summaryrefslogtreecommitdiff
path: root/fpu
diff options
context:
space:
mode:
authorAurelien Jarno <aurelien@aurel32.net>2011-05-15 14:09:18 +0200
committerAurelien Jarno <aurelien@aurel32.net>2011-06-03 16:07:51 +0200
commitbe22a9abc0dd02aa99726b656482b64e2aa4af80 (patch)
tree4c36067df7b92046d823a458c147f573ccb358c8 /fpu
parentcf67c6bad56d43e6d60df22d6d43371813a6e2b8 (diff)
softfloat: always enable floatx80 and float128 support
Now that softfloat-native is gone, there is no real point on not always enabling floatx80 and float128 support. Reviewed-by: Peter Maydell <peter.maydell@linaro.org> Signed-off-by: Aurelien Jarno <aurelien@aurel32.net>
Diffstat (limited to 'fpu')
-rw-r--r--fpu/softfloat-specialize.h7
-rw-r--r--fpu/softfloat.c62
-rw-r--r--fpu/softfloat.h47
3 files changed, 0 insertions, 116 deletions
diff --git a/fpu/softfloat-specialize.h b/fpu/softfloat-specialize.h
index 9d68aae9d..c7d35a161 100644
--- a/fpu/softfloat-specialize.h
+++ b/fpu/softfloat-specialize.h
@@ -523,8 +523,6 @@ static float64 propagateFloat64NaN( float64 a, float64 b STATUS_PARAM)
}
}
-#ifdef FLOATX80
-
/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point value `a' is a
| quiet NaN; otherwise returns 0. This slightly differs from the same
@@ -681,10 +679,6 @@ static floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b STATUS_PARAM)
}
}
-#endif
-
-#ifdef FLOAT128
-
/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is a quiet
| NaN; otherwise returns 0.
@@ -820,4 +814,3 @@ static float128 propagateFloat128NaN( float128 a, float128 b STATUS_PARAM)
}
}
-#endif
diff --git a/fpu/softfloat.c b/fpu/softfloat.c
index e3cd8a729..7951a0e86 100644
--- a/fpu/softfloat.c
+++ b/fpu/softfloat.c
@@ -64,12 +64,10 @@ void set_float_exception_flags(int val STATUS_PARAM)
STATUS(float_exception_flags) = val;
}
-#ifdef FLOATX80
void set_floatx80_rounding_precision(int val STATUS_PARAM)
{
STATUS(floatx80_rounding_precision) = val;
}
-#endif
/*----------------------------------------------------------------------------
| Returns the fraction bits of the half-precision floating-point value `a'.
@@ -564,8 +562,6 @@ static float64
}
-#ifdef FLOATX80
-
/*----------------------------------------------------------------------------
| Returns the fraction bits of the extended double-precision floating-point
| value `a'.
@@ -851,10 +847,6 @@ static floatx80
}
-#endif
-
-#ifdef FLOAT128
-
/*----------------------------------------------------------------------------
| Returns the least-significant 64 fraction bits of the quadruple-precision
| floating-point value `a'.
@@ -1118,8 +1110,6 @@ static float128
}
-#endif
-
/*----------------------------------------------------------------------------
| Returns the result of converting the 32-bit two's complement integer `a'
| to the single-precision floating-point format. The conversion is performed
@@ -1159,8 +1149,6 @@ float64 int32_to_float64( int32 a STATUS_PARAM )
}
-#ifdef FLOATX80
-
/*----------------------------------------------------------------------------
| Returns the result of converting the 32-bit two's complement integer `a'
| to the extended double-precision floating-point format. The conversion
@@ -1184,10 +1172,6 @@ floatx80 int32_to_floatx80( int32 a STATUS_PARAM )
}
-#endif
-
-#ifdef FLOAT128
-
/*----------------------------------------------------------------------------
| Returns the result of converting the 32-bit two's complement integer `a' to
| the quadruple-precision floating-point format. The conversion is performed
@@ -1210,8 +1194,6 @@ float128 int32_to_float128( int32 a STATUS_PARAM )
}
-#endif
-
/*----------------------------------------------------------------------------
| Returns the result of converting the 64-bit two's complement integer `a'
| to the single-precision floating-point format. The conversion is performed
@@ -1291,8 +1273,6 @@ float64 uint64_to_float64( uint64 a STATUS_PARAM )
}
-#ifdef FLOATX80
-
/*----------------------------------------------------------------------------
| Returns the result of converting the 64-bit two's complement integer `a'
| to the extended double-precision floating-point format. The conversion
@@ -1314,10 +1294,6 @@ floatx80 int64_to_floatx80( int64 a STATUS_PARAM )
}
-#endif
-
-#ifdef FLOAT128
-
/*----------------------------------------------------------------------------
| Returns the result of converting the 64-bit two's complement integer `a' to
| the quadruple-precision floating-point format. The conversion is performed
@@ -1351,8 +1327,6 @@ float128 int64_to_float128( int64 a STATUS_PARAM )
}
-#endif
-
/*----------------------------------------------------------------------------
| Returns the result of converting the single-precision floating-point value
| `a' to the 32-bit two's complement integer format. The conversion is
@@ -1590,8 +1564,6 @@ float64 float32_to_float64( float32 a STATUS_PARAM )
}
-#ifdef FLOATX80
-
/*----------------------------------------------------------------------------
| Returns the result of converting the single-precision floating-point value
| `a' to the extended double-precision floating-point format. The conversion
@@ -1622,10 +1594,6 @@ floatx80 float32_to_floatx80( float32 a STATUS_PARAM )
}
-#endif
-
-#ifdef FLOAT128
-
/*----------------------------------------------------------------------------
| Returns the result of converting the single-precision floating-point value
| `a' to the double-precision floating-point format. The conversion is
@@ -1656,8 +1624,6 @@ float128 float32_to_float128( float32 a STATUS_PARAM )
}
-#endif
-
/*----------------------------------------------------------------------------
| Rounds the single-precision floating-point value `a' to an integer, and
| returns the result as a single-precision floating-point value. The
@@ -2939,8 +2905,6 @@ float16 float32_to_float16(float32 a, flag ieee STATUS_PARAM)
return packFloat16(aSign, aExp + 14, aSig >> 13);
}
-#ifdef FLOATX80
-
/*----------------------------------------------------------------------------
| Returns the result of converting the double-precision floating-point value
| `a' to the extended double-precision floating-point format. The conversion
@@ -2972,10 +2936,6 @@ floatx80 float64_to_floatx80( float64 a STATUS_PARAM )
}
-#endif
-
-#ifdef FLOAT128
-
/*----------------------------------------------------------------------------
| Returns the result of converting the double-precision floating-point value
| `a' to the quadruple-precision floating-point format. The conversion is
@@ -3007,8 +2967,6 @@ float128 float64_to_float128( float64 a STATUS_PARAM )
}
-#endif
-
/*----------------------------------------------------------------------------
| Rounds the double-precision floating-point value `a' to an integer, and
| returns the result as a double-precision floating-point value. The
@@ -3816,8 +3774,6 @@ int float64_unordered_quiet( float64 a, float64 b STATUS_PARAM )
return 0;
}
-#ifdef FLOATX80
-
/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the 32-bit two's complement integer format. The
@@ -4030,8 +3986,6 @@ float64 floatx80_to_float64( floatx80 a STATUS_PARAM )
}
-#ifdef FLOAT128
-
/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the quadruple-precision floating-point format. The
@@ -4056,8 +4010,6 @@ float128 floatx80_to_float128( floatx80 a STATUS_PARAM )
}
-#endif
-
/*----------------------------------------------------------------------------
| Rounds the extended double-precision floating-point value `a' to an integer,
| and returns the result as an extended quadruple-precision floating-point
@@ -4849,10 +4801,6 @@ int floatx80_unordered_quiet( floatx80 a, floatx80 b STATUS_PARAM )
return 0;
}
-#endif
-
-#ifdef FLOAT128
-
/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
| value `a' to the 32-bit two's complement integer format. The conversion
@@ -5102,8 +5050,6 @@ float64 float128_to_float64( float128 a STATUS_PARAM )
}
-#ifdef FLOATX80
-
/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
| value `a' to the extended double-precision floating-point format. The
@@ -5139,8 +5085,6 @@ floatx80 float128_to_floatx80( float128 a STATUS_PARAM )
}
-#endif
-
/*----------------------------------------------------------------------------
| Rounds the quadruple-precision floating-point value `a' to an integer, and
| returns the result as a quadruple-precision floating-point value. The
@@ -6020,8 +5964,6 @@ int float128_unordered_quiet( float128 a, float128 b STATUS_PARAM )
return 0;
}
-#endif
-
/* misc functions */
float32 uint32_to_float32( unsigned int a STATUS_PARAM )
{
@@ -6423,7 +6365,6 @@ float64 float64_scalbn( float64 a, int n STATUS_PARAM )
return normalizeRoundAndPackFloat64( aSign, aExp, aSig STATUS_VAR );
}
-#ifdef FLOATX80
floatx80 floatx80_scalbn( floatx80 a, int n STATUS_PARAM )
{
flag aSign;
@@ -6454,9 +6395,7 @@ floatx80 floatx80_scalbn( floatx80 a, int n STATUS_PARAM )
return normalizeRoundAndPackFloatx80( STATUS(floatx80_rounding_precision),
aSign, aExp, aSig, 0 STATUS_VAR );
}
-#endif
-#ifdef FLOAT128
float128 float128_scalbn( float128 a, int n STATUS_PARAM )
{
flag aSign;
@@ -6489,4 +6428,3 @@ float128 float128_scalbn( float128 a, int n STATUS_PARAM )
STATUS_VAR );
}
-#endif
diff --git a/fpu/softfloat.h b/fpu/softfloat.h
index 999b95cef..8931446fd 100644
--- a/fpu/softfloat.h
+++ b/fpu/softfloat.h
@@ -74,17 +74,6 @@ typedef int64_t int64;
#define SNAN_BIT_IS_ONE 0
#endif
-/*----------------------------------------------------------------------------
-| The macro `FLOATX80' must be defined to enable the extended double-precision
-| floating-point format `floatx80'. If this macro is not defined, the
-| `floatx80' type will not be defined, and none of the functions that either
-| input or output the `floatx80' type will be defined. The same applies to
-| the `FLOAT128' macro and the quadruple-precision format `float128'.
-*----------------------------------------------------------------------------*/
-/* bit exact soft float support */
-#define FLOATX80
-#define FLOAT128
-
#define STATUS_PARAM , float_status *status
#define STATUS(field) status->field
#define STATUS_VAR , status
@@ -141,14 +130,11 @@ typedef uint64_t float64;
#define const_float32(x) (x)
#define const_float64(x) (x)
#endif
-#ifdef FLOATX80
typedef struct {
uint64_t low;
uint16_t high;
} floatx80;
#define make_floatx80(exp, mant) ((floatx80) { mant, exp })
-#endif
-#ifdef FLOAT128
typedef struct {
#ifdef HOST_WORDS_BIGENDIAN
uint64_t high, low;
@@ -156,7 +142,6 @@ typedef struct {
uint64_t low, high;
#endif
} float128;
-#endif
/*----------------------------------------------------------------------------
| Software IEC/IEEE floating-point underflow tininess-detection mode.
@@ -193,9 +178,7 @@ typedef struct float_status {
signed char float_detect_tininess;
signed char float_rounding_mode;
signed char float_exception_flags;
-#ifdef FLOATX80
signed char floatx80_rounding_precision;
-#endif
/* should denormalised results go to zero and set the inexact flag? */
flag flush_to_zero;
/* should denormalised inputs go to zero and set the input_denormal flag? */
@@ -225,9 +208,7 @@ INLINE int get_float_exception_flags(float_status *status)
{
return STATUS(float_exception_flags);
}
-#ifdef FLOATX80
void set_floatx80_rounding_precision(int val STATUS_PARAM);
-#endif
/*----------------------------------------------------------------------------
| Routine to raise any or all of the software IEC/IEEE floating-point
@@ -242,22 +223,14 @@ float32 int32_to_float32( int32 STATUS_PARAM );
float64 int32_to_float64( int32 STATUS_PARAM );
float32 uint32_to_float32( unsigned int STATUS_PARAM );
float64 uint32_to_float64( unsigned int STATUS_PARAM );
-#ifdef FLOATX80
floatx80 int32_to_floatx80( int32 STATUS_PARAM );
-#endif
-#ifdef FLOAT128
float128 int32_to_float128( int32 STATUS_PARAM );
-#endif
float32 int64_to_float32( int64 STATUS_PARAM );
float32 uint64_to_float32( uint64 STATUS_PARAM );
float64 int64_to_float64( int64 STATUS_PARAM );
float64 uint64_to_float64( uint64 STATUS_PARAM );
-#ifdef FLOATX80
floatx80 int64_to_floatx80( int64 STATUS_PARAM );
-#endif
-#ifdef FLOAT128
float128 int64_to_float128( int64 STATUS_PARAM );
-#endif
/*----------------------------------------------------------------------------
| Software half-precision conversion routines.
@@ -295,12 +268,8 @@ uint32 float32_to_uint32_round_to_zero( float32 STATUS_PARAM );
int64 float32_to_int64( float32 STATUS_PARAM );
int64 float32_to_int64_round_to_zero( float32 STATUS_PARAM );
float64 float32_to_float64( float32 STATUS_PARAM );
-#ifdef FLOATX80
floatx80 float32_to_floatx80( float32 STATUS_PARAM );
-#endif
-#ifdef FLOAT128
float128 float32_to_float128( float32 STATUS_PARAM );
-#endif
/*----------------------------------------------------------------------------
| Software IEC/IEEE single-precision operations.
@@ -412,12 +381,8 @@ int64 float64_to_int64_round_to_zero( float64 STATUS_PARAM );
uint64 float64_to_uint64 (float64 a STATUS_PARAM);
uint64 float64_to_uint64_round_to_zero (float64 a STATUS_PARAM);
float32 float64_to_float32( float64 STATUS_PARAM );
-#ifdef FLOATX80
floatx80 float64_to_floatx80( float64 STATUS_PARAM );
-#endif
-#ifdef FLOAT128
float128 float64_to_float128( float64 STATUS_PARAM );
-#endif
/*----------------------------------------------------------------------------
| Software IEC/IEEE double-precision operations.
@@ -510,8 +475,6 @@ INLINE float64 float64_set_sign(float64 a, int sign)
#define float64_default_nan make_float64(LIT64( 0xFFF8000000000000 ))
#endif
-#ifdef FLOATX80
-
/*----------------------------------------------------------------------------
| Software IEC/IEEE extended double-precision conversion routines.
*----------------------------------------------------------------------------*/
@@ -521,9 +484,7 @@ int64 floatx80_to_int64( floatx80 STATUS_PARAM );
int64 floatx80_to_int64_round_to_zero( floatx80 STATUS_PARAM );
float32 floatx80_to_float32( floatx80 STATUS_PARAM );
float64 floatx80_to_float64( floatx80 STATUS_PARAM );
-#ifdef FLOAT128
float128 floatx80_to_float128( floatx80 STATUS_PARAM );
-#endif
/*----------------------------------------------------------------------------
| Software IEC/IEEE extended double-precision operations.
@@ -602,10 +563,6 @@ INLINE int floatx80_is_any_nan(floatx80 a)
#define floatx80_default_nan_low LIT64( 0xC000000000000000 )
#endif
-#endif
-
-#ifdef FLOAT128
-
/*----------------------------------------------------------------------------
| Software IEC/IEEE quadruple-precision conversion routines.
*----------------------------------------------------------------------------*/
@@ -615,9 +572,7 @@ int64 float128_to_int64( float128 STATUS_PARAM );
int64 float128_to_int64_round_to_zero( float128 STATUS_PARAM );
float32 float128_to_float32( float128 STATUS_PARAM );
float64 float128_to_float64( float128 STATUS_PARAM );
-#ifdef FLOATX80
floatx80 float128_to_floatx80( float128 STATUS_PARAM );
-#endif
/*----------------------------------------------------------------------------
| Software IEC/IEEE quadruple-precision operations.
@@ -689,6 +644,4 @@ INLINE int float128_is_any_nan(float128 a)
#define float128_default_nan_low LIT64( 0x0000000000000000 )
#endif
-#endif
-
#endif /* !SOFTFLOAT_H */