summaryrefslogtreecommitdiff
path: root/include/linux/sched/rt.h
blob: 94e19ea28fc3cfca7368877828f2a1a04e4e7c13 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
#ifndef _SCHED_RT_H
#define _SCHED_RT_H

/*
 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
 * values are inverted: lower p->prio value means higher priority.
 *
 * The MAX_USER_RT_PRIO value allows the actual maximum
 * RT priority to be separate from the value exported to
 * user-space.  This allows kernel threads to set their
 * priority to a value higher than any user task. Note:
 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
 */

#define MAX_USER_RT_PRIO	100
#define MAX_RT_PRIO		MAX_USER_RT_PRIO

#define MAX_PRIO		(MAX_RT_PRIO + 40)
#define DEFAULT_PRIO		(MAX_RT_PRIO + 20)

static inline int rt_prio(int prio)
{
	if (unlikely(prio < MAX_RT_PRIO))
		return 1;
	return 0;
}

static inline int rt_task(struct task_struct *p)
{
	return rt_prio(p->prio);
}

#ifdef CONFIG_RT_MUTEXES
extern int rt_mutex_getprio(struct task_struct *p);
extern void rt_mutex_setprio(struct task_struct *p, int prio);
extern void rt_mutex_adjust_pi(struct task_struct *p);
static inline bool tsk_is_pi_blocked(struct task_struct *tsk)
{
	return tsk->pi_blocked_on != NULL;
}
#else
static inline int rt_mutex_getprio(struct task_struct *p)
{
	return p->normal_prio;
}
# define rt_mutex_adjust_pi(p)		do { } while (0)
static inline bool tsk_is_pi_blocked(struct task_struct *tsk)
{
	return false;
}
#endif

extern void normalize_rt_tasks(void);


#endif /* _SCHED_RT_H */