1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
|
/* cairo - a vector graphics library with display and print output
*
* Copyright © 2002 University of Southern California
*
* This library is free software; you can redistribute it and/or
* modify it either under the terms of the GNU Lesser General Public
* License version 2.1 as published by the Free Software Foundation
* (the "LGPL") or, at your option, under the terms of the Mozilla
* Public License Version 1.1 (the "MPL"). If you do not alter this
* notice, a recipient may use your version of this file under either
* the MPL or the LGPL.
*
* You should have received a copy of the LGPL along with this library
* in the file COPYING-LGPL-2.1; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA
* You should have received a copy of the MPL along with this library
* in the file COPYING-MPL-1.1
*
* The contents of this file are subject to the Mozilla Public License
* Version 1.1 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
* the specific language governing rights and limitations.
*
* The Original Code is the cairo graphics library.
*
* The Initial Developer of the Original Code is University of Southern
* California.
*
* Contributor(s):
* Carl D. Worth <cworth@cworth.org>
*/
#include "cairoint.h"
#include "cairo-slope-private.h"
cairo_bool_t
_cairo_spline_init (cairo_spline_t *spline,
cairo_spline_add_point_func_t add_point_func,
void *closure,
const cairo_point_t *a, const cairo_point_t *b,
const cairo_point_t *c, const cairo_point_t *d)
{
spline->add_point_func = add_point_func;
spline->closure = closure;
spline->knots.a = *a;
spline->knots.b = *b;
spline->knots.c = *c;
spline->knots.d = *d;
if (a->x != b->x || a->y != b->y)
_cairo_slope_init (&spline->initial_slope, &spline->knots.a, &spline->knots.b);
else if (a->x != c->x || a->y != c->y)
_cairo_slope_init (&spline->initial_slope, &spline->knots.a, &spline->knots.c);
else if (a->x != d->x || a->y != d->y)
_cairo_slope_init (&spline->initial_slope, &spline->knots.a, &spline->knots.d);
else
return FALSE;
if (c->x != d->x || c->y != d->y)
_cairo_slope_init (&spline->final_slope, &spline->knots.c, &spline->knots.d);
else if (b->x != d->x || b->y != d->y)
_cairo_slope_init (&spline->final_slope, &spline->knots.b, &spline->knots.d);
else
_cairo_slope_init (&spline->final_slope, &spline->knots.a, &spline->knots.d);
return TRUE;
}
static cairo_status_t
_cairo_spline_add_point (cairo_spline_t *spline, cairo_point_t *point)
{
cairo_point_t *prev;
prev = &spline->last_point;
if (prev->x == point->x && prev->y == point->y)
return CAIRO_STATUS_SUCCESS;
spline->last_point = *point;
return spline->add_point_func (spline->closure, point);
}
static void
_lerp_half (const cairo_point_t *a, const cairo_point_t *b, cairo_point_t *result)
{
result->x = a->x + ((b->x - a->x) >> 1);
result->y = a->y + ((b->y - a->y) >> 1);
}
static void
_de_casteljau (cairo_spline_knots_t *s1, cairo_spline_knots_t *s2)
{
cairo_point_t ab, bc, cd;
cairo_point_t abbc, bccd;
cairo_point_t final;
_lerp_half (&s1->a, &s1->b, &ab);
_lerp_half (&s1->b, &s1->c, &bc);
_lerp_half (&s1->c, &s1->d, &cd);
_lerp_half (&ab, &bc, &abbc);
_lerp_half (&bc, &cd, &bccd);
_lerp_half (&abbc, &bccd, &final);
s2->a = final;
s2->b = bccd;
s2->c = cd;
s2->d = s1->d;
s1->b = ab;
s1->c = abbc;
s1->d = final;
}
/* Return an upper bound on the error (squared) that could result from
* approximating a spline as a line segment connecting the two endpoints. */
static double
_cairo_spline_error_squared (const cairo_spline_knots_t *knots)
{
double bdx, bdy, berr;
double cdx, cdy, cerr;
/* We are going to compute the distance (squared) between each of the the b
* and c control points and the segment a-b. The maximum of these two
* distances will be our approximation error. */
bdx = _cairo_fixed_to_double (knots->b.x - knots->a.x);
bdy = _cairo_fixed_to_double (knots->b.y - knots->a.y);
cdx = _cairo_fixed_to_double (knots->c.x - knots->a.x);
cdy = _cairo_fixed_to_double (knots->c.y - knots->a.y);
if (knots->a.x != knots->d.x || knots->a.y != knots->d.y) {
/* Intersection point (px):
* px = p1 + u(p2 - p1)
* (p - px) ∙ (p2 - p1) = 0
* Thus:
* u = ((p - p1) ∙ (p2 - p1)) / ∥p2 - p1∥²;
*/
double dx, dy, u, v;
dx = _cairo_fixed_to_double (knots->d.x - knots->a.x);
dy = _cairo_fixed_to_double (knots->d.y - knots->a.y);
v = dx * dx + dy * dy;
u = bdx * dx + bdy * dy;
if (u <= 0) {
/* bdx -= 0;
* bdy -= 0;
*/
} else if (u >= v) {
bdx -= dx;
bdy -= dy;
} else {
bdx -= u/v * dx;
bdy -= u/v * dy;
}
u = cdx * dx + cdy * dy;
if (u <= 0) {
/* cdx -= 0;
* cdy -= 0;
*/
} else if (u >= v) {
cdx -= dx;
cdy -= dy;
} else {
cdx -= u/v * dx;
cdy -= u/v * dy;
}
}
berr = bdx * bdx + bdy * bdy;
cerr = cdx * cdx + cdy * cdy;
if (berr > cerr)
return berr;
else
return cerr;
}
static cairo_status_t
_cairo_spline_decompose_into (cairo_spline_knots_t *s1, double tolerance_squared, cairo_spline_t *result)
{
cairo_spline_knots_t s2;
cairo_status_t status;
if (_cairo_spline_error_squared (s1) < tolerance_squared)
return _cairo_spline_add_point (result, &s1->a);
_de_casteljau (s1, &s2);
status = _cairo_spline_decompose_into (s1, tolerance_squared, result);
if (unlikely (status))
return status;
return _cairo_spline_decompose_into (&s2, tolerance_squared, result);
}
cairo_status_t
_cairo_spline_decompose (cairo_spline_t *spline, double tolerance)
{
cairo_spline_knots_t s1;
cairo_status_t status;
s1 = spline->knots;
spline->last_point = s1.a;
status = _cairo_spline_decompose_into (&s1, tolerance * tolerance, spline);
if (unlikely (status))
return status;
return _cairo_spline_add_point (spline, &spline->knots.d);
}
/* Note: this function is only good for computing bounds in device space. */
cairo_status_t
_cairo_spline_bound (cairo_spline_add_point_func_t add_point_func,
void *closure,
const cairo_point_t *p0, const cairo_point_t *p1,
const cairo_point_t *p2, const cairo_point_t *p3)
{
double x0, x1, x2, x3;
double y0, y1, y2, y3;
double a, b, c;
double t[4];
int t_num = 0, i;
cairo_status_t status;
x0 = _cairo_fixed_to_double (p0->x);
y0 = _cairo_fixed_to_double (p0->y);
x1 = _cairo_fixed_to_double (p1->x);
y1 = _cairo_fixed_to_double (p1->y);
x2 = _cairo_fixed_to_double (p2->x);
y2 = _cairo_fixed_to_double (p2->y);
x3 = _cairo_fixed_to_double (p3->x);
y3 = _cairo_fixed_to_double (p3->y);
/* The spline can be written as a polynomial of the four points:
*
* (1-t)³p0 + 3t(1-t)²p1 + 3t²(1-t)p2 + t³p3
*
* for 0≤t≤1. Now, the X and Y components of the spline follow the
* same polynomial but with x and y replaced for p. To find the
* bounds of the spline, we just need to find the X and Y bounds.
* To find the bound, we take the derivative and equal it to zero,
* and solve to find the t's that give the extreme points.
*
* Here is the derivative of the curve, sorted on t:
*
* 3t²(-p0+3p1-3p2+p3) + 2t(3p0-6p1+3p2) -3p0+3p1
*
* Let:
*
* a = -p0+3p1-3p2+p3
* b = p0-2p1+p2
* c = -p0+p1
*
* Gives:
*
* a.t² + 2b.t + c = 0
*
* With:
*
* delta = b*b - a*c
*
* the extreme points are at -c/2b if a is zero, at (-b±√delta)/a if
* delta is positive, and at -b/a if delta is zero.
*/
#define ADD(t0) \
{ \
double _t0 = (t0); \
if (0 < _t0 && _t0 < 1) \
t[t_num++] = _t0; \
}
#define FIND_EXTREMES(a,b,c) \
{ \
if (a == 0) { \
if (b != 0) \
ADD (-c / (2*b)); \
} else { \
double b2 = b * b; \
double delta = b2 - a * c; \
if (delta > 0) { \
cairo_bool_t feasible; \
double _2ab = 2 * a * b; \
/* We are only interested in solutions t that satisfy 0<t<1 \
* here. We do some checks to avoid sqrt if the solutions \
* are not in that range. The checks can be derived from: \
* \
* 0 < (-b±√delta)/a < 1 \
*/ \
if (_2ab >= 0) \
feasible = delta > b2 && delta < a*a + b2 + _2ab; \
else if (-b / a >= 1) \
feasible = delta < b2 && delta > a*a + b2 + _2ab; \
else \
feasible = delta < b2 || delta < a*a + b2 + _2ab; \
\
if (unlikely (feasible)) { \
double sqrt_delta = sqrt (delta); \
ADD ((-b - sqrt_delta) / a); \
ADD ((-b + sqrt_delta) / a); \
} \
} else if (delta == 0) { \
ADD (-b / a); \
} \
} \
}
/* Find X extremes */
a = -x0 + 3*x1 - 3*x2 + x3;
b = x0 - 2*x1 + x2;
c = -x0 + x1;
FIND_EXTREMES (a, b, c);
/* Find Y extremes */
a = -y0 + 3*y1 - 3*y2 + y3;
b = y0 - 2*y1 + y2;
c = -y0 + y1;
FIND_EXTREMES (a, b, c);
status = add_point_func (closure, p0);
if (unlikely (status))
return status;
for (i = 0; i < t_num; i++) {
cairo_point_t p;
double x, y;
double t_1_0, t_0_1;
double t_2_0, t_0_2;
double t_3_0, t_2_1_3, t_1_2_3, t_0_3;
t_1_0 = t[i]; /* t */
t_0_1 = 1 - t_1_0; /* (1 - t) */
t_2_0 = t_1_0 * t_1_0; /* t * t */
t_0_2 = t_0_1 * t_0_1; /* (1 - t) * (1 - t) */
t_3_0 = t_2_0 * t_1_0; /* t * t * t */
t_2_1_3 = t_2_0 * t_0_1 * 3; /* t * t * (1 - t) * 3 */
t_1_2_3 = t_1_0 * t_0_2 * 3; /* t * (1 - t) * (1 - t) * 3 */
t_0_3 = t_0_1 * t_0_2; /* (1 - t) * (1 - t) * (1 - t) */
/* Bezier polynomial */
x = x0 * t_0_3
+ x1 * t_1_2_3
+ x2 * t_2_1_3
+ x3 * t_3_0;
y = y0 * t_0_3
+ y1 * t_1_2_3
+ y2 * t_2_1_3
+ y3 * t_3_0;
p.x = _cairo_fixed_from_double (x);
p.y = _cairo_fixed_from_double (y);
status = add_point_func (closure, &p);
if (unlikely (status))
return status;
}
return add_point_func (closure, p3);
}
|