count is not affected by the allocation (see above). So the end result is: CPU0 CPU1 available: 5 4 allocated: 5 3 Introduce a "managed_allocated" field in struct cpumap to track the vector allocation for managed interrupts separately. Use this information to select the target CPU when a vector is allocated for a managed interrupt, which results in more evenly distributed vector assignments. The above example results in the following allocations: CPU0 CPU1 managed_allocated: 0 0 <- Select CPU0 for 1st allocation --> allocated: 3 3 managed_allocated: 1 0 <- Select CPU1 for 2nd allocation --> allocated: 3 4 managed_allocated: 1 1 <- Select CPU0 for 3rd allocation --> allocated: 4 4 The allocation of non-managed interrupts is not affected by this change and is still evaluating the available count. The overall distribution of interrupt vectors for both types of interrupts might still not be perfectly even depending on the number of non-managed and managed interrupts in a system, but due to the reservation guarantee for managed interrupts this cannot be avoided. Expose the new field in debugfs as well. [ tglx: Clarified the background of the problem in the changelog and described it independent of NVME ] Signed-off-by: Long Li <longli@microsoft.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Michael Kelley <mikelley@microsoft.com> Link: https://lkml.kernel.org/r/20181106040000.27316-1-longli@linuxonhyperv.com
2018-11-01irq/matrix: Fix memory overallocationMichael Kelley1-1/+1
IRQ_MATRIX_SIZE is the number of longs needed for a bitmap, multiplied by the size of a long, yielding a byte count. But it is used to size an array of longs, which is way more memory than is needed. Change IRQ_MATRIX_SIZE so it is just the number of longs needed and the arrays come out the correct size. Fixes: 2f75d9e1c905 ("genirq: Implement bitmap matrix allocator") Signed-off-by: Michael Kelley <mikelley@microsoft.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: KY Srinivasan <kys@microsoft.com> Link: https://lkml.kernel.org/r/1541032428-10392-1-git-send-email-mikelley@microsoft.com
2018-09-18irq/matrix: Spread managed interrupts on allocationDou Liyang1-3/+14
Linux spreads out the non managed interrupt across the possible target CPUs to avoid vector space exhaustion. Managed interrupts are treated differently, as for them the vectors are reserved (with guarantee) when the interrupt descriptors are initialized. When the interrupt is requested a real vector is assigned. The assignment logic uses the first CPU in the affinity mask for assignment. If the interrupt has more than one CPU in the affinity mask, which happens when a multi queue device has less queues than CPUs, then doing the same search as for non managed interrupts makes sense as it puts the interrupt on the least interrupt plagued CPU. For single CPU affine vectors that's obviously a NOOP. Restructre the matrix allocation code so it does the 'best CPU' search, add the sanity check for an empty affinity mask and adapt the call site in the x86 vector management code. [ tglx: Added the empty mask check to the core and improved change log ] Signed-off-by: Dou Liyang <douly.fnst@cn.fujitsu.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: hpa@zytor.com Link: https://lkml.kernel.org/r/20180908175838.14450-2-dou_liyang@163.com
2018-09-18irq/matrix: Split out the CPU selection code into a helperDou Liyang1-27/+38
Linux finds the CPU which has the lowest vector allocation count to spread out the non managed interrupts across the possible target CPUs, but does not do so for managed interrupts. Split out the CPU selection code into a helper function for reuse. No functional change. Signed-off-by: Dou Liyang <douly.fnst@cn.fujitsu.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: hpa@zytor.com Link: https://lkml.kernel.org/r/20180908175838.14450-1-dou_liyang@163.com
2018-03-20genirq/matrix: Cleanup SPDX identifierThomas Gleixner1-5/+3
Use the proper SPDX-Identifier format. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Marc Zyngier <marc.zyngier@arm.com> Cc: Kate Stewart <kstewart@linuxfoundation.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Philippe Ombredanne <pombredanne@nexb.com> Link: https://lkml.kernel.org/r/20180314212030.492674761@linutronix.de
2018-02-22genirq/matrix: Handle CPU offlining properThomas Gleixner1-9/+14
At CPU hotunplug the corresponding per cpu matrix allocator is shut down and the allocated interrupt bits are discarded under the assumption that all allocated bits have been either migrated away or shut down through the managed interrupts mechanism. This is not true because interrupts which are not started up might have a vector allocated on the outgoing CPU. When the interrupt is started up later or completely shutdown and freed then the allocated vector is handed back, triggering warnings or causing accounting issues which result in suspend failures and other issues. Change the CPU hotplug mechanism of the matrix allocator so that the remaining allocations at unplug time are preserved and global accounting at hotplug is correctly readjusted to take the dormant vectors into account. Fixes: 2f75d9e1c905 ("genirq: Implement bitmap matrix allocator") Reported-by: Yuriy Vostrikov <delamonpansie@gmail.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Yuriy Vostrikov <delamonpansie@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20180222112316.849980972@linutronix.de
2018-01-18irq/matrix: Spread interrupts on allocationThomas Gleixner1-6/+14
Keith reported an issue with vector space exhaustion on a server machine which is caused by the i40e driver allocating 168 MSI interrupts when the driver is initialized, even when most of these interrupts are not used at all. The x86 vector allocation code tries to avoid the immediate allocation with the reservation mode, but the card uses MSI and does not support MSI entry masking, which prevents reservation mode and requires immediate vector allocation. The matrix allocator is a bit naive and prefers the first CPU in the cpumask which describes the possible target CPUs for an allocation. That results in allocating all 168 vectors on CPU0 which later causes vector space exhaustion when the NVMe driver tries to allocate managed interrupts on each CPU for the per CPU queues. Avoid this by finding the CPU which has the lowest vector allocation count to spread out the non managed interrupt accross the possible target CPUs. Fixes: 2f75d9e1c905 ("genirq: Implement bitmap matrix allocator") Reported-by: Keith Busch <keith.busch@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Keith Busch <keith.busch@intel.com> Link: https://lkml.kernel.org/r/alpine.DEB.2.20.1801171557330.1777@nanos
2017-12-04genirq/matrix: Fix the precedence fix for realThomas Gleixner1-1/+3
The previous commit which made the operator precedence in irq_matrix_available() explicit made the implicit brokenness explicitely wrong. It was wrong in the original commit already. The overworked maintainer did not notice it either when merging the patch. Replace the confusing '?' construct by a simple and obvious if (). Fixes: 75f1133873d6 ("genirq/matrix: Make - vs ?: Precedence explicit") Reported-by: Rasmus Villemoes <rasmus.villemoes@prevas.dk> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Kees Cook <keescook@chromium.org>
2017-11-23genirq/matrix: Make - vs ?: Precedence explicitKees Cook1-1/+1
Noticed with a Clang build. This improves the readability of the ?: expression, as it has lower precedence than the - expression. Show explicitly that - is evaluated first. Signed-off-by: Kees Cook <keescook@chromium.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20171122205645.GA27125@beast
2017-09-25genirq/matrix: Add tracepointsThomas Gleixner1-0/+15
Add tracepoints for the irq bitmap matrix allocator. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Juergen Gross <jgross@suse.com> Tested-by: Yu Chen <yu.c.chen@intel.com> Acked-by: Juergen Gross <jgross@suse.com> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Marc Zyngier <marc.zyngier@arm.com> Cc: Alok Kataria <akataria@vmware.com> Cc: Joerg Roedel <joro@8bytes.org> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Rui Zhang <rui.zhang@intel.com> Cc: "K. Y. Srinivasan" <kys@microsoft.com> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Len Brown <lenb@kernel.org> Link: https://lkml.kernel.org/r/20170913213153.279468022@linutronix.de
2017-09-25genirq: Implement bitmap matrix allocatorThomas Gleixner1-0/+428
Implement the infrastructure for a simple bitmap based allocator, which will replace the x86 vector allocator. It's in the core code as other architectures might be able to reuse/extend it. For now it only implements allocations for single CPUs, but it's simple to add multi CPU allocation support if required. The concept is rather simple: Global information: system_vector bitmap global accounting PerCPU information: allocation bitmap managed allocation bitmap local accounting The system vector bitmap is used to exclude vectors system wide from the allocation space. The allocation bitmap is used to keep track of per cpu used vectors. The managed allocation bitmap is used to reserve vectors for managed interrupts. When a regular (non managed) interrupt allocation happens then the following rule applies: tmpmap = system_map | alloc_map | managed_map find_zero_bit(tmpmap) Oring the bitmaps together gives the real available space. The same rule applies for reserving a managed interrupt vector. But contrary to the regular interrupts the reservation only marks the bit in the managed map and therefor excludes it from the regular allocations. The managed map is only cleaned out when the a managed interrupt is completely released and it stays alive accross CPU offline/online operations. For managed interrupt allocations the rule is: tmpmap = managed_map & ~alloc_map find_first_bit(tmpmap) This returns the first bit which is in the managed map, but not yet allocated in the allocation map. The allocation marks it in the allocation map and hands it back to the caller for use. The rest of the code are helper functions to handle the various requirements and the accounting which are necessary to replace the x86 vector allocation code. The result is a single patch as the evolution of this infrastructure cannot be represented in bits and pieces. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Juergen Gross <jgross@suse.com> Tested-by: Yu Chen <yu.c.chen@intel.com> Acked-by: Juergen Gross <jgross@suse.com> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Marc Zyngier <marc.zyngier@arm.com> Cc: Alok Kataria <akataria@vmware.com> Cc: Joerg Roedel <joro@8bytes.org> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Rui Zhang <rui.zhang@intel.com> Cc: "K. Y. Srinivasan" <kys@microsoft.com> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Chris Metcalf <cmetcalf@mellanox.com> Cc: Len Brown <lenb@kernel.org> Link: https://lkml.kernel.org/r/20170913213153.185437174@linutronix.de