summaryrefslogtreecommitdiff
path: root/tools/memory-model
diff options
context:
space:
mode:
Diffstat (limited to 'tools/memory-model')
-rw-r--r--tools/memory-model/Documentation/explanation.txt10
1 files changed, 5 insertions, 5 deletions
diff --git a/tools/memory-model/Documentation/explanation.txt b/tools/memory-model/Documentation/explanation.txt
index 488f11f6c588..1b5264559cd6 100644
--- a/tools/memory-model/Documentation/explanation.txt
+++ b/tools/memory-model/Documentation/explanation.txt
@@ -206,7 +206,7 @@ goes like this:
P0 stores 1 to buf before storing 1 to flag, since it executes
its instructions in order.
- Since an instruction (in this case, P1's store to flag) cannot
+ Since an instruction (in this case, P0's store to flag) cannot
execute before itself, the specified outcome is impossible.
However, real computer hardware almost never follows the Sequential
@@ -419,7 +419,7 @@ example:
The object code might call f(5) either before or after g(6); the
memory model cannot assume there is a fixed program order relation
-between them. (In fact, if the functions are inlined then the
+between them. (In fact, if the function calls are inlined then the
compiler might even interleave their object code.)
@@ -499,7 +499,7 @@ different CPUs (external reads-from, or rfe).
For our purposes, a memory location's initial value is treated as
though it had been written there by an imaginary initial store that
-executes on a separate CPU before the program runs.
+executes on a separate CPU before the main program runs.
Usage of the rf relation implicitly assumes that loads will always
read from a single store. It doesn't apply properly in the presence
@@ -955,7 +955,7 @@ atomic update. This is what the LKMM's "atomic" axiom says.
THE PRESERVED PROGRAM ORDER RELATION: ppo
-----------------------------------------
-There are many situations where a CPU is obligated to execute two
+There are many situations where a CPU is obliged to execute two
instructions in program order. We amalgamate them into the ppo (for
"preserved program order") relation, which links the po-earlier
instruction to the po-later instruction and is thus a sub-relation of
@@ -1572,7 +1572,7 @@ and there are events X, Y and a read-side critical section C such that:
2. X comes "before" Y in some sense (including rfe, co and fr);
- 2. Y is po-before Z;
+ 3. Y is po-before Z;
4. Z is the rcu_read_unlock() event marking the end of C;