/* Cairo - a vector graphics library with display and print output * * Copyright © 2007 Chris Wilson * Copyright © 2009 Intel Corporation * * This library is free software; you can redistribute it and/or * modify it either under the terms of the GNU Lesser General Public * License version 2.1 as published by the Free Software Foundation * (the "LGPL") or, at your option, under the terms of the Mozilla * Public License Version 1.1 (the "MPL"). If you do not alter this * notice, a recipient may use your version of this file under either * the MPL or the LGPL. * * You should have received a copy of the LGPL along with this library * in the file COPYING-LGPL-2.1; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA * You should have received a copy of the MPL along with this library * in the file COPYING-MPL-1.1 * * The contents of this file are subject to the Mozilla Public License * Version 1.1 (the "License"); you may not use this file except in * compliance with the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY * OF ANY KIND, either express or implied. See the LGPL or the MPL for * the specific language governing rights and limitations. * * The Original Code is the cairo graphics library. * * The Initial Developer of the Original Code is Red Hat, Inc. * * Contributors(s): * Chris Wilson */ #include "cairoint.h" #include "cairo-xcb-private.h" #include #include #include #include /* a simple buddy allocator for memory pools * XXX fragmentation? use Doug Lea's malloc? */ typedef struct _cairo_xcb_shm_mem_block cairo_xcb_shm_mem_block_t; struct _cairo_xcb_shm_mem_block { unsigned int bits; cairo_list_t link; }; struct _cairo_xcb_shm_mem_pool { int shmid; uint32_t shmseg; char *base; unsigned int nBlocks; cairo_xcb_shm_mem_block_t *blocks; cairo_list_t free[32]; unsigned char *map; unsigned int min_bits; /* Minimum block size is 1 << min_bits */ unsigned int num_sizes; size_t free_bytes; size_t max_bytes; unsigned int max_free_bits; cairo_list_t link; }; #define BITTEST(p, n) ((p)->map[(n) >> 3] & (128 >> ((n) & 7))) #define BITSET(p, n) ((p)->map[(n) >> 3] |= (128 >> ((n) & 7))) #define BITCLEAR(p, n) ((p)->map[(n) >> 3] &= ~(128 >> ((n) & 7))) static void clear_bits (cairo_xcb_shm_mem_pool_t *pi, size_t first, size_t last) { size_t i, n = last; size_t first_full = (first + 7) & ~7; size_t past_full = last & ~7; size_t bytes; if (n > first_full) n = first_full; for (i = first; i < n; i++) BITCLEAR (pi, i); if (past_full > first_full) { bytes = past_full - first_full; bytes = bytes >> 3; memset (pi->map + (first_full >> 3), 0, bytes); } if (past_full < n) past_full = n; for (i = past_full; i < last; i++) BITCLEAR (pi, i); } static void free_bits (cairo_xcb_shm_mem_pool_t *pi, size_t start, unsigned int bits, cairo_bool_t clear) { cairo_xcb_shm_mem_block_t *block; if (clear) clear_bits (pi, start, start + (1 << bits)); block = pi->blocks + start; block->bits = bits; cairo_list_add (&block->link, &pi->free[bits]); pi->free_bytes += 1 << (bits + pi->min_bits); if (bits > pi->max_free_bits) pi->max_free_bits = bits; } /* Add a chunk to the free list */ static void free_blocks (cairo_xcb_shm_mem_pool_t *pi, size_t first, size_t last, cairo_bool_t clear) { size_t i; size_t bits = 0; size_t len = 1; i = first; while (i < last) { /* To avoid cost quadratic in the number of different * blocks produced from this chunk of store, we have to * use the size of the previous block produced from this * chunk as the starting point to work out the size of the * next block we can produce. If you look at the binary * representation of the starting points of the blocks * produced, you can see that you first of all increase the * size of the blocks produced up to some maximum as the * address dealt with gets offsets added on which zap out * low order bits, then decrease as the low order bits of the * final block produced get added in. E.g. as you go from * 001 to 0111 you generate blocks * of size 001 at 001 taking you to 010 * of size 010 at 010 taking you to 100 * of size 010 at 100 taking you to 110 * of size 001 at 110 taking you to 111 * So the maximum total cost of the loops below this comment * is one trip from the lowest blocksize to the highest and * back again. */ while (bits < pi->num_sizes - 1) { size_t next_bits = bits + 1; size_t next_len = len << 1; if (i + next_bits > last) { /* off end of chunk to be freed */ break; } if (i & (next_len - 1)) /* block would not be on boundary */ break; bits = next_bits; len = next_len; } do { if (i + len > last) /* off end of chunk to be freed */ continue; if (i & (len - 1)) /* block would not be on boundary */ continue; /* OK */ break; bits--; len >>=1; } while (len > 0); if (len == 0) break; free_bits (pi, i, bits, clear); i += len; } } static cairo_status_t _cairo_xcb_shm_mem_pool_init (cairo_xcb_shm_mem_pool_t *pi, size_t bytes, unsigned int min_bits, unsigned int num_sizes) { size_t setBits; int i; assert ((((unsigned long) pi->base) & ((1 << min_bits) - 1)) == 0); assert (num_sizes < ARRAY_LENGTH (pi->free)); pi->free_bytes = 0; pi->max_bytes = bytes; pi->max_free_bits = 0; setBits = bytes >> min_bits; pi->blocks = calloc (setBits, sizeof (cairo_xcb_shm_mem_block_t)); if (pi->blocks == NULL) return _cairo_error (CAIRO_STATUS_NO_MEMORY); pi->nBlocks = setBits; pi->min_bits = min_bits; pi->num_sizes = num_sizes; for (i = 0; i < ARRAY_LENGTH (pi->free); i++) cairo_list_init (&pi->free[i]); pi->map = malloc ((setBits + 7) >> 3); if (pi->map == NULL) { free (pi->blocks); return _cairo_error (CAIRO_STATUS_NO_MEMORY); } memset (pi->map, -1, (setBits + 7) >> 3); clear_bits (pi, 0, setBits); /* Now add all blocks to the free list */ free_blocks (pi, 0, setBits, 1); return CAIRO_STATUS_SUCCESS; } static cairo_xcb_shm_mem_block_t * get_buddy (cairo_xcb_shm_mem_pool_t *pi, size_t offset, unsigned int bits) { cairo_xcb_shm_mem_block_t *block; assert (offset + (1 << bits) <= pi->nBlocks); if (BITTEST (pi, offset + (1 << bits) - 1)) return NULL; /* buddy is allocated */ block = pi->blocks + offset; if (block->bits != bits) return NULL; /* buddy is partially allocated */ return block; } static void merge_buddies (cairo_xcb_shm_mem_pool_t *pi, cairo_xcb_shm_mem_block_t *block, unsigned int max_bits) { size_t block_offset = block_offset = block - pi->blocks; unsigned int bits = block->bits; while (bits < max_bits - 1) { /* while you can, merge two blocks and get a legal block size */ size_t buddy_offset = block_offset ^ (1 << bits); block = get_buddy (pi, buddy_offset, bits); if (block == NULL) break; cairo_list_del (&block->link); /* Merged block starts at buddy */ if (buddy_offset < block_offset) block_offset = buddy_offset; bits++; } block = pi->blocks + block_offset; block->bits = bits; cairo_list_add (&block->link, &pi->free[bits]); if (bits > pi->max_free_bits) pi->max_free_bits = bits; } /* attempt to merge all available buddies up to a particular size */ static unsigned int merge_bits (cairo_xcb_shm_mem_pool_t *pi, unsigned int max_bits) { cairo_xcb_shm_mem_block_t *block, *buddy, *next; unsigned int bits; for (bits = 0; bits < max_bits - 1; bits++) { cairo_list_foreach_entry_safe (block, next, cairo_xcb_shm_mem_block_t, &pi->free[bits], link) { size_t buddy_offset = (block - pi->blocks) ^ (1 << bits); buddy = get_buddy (pi, buddy_offset, bits); if (buddy == NULL) continue; if (buddy == next) { next = cairo_container_of (buddy->link.next, cairo_xcb_shm_mem_block_t, link); } cairo_list_del (&block->link); merge_buddies (pi, block, max_bits); } } return pi->max_free_bits; } /* find store for 1 << bits blocks */ static void * buddy_malloc (cairo_xcb_shm_mem_pool_t *pi, unsigned int bits) { unsigned int b; size_t offset; size_t past; cairo_xcb_shm_mem_block_t *block; if (bits > pi->max_free_bits && bits > merge_bits (pi, bits)) return NULL; /* Find a list with blocks big enough on it */ block = NULL; for (b = bits; b <= pi->max_free_bits; b++) { if (! cairo_list_is_empty (&pi->free[b])) { block = cairo_list_first_entry (&pi->free[b], cairo_xcb_shm_mem_block_t, link); break; } } assert (block != NULL); cairo_list_del (&block->link); while (cairo_list_is_empty (&pi->free[pi->max_free_bits])) { if (--pi->max_free_bits == 0) break; } /* Mark end of allocated area */ offset = block - pi->blocks; past = offset + (1 << bits); BITSET (pi, past - 1); block->bits = bits; /* If we used a larger free block than we needed, free the rest */ pi->free_bytes -= 1 << (b + pi->min_bits); free_blocks (pi, past, offset + (1 << b), 0); return pi->base + ((block - pi->blocks) << pi->min_bits); } static void * _cairo_xcb_shm_mem_pool_malloc (cairo_xcb_shm_mem_pool_t *pi, size_t bytes) { unsigned int bits; size_t size; size = 1 << pi->min_bits; for (bits = 0; size < bytes; bits++) size <<= 1; if (bits >= pi->num_sizes) return NULL; return buddy_malloc (pi, bits); } static void _cairo_xcb_shm_mem_pool_free (cairo_xcb_shm_mem_pool_t *pi, char *storage) { size_t block_offset; cairo_xcb_shm_mem_block_t *block; block_offset = (storage - pi->base) >> pi->min_bits; block = pi->blocks + block_offset; BITCLEAR (pi, block_offset + ((1 << block->bits) - 1)); pi->free_bytes += 1 << (block->bits + pi->min_bits); merge_buddies (pi, block, pi->num_sizes); } static void _cairo_xcb_shm_mem_pool_destroy (cairo_xcb_shm_mem_pool_t *pool) { shmdt (pool->base); cairo_list_del (&pool->link); free (pool->map); free (pool->blocks); free (pool); } cairo_int_status_t _cairo_xcb_connection_allocate_shm_info (cairo_xcb_connection_t *connection, size_t size, cairo_xcb_shm_info_t **shm_info_out) { cairo_xcb_shm_info_t *shm_info; cairo_xcb_shm_mem_pool_t *pool, *next; size_t bytes, maxbits = 16, minbits = 8; void *mem = NULL; cairo_status_t status; assert (connection->flags & CAIRO_XCB_HAS_SHM); CAIRO_MUTEX_LOCK (connection->shm_mutex); cairo_list_foreach_entry_safe (pool, next, cairo_xcb_shm_mem_pool_t, &connection->shm_pools, link) { if (pool->free_bytes > size) { mem = _cairo_xcb_shm_mem_pool_malloc (pool, size); if (mem != NULL) { /* keep the active pools towards the front */ cairo_list_move (&pool->link, &connection->shm_pools); goto allocate_shm_info; } } /* scan for old, unused pools */ if (pool->free_bytes == pool->max_bytes) { _cairo_xcb_connection_shm_detach (connection, pool->shmseg); _cairo_xcb_shm_mem_pool_destroy (pool); } } pool = malloc (sizeof (cairo_xcb_shm_mem_pool_t)); if (unlikely (pool == NULL)) { CAIRO_MUTEX_UNLOCK (connection->shm_mutex); return _cairo_error (CAIRO_STATUS_NO_MEMORY); } bytes = 1 << maxbits; while (bytes <= size) bytes <<= 1, maxbits++; bytes <<= 3; do { pool->shmid = shmget (IPC_PRIVATE, bytes, IPC_CREAT | 0600); if (pool->shmid != -1) break; if (errno == EINVAL && bytes > size) { bytes >>= 1; continue; } } while (FALSE); if (pool->shmid == -1) { int err = errno; if (! (err == EINVAL || err == ENOMEM)) connection->flags &= ~CAIRO_XCB_HAS_SHM; free (pool); CAIRO_MUTEX_UNLOCK (connection->shm_mutex); return CAIRO_INT_STATUS_UNSUPPORTED; } pool->base = shmat (pool->shmid, NULL, 0); if (unlikely (pool->base == (char *) -1)) { shmctl (pool->shmid, IPC_RMID, NULL); free (pool); CAIRO_MUTEX_UNLOCK (connection->shm_mutex); return _cairo_error (CAIRO_STATUS_NO_MEMORY); } status = _cairo_xcb_shm_mem_pool_init (pool, bytes, minbits, maxbits - minbits + 1); if (unlikely (status)) { shmdt (pool->base); free (pool); CAIRO_MUTEX_UNLOCK (connection->shm_mutex); return status; } pool->shmseg = _cairo_xcb_connection_shm_attach (connection, pool->shmid, FALSE); shmctl (pool->shmid, IPC_RMID, NULL); cairo_list_add (&pool->link, &connection->shm_pools); mem = _cairo_xcb_shm_mem_pool_malloc (pool, size); allocate_shm_info: shm_info = _cairo_freepool_alloc (&connection->shm_info_freelist); if (unlikely (shm_info == NULL)) { _cairo_xcb_shm_mem_pool_free (pool, mem); CAIRO_MUTEX_UNLOCK (connection->shm_mutex); return _cairo_error (CAIRO_STATUS_NO_MEMORY); } shm_info->connection = connection; shm_info->pool = pool; shm_info->shm = pool->shmseg; shm_info->offset = (char *) mem - (char *) pool->base; shm_info->mem = mem; /* scan for old, unused pools */ cairo_list_foreach_entry_safe (pool, next, cairo_xcb_shm_mem_pool_t, &connection->shm_pools, link) { if (pool->free_bytes == pool->max_bytes) { _cairo_xcb_connection_shm_detach (connection, pool->shmseg); _cairo_xcb_shm_mem_pool_destroy (pool); } } CAIRO_MUTEX_UNLOCK (connection->shm_mutex); *shm_info_out = shm_info; return CAIRO_STATUS_SUCCESS; } void _cairo_xcb_shm_info_destroy (cairo_xcb_shm_info_t *shm_info) { cairo_xcb_connection_t *connection = shm_info->connection; CAIRO_MUTEX_LOCK (connection->shm_mutex); _cairo_xcb_shm_mem_pool_free (shm_info->pool, shm_info->mem); _cairo_freepool_free (&connection->shm_info_freelist, shm_info); /* scan for old, unused pools - hold at least one in reserve */ if (! cairo_list_is_singular (&connection->shm_pools) && _cairo_xcb_connection_take_socket (connection) == CAIRO_STATUS_SUCCESS) { cairo_xcb_shm_mem_pool_t *pool, *next; cairo_list_t head; cairo_list_init (&head); cairo_list_move (connection->shm_pools.next, &head); cairo_list_foreach_entry_safe (pool, next, cairo_xcb_shm_mem_pool_t, &connection->shm_pools, link) { if (pool->free_bytes == pool->max_bytes) { _cairo_xcb_connection_shm_detach (connection, pool->shmseg); _cairo_xcb_shm_mem_pool_destroy (pool); } } cairo_list_move (head.next, &connection->shm_pools); } CAIRO_MUTEX_UNLOCK (connection->shm_mutex); } void _cairo_xcb_connection_shm_mem_pools_fini (cairo_xcb_connection_t *connection) { while (! cairo_list_is_empty (&connection->shm_pools)) { _cairo_xcb_shm_mem_pool_destroy (cairo_list_first_entry (&connection->shm_pools, cairo_xcb_shm_mem_pool_t, link)); } }