diff options
author | Jeff Muizelaar <jeff@infidigm.net> | 2010-02-01 10:03:04 +0100 |
---|---|---|
committer | Andrea Canciani <ranma42@gmail.com> | 2010-10-23 10:52:46 +0200 |
commit | 330bcfa088bde325f839cf905514bd91094af25a (patch) | |
tree | 41c333051d50dcc5c3de0682a0e3c63e2b9bb9fd | |
parent | cee1dadc66107e1cc6bcac7718e0b67969141876 (diff) |
Stroke to path implementation
-rw-r--r-- | BIBLIOGRAPHY | 25 | ||||
-rw-r--r-- | src/Makefile.sources | 2 | ||||
-rw-r--r-- | src/cairo-path-fixed.c | 18 | ||||
-rw-r--r-- | src/cairo-path-private.h | 4 | ||||
-rw-r--r-- | src/cairo-path.c | 52 | ||||
-rw-r--r-- | src/cairo-spline-offset.c | 945 | ||||
-rw-r--r-- | src/cairo-spline-offset.h | 18 | ||||
-rw-r--r-- | src/cairo-stroke-to-path.c | 1508 | ||||
-rw-r--r-- | src/cairo.c | 9 | ||||
-rw-r--r-- | src/cairo.h | 3 | ||||
-rw-r--r-- | src/cairoint.h | 14 |
11 files changed, 2598 insertions, 0 deletions
diff --git a/BIBLIOGRAPHY b/BIBLIOGRAPHY index 90a6cef20..e3081da1c 100644 --- a/BIBLIOGRAPHY +++ b/BIBLIOGRAPHY @@ -44,6 +44,31 @@ Now, "convolve" the "tracing" of the pen with the tracing of the path: 24th IEEE Annual Symposium on Foundations of Computer Science (FOCS), November 1983, 100-111. +An alternative method involves computing an 'offset path' for the +convolution of the pen along the path. + + A good introduction is given by: + + "Comparing Offset Curve Approximation Methods" + Gershon Elber, In-Kwon Lee and Myung-Soo Kim + http://visualcomputing.yonsei.ac.kr/papers/1997/compare.pdf + + The algorithm suggested by this paper is: + + "Offsets of Two-Dimensional Profiles" + Wayne Tiller and Eric G. Hanson + IEEE Computer Graphics & Application, Vol 4. pp. 36-46 + + The development of the symbolic global error + and iterative refinement is given by: + + "Free Form Surface Analysis using a Hybrid of Symbolic and Numeric + Computation." + Gershon Elber, 1992 + http://www.cs.utah.edu/gdc/publications/papers/elber_thesis.pdf + + + The result of the convolution is a polygon that must be filled. A fill operations begins here. We use a very conventional Bentley-Ottmann pass for computing the intersections, informed by some hints on robust diff --git a/src/Makefile.sources b/src/Makefile.sources index b04d80fca..93f7df383 100644 --- a/src/Makefile.sources +++ b/src/Makefile.sources @@ -159,7 +159,9 @@ cairo_sources = \ cairo-slope.c \ cairo-spans.c \ cairo-spline.c \ + cairo-spline-offset.c \ cairo-stroke-style.c \ + cairo-stroke-to-path.c \ cairo-surface.c \ cairo-surface-fallback.c \ cairo-surface-clipper.c \ diff --git a/src/cairo-path-fixed.c b/src/cairo-path-fixed.c index eea8630bd..44e6e50bf 100644 --- a/src/cairo-path-fixed.c +++ b/src/cairo-path-fixed.c @@ -177,6 +177,7 @@ _cairo_path_fixed_init_copy (cairo_path_fixed_t *path, return CAIRO_STATUS_SUCCESS; } + unsigned long _cairo_path_fixed_hash (const cairo_path_fixed_t *path) { @@ -919,6 +920,23 @@ _cairo_path_fixed_append (cairo_path_fixed_t *path, &closure); } +cairo_status_t +_cairo_path_fixed_init_flat_copy (cairo_path_fixed_t *path, + const cairo_path_fixed_t *other, + double tolerance) +{ + + _cairo_path_fixed_init (path); + return _cairo_path_fixed_interpret_flat (other, + CAIRO_DIRECTION_FORWARD, + _append_move_to, + _append_line_to, + _append_close_path, + path, + tolerance); +} + + static void _cairo_path_fixed_offset_and_scale (cairo_path_fixed_t *path, cairo_fixed_t offx, diff --git a/src/cairo-path-private.h b/src/cairo-path-private.h index 61b4060fa..964fdd989 100644 --- a/src/cairo-path-private.h +++ b/src/cairo-path-private.h @@ -54,4 +54,8 @@ cairo_private cairo_status_t _cairo_path_append_to_context (const cairo_path_t *path, cairo_t *cr); +cairo_private cairo_path_t * +_cairo_stroked_path_create (cairo_path_fixed_t *path_fixed, + cairo_gstate_t *gstate); + #endif /* CAIRO_PATH_DATA_PRIVATE_H */ diff --git a/src/cairo-path.c b/src/cairo-path.c index 28182c0e4..f6e59a1e0 100644 --- a/src/cairo-path.c +++ b/src/cairo-path.c @@ -369,6 +369,58 @@ _cairo_path_create_internal (cairo_path_fixed_t *path_fixed, return path; } +cairo_path_t * +_cairo_stroked_path_create (cairo_path_fixed_t *path_fixed, + cairo_gstate_t *gstate) +{ + cairo_path_t *path; + + path = malloc (sizeof (cairo_path_t)); + if (unlikely (path == NULL)) { + _cairo_error_throw (CAIRO_STATUS_NO_MEMORY); + return (cairo_path_t*) &_cairo_path_nil; + } + + cairo_path_fixed_t stroke_path; + + _cairo_path_fixed_init (&stroke_path); + + _cairo_path_stroke_to_path (path_fixed, + &gstate->stroke_style, + &stroke_path, + &gstate->ctm, + &gstate->ctm_inverse, + gstate->tolerance); + + path->num_data = _cairo_path_count (path, &stroke_path, + gstate->tolerance, + FALSE); + if (path->num_data < 0) { + free (path); + _cairo_path_fixed_fini (&stroke_path); + return (cairo_path_t*) &_cairo_path_nil; + } + + if (path->num_data) { + path->data = _cairo_malloc_ab (path->num_data, + sizeof (cairo_path_data_t)); + if (unlikely (path->data == NULL)) { + free (path); + _cairo_error_throw (CAIRO_STATUS_NO_MEMORY); + return (cairo_path_t*) &_cairo_path_nil; + } + + path->status = _cairo_path_populate (path, &stroke_path, + gstate, FALSE); + } else { + path->data = NULL; + path->status = CAIRO_STATUS_SUCCESS; + } + _cairo_path_fixed_fini (&stroke_path); + + return path; +} + /** * cairo_path_destroy: * @path: a path previously returned by either cairo_copy_path() or diff --git a/src/cairo-spline-offset.c b/src/cairo-spline-offset.c new file mode 100644 index 000000000..283ed37db --- /dev/null +++ b/src/cairo-spline-offset.c @@ -0,0 +1,945 @@ +/* -*- Mode: c; tab-width: 8; c-basic-offset: 4; indent-tabs-mode: t; -*- */ +/* cairo - a vector graphics library with display and print output + * + * Copyright © 2009 Mozilla Foundation + * Copyright © 2010 Jeff Muizelaar + * + * This library is free software; you can redistribute it and/or + * modify it either under the terms of the GNU Lesser General Public + * License version 2.1 as published by the Free Software Foundation + * (the "LGPL") or, at your option, under the terms of the Mozilla + * Public License Version 1.1 (the "MPL"). If you do not alter this + * notice, a recipient may use your version of this file under either + * the MPL or the LGPL. + * + * You should have received a copy of the LGPL along with this library + * in the file COPYING-LGPL-2.1; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + * You should have received a copy of the MPL along with this library + * in the file COPYING-MPL-1.1 + * + * The contents of this file are subject to the Mozilla Public License + * Version 1.1 (the "License"); you may not use this file except in + * compliance with the License. You may obtain a copy of the License at + * http://www.mozilla.org/MPL/ + * + * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY + * OF ANY KIND, either express or implied. See the LGPL or the MPL for + * the specific language governing rights and limitations. + * + * The Original Code is the cairo graphics library. + * + * The Initial Developer of the Original Code is Jeff Muizelaar + * + */ + +#define _GNU_SOURCE + +#include "cairoint.h" + +#include <math.h> +#include <stdio.h> +#include <assert.h> +#include <stdlib.h> + +#if _XOPEN_SOURCE >= 600 || defined (_ISOC99_SOURCE) +#define ISFINITE(x) isfinite (x) +#else +#define ISFINITE(x) ((x) * (x) >= 0.) /* check for NaNs */ +#endif + +#include "cairoint.h" +#include "cairo-spline-offset.h" + +static void +_lerp (const point_t *a, const point_t *b, point_t *result, double t) +{ + result->x = (1-t)*a->x + t*b->x; + result->y = (1-t)*a->y + t*b->y; +} + +/* returns false if there could be a discontinuity + * between the split curves */ +static cairo_bool_t +_de_casteljau_t (knots_t *k1, knots_t *k2, double t) +{ + point_t ab, bc, cd; + point_t abbc, bccd; + point_t final; + + _lerp (&k1->a, &k1->b, &ab, t); + _lerp (&k1->b, &k1->c, &bc, t); + _lerp (&k1->c, &k1->d, &cd, t); + _lerp (&ab, &bc, &abbc, t); + _lerp (&bc, &cd, &bccd, t); + _lerp (&abbc, &bccd, &final, t); + + k2->a = final; + k2->b = bccd; + k2->c = cd; + k2->d = k1->d; + + k1->b = ab; + k1->c = abbc; + k1->d = final; + + /* we can test whether the split curve will have a cusp + * inbetween the two parts by checking the length of the + * line abbc-bccd. If this line has a non-zero length + * then the two curves will share a common normal + * at the points where they meet. Therefore the + * length must be zero for the normals to be different. + * However this condition is necessary but not sufficient. + * XXX: does this matter and how should we deal with it if it does? */ + return abbc.x != final.x || abbc.y != final.y; +} + +typedef point_t vector_t; + +static vector_t +begin_tangent (knots_t c) +{ + vector_t t; + if (c.a.x != c.b.x || c.a.y != c.b.y) { + t.x = c.b.x - c.a.x; + t.y = c.b.y - c.a.y; + return t; + } + if (c.a.x != c.c.x || c.a.y != c.c.y) { + t.x = c.c.x - c.a.x; + t.y = c.c.y - c.a.y; + return t; + } + t.x = c.d.x - c.a.x; + t.y = c.d.y - c.a.y; + return t; +} + +static vector_t +end_tangent (knots_t c) +{ + vector_t t; + if (c.d.x != c.c.x || c.d.y != c.c.y) { + t.x = c.d.x - c.c.x; + t.y = c.d.y - c.c.y; + return t; + } + if (c.d.x != c.b.x || c.d.y != c.b.y) { + t.x = c.d.x - c.b.x; + t.y = c.d.y - c.b.y; + return t; + } + t.x = c.d.x - c.a.x; + t.y = c.d.y - c.a.y; + return t; +} + +static void +ensure_finite (knots_t k) +{ + + if (!( + isfinite(k.a.x) && + isfinite(k.a.y) && + isfinite(k.b.x) && + isfinite(k.b.y) && + isfinite(k.c.x) && + isfinite(k.c.y) && + isfinite(k.d.x) && + isfinite(k.d.y))) { + print_knot(k); + assert(0); + } +} + +#if 0 +static void ensure_smoothness (knots_t a, knots_t b) +{ + double dist_len = hypot(a.d.x - b.a.x, a.d.y - b.a.y); + print_knot(a); + print_knot(b); + printf("dist: %f\n", dist_len); + vector_t in_norm = end_tangent(a); + vector_t out_norm = begin_tangent(b); + double in_a = atan2 (in_norm.y, in_norm.x); + double out_a = atan2 (out_norm.y, out_norm.x); + if (in_a < out_a) + in_a += 2*M_PI; + double diff = in_a - out_a; + if (diff > M_PI) + diff -= M_PI*2; + if (!(fabs(diff) < 0.001) && !(fabs(diff - M_PI) < 0.001) && !(fabs(diff + M_PI) < 0.001)) { + /* The angle difference between normals can be either 0 or +-M_PI for a change in direction. + * The change in direction can occur in a region of high curvature with a large offset direction. + * We move in reverse if the offset distance exceeds the radius of curvature. Note: that you need to + * use signed curvature for this too work out properly. Because we only encounter this phenomenom in + * the convex areas of the curve. + * + * XXX: explain why... */ + printf("angle diff: %f %f %f\n", diff, in_a, out_a); + print_knot(a); + print_knot(b); + assert(0); + } + if (fabs(dist_len) > 0.01) { + printf("distlen: %f\n", dist_len); + print_knot(a); + print_knot(b); + assert(0); + } +} + +static void +ensure_smoothness2 (knots_t a, knots_t b, cairo_bool_t ccw) { + vector_t in_norm = end_tangent(a); + vector_t out_norm = begin_tangent(b); + if (!ccw) { + in_norm = end_tangent(a); + out_norm = begin_tangent(b); + } + double in_a = atan2 (in_norm.y, in_norm.x); + double out_a = atan2 (out_norm.y, out_norm.x); + if (in_a < out_a) + in_a += 2*M_PI; + double diff = in_a - out_a; + if (diff > M_PI) + diff -= M_PI*2; + if (fabs(diff) > 0.01) { + printf("gangle diff: %f\n", diff); + print_knot(a); + print_knot(b); + } +} +#endif + +static inline vector_t +flip (vector_t a) +{ + vector_t ar; + ar.x = -a.x; + ar.y = -a.y; + return ar; +} + +static vector_t +perp (vector_t v) +{ + vector_t p = {-v.y, v.x}; + return p; +} + +static inline double +dot (vector_t a, vector_t b) +{ + return a.x * b.x + a.y * b.y; +} + +static vector_t +normalize (vector_t v) +{ + double len = hypot(v.x, v.y); + v.x /= len; + v.y /= len; + return v; +} + +/* given a normal rotate the vector 90 degrees to the right clockwise + * This function has a period of 4. e.g. swap(swap(swap(swap(x) == x */ +static vector_t +swap (vector_t a) +{ + vector_t ar; + /* one of these needs to be negative. We choose a.x so that we rotate to the right instead of negating */ + ar.x = a.y; + ar.y = -a.x; + return ar; +} + +static vector_t +unperp (vector_t a) +{ + return swap (a); +} + +typedef struct { + double t1; + double t2; +} inflection_points_t; + +/* Find the inflection points for a knots_t. + * The lower inflection point is returned in t1, the higher one in t2. + * + * This method for computing inflections points is from: + * "Fast, precise flattening of cubic Bezier path and offset curves", Hain et. al */ +static inflection_points_t +inflection_points (knots_t s) +{ + inflection_points_t ret; + + point_t a = {x: -s.a.x + 3*s.b.x - 3*s.c.x + s.d.x, -s.a.y + 3*s.b.y - 3*s.c.y + s.d.y}; + point_t b = {x: 3*s.a.x - 6*s.b.x + 3*s.c.x, 3*s.a.y - 6*s.b.y + 3*s.c.y}; + point_t c = {x:-3*s.a.x + 3*s.b.x, -3*s.a.y + 3*s.b.y}; + /* we don't need 'd' + point_t d = {x: s.a.x, s.a.y}; + */ + + /* we're solving for the roots of this equation: + dx/dt * d2y/dt2 - d2x/dt2 * dy/dt + == 6*(a.y*b.x - a.x*b.y)*t^2 +6*(a.y*c.x-a.x*c.y)*t + 2*(b.y*c.x - b.x*c.y) + */ + double t_cusp = (-1./2)*((a.y*c.x - a.x*c.y)/(a.y*b.x - a.x*b.y)); + double t_inner = (t_cusp*t_cusp - ((b.y*c.x - b.x*c.y)/(a.y*b.x - a.x*b.y))/3); + + if (t_inner > 0) { + double t_adj = sqrt (t_inner); + ret.t1 = t_cusp - t_adj; + ret.t2 = t_cusp + t_adj; + } else { + ret.t1 = ret.t2 = t_cusp; + } + return ret; +} + +/* this function could use some tests. + I believe it only works for angles from 0 to pi. It will always use the smaller arc between the two vectors? */ +static knots_t +arc_segment_cart (point_t start, point_t end, double radius, vector_t a, vector_t b) +{ + knots_t arc; + double r_sin_A = radius * a.y; + double r_cos_A = radius * a.x; + double r_sin_B = radius * b.y; + double r_cos_B = radius * b.x; + + point_t mid, mid2; + double l, h; + + mid.x = a.x + b.x; + mid.y = a.y + b.y; + if (dot (a, b) < 0) { + /* otherwise, we can flip a, add it + * and then use the perpendicular of the result */ + a = flip (a); + mid.x = a.x + b.x; + mid.y = a.y + b.y; + if (dot (a, perp(b)) <= 0) { + mid = unperp (mid); + } else { + mid = perp(mid); + } + } + /* normalize */ + l = sqrt(mid.x*mid.x + mid.y*mid.y); + mid.x /= l; + mid.y /= l; + + mid2.x = a.x + mid.x; + mid2.y = a.y + mid.y; + + h = (4./3.)*dot(perp(a), mid2)/dot(a, mid2); + + arc.a.x = start.x; + arc.a.y = start.y; + + arc.b.x = start.x - h * r_sin_A; + arc.b.y = start.y + h * r_cos_A; + + arc.c.x = end.x + h * r_sin_B; + arc.c.y = end.y - h * r_cos_B; + + arc.d.x = end.x; + arc.d.y = end.y; + + return arc; +} + +static knots_t +quarter_circle (double xc, double yc, double radius, vector_t normal) +{ + double r_sin_A, r_cos_A; + double r_sin_B, r_cos_B; + double h; + knots_t arc; + + r_sin_A = radius * normal.y; + r_cos_A = radius * normal.x; + r_sin_B = radius * -normal.x; /* sin (angle_B); */ + r_cos_B = radius * normal.y; /* cos (angle_B); */ + + h = -0.55228474983079345; /* 4.0/3.0 * tan ((-M_PI/2) / 4.0); */ + + arc.a.x = xc + r_cos_A; + arc.a.y = yc + r_sin_A; + + arc.b.x = xc + r_cos_A - h * r_sin_A; + arc.b.y = yc + r_sin_A + h * r_cos_A; + + arc.c.x = xc + r_cos_B + h * r_sin_B; + arc.c.y = yc + r_sin_B - h * r_cos_B; + + arc.d.x = xc + r_cos_B; + arc.d.y = yc + r_sin_B; + + return arc; +} + +static void semi_circle (double xc, double yc, double radius, vector_t out_normal, void (*curve_fn)(void *, knots_t), void *closure) +{ + double len = hypot (out_normal.y, out_normal.x); + vector_t mid_normal; + + out_normal.x /= len; + out_normal.y /= len; + + mid_normal.x = out_normal.y; /* we need to rotate by -M_PI/2 */ + mid_normal.y = -out_normal.x; + + curve_fn(closure, quarter_circle (xc, yc, radius, out_normal)); + curve_fn(closure, quarter_circle (xc, yc, radius, mid_normal)); +} + +static cairo_bool_t +is_knot_flat (knots_t c) +{ + /* + A well-known flatness test is both cheaper and more reliable + than the ones you have tried. The essential observation is that + when the curve is a uniform speed straight line from end to end, + the control points are evenly spaced from beginning to end. + Therefore, our measure of how far we deviate from that ideal + uses distance of the middle controls, not from the line itself, + but from their ideal *arrangement*. Point 2 should be halfway + between points 1 and 3; point 3 should be halfway between points + 2 and 4. + This, too, can be improved. Yes, we can eliminate the square roots + in the distance tests, retaining the Euclidean metric; but the + taxicab metric is faster, and also safe. The length of displacement + (x,y) in this metric is |x|+|y|. + */ + + /* XXX: this isn't necessarily the best test because it + tests for flatness instead of smallness. + however, flat things will be offseted easily so we sort of implicitly do the right thing + */ + /* this value should be much less than the tolerance because we only want to deal with situations where + * the curvature is extreme. */ + double stop_value = 0.05; + double error = 0; + error += fabs((c.c.x - c.b.x) - (c.b.x - c.a.x)); + error += fabs((c.c.y - c.b.y) - (c.b.y - c.a.y)); + error += fabs((c.c.x - c.b.x) - (c.d.x - c.c.x)); + error += fabs((c.c.y - c.b.y) - (c.d.y - c.c.y)); + return error <= stop_value; +} + +/* Finds the coefficient with the maximum error. This should be + * the coefficient closest to area of maximum error. + * This returns an upper bound of the error. */ +static cairo_bool_t +is_curvy_t (double *bezier, int degree, double stop_value, double *t) +{ + double highest_error = .5; + double error = 0; + int i=0; + assert(degree == 6); + for (i=0; i<=degree; i++) { + if (fabs(bezier[i]) > error) { + error = fabs(bezier[i]); + highest_error = i/(double)degree; + } + } + *t = highest_error; + + /* we shouldn't ever split at the edges because the approximation + * should be perfect there. XXX: we might be able to take + * advantage of this when computing the error polynomial. */ +#if 0 + if (*t == 0 || *t == 1) { + for (i=0; i<=degree; i++) { + error = fabs(bezier[i]); + printf("error: %f\n", error); + } + assert(0); + } +#endif + /* *t = 0.5; */ + return error >= stop_value; +} + +static cairo_bool_t +error_within_bounds_elber (knots_t bz1, knots_t bz_offset_approx, + double desired_offset, + double max_error, + double *t) +{ + double bzprod[3+3 +1] = {}; + + /* Elber and Cohnen propose the following method of computing the + error between an curve and it's offset: + e(t) = || C(t) - Coffset_approx(t) ||^2 - offset^2 + + It is important to note that this function doesn't represent a unique offset curve. + For example, it's possible for the offset curve to cross the original spline + provided it stays the appropriate distance away: + + xxx + x + **** + **x + * x + * x + * x + ** + **** + x + xxx + + "Planar Curve Offset Base on Circle Approximation" suggests further problems + with this error measure. They give the following example: C(t) + (r, 0) will + have an error mesaure of 0, but is not even close to the actual offset curve. + + This paper suggests using the angle between the difference vector and the normal + at point t, but doesn't go into much detail. + */ + + /* Now we compute this error function. + * First, subtract the approx */ + bz1.a.x -= bz_offset_approx.a.x; + bz1.a.y -= bz_offset_approx.a.y; + bz1.b.x -= bz_offset_approx.b.x; + bz1.b.y -= bz_offset_approx.b.y; + bz1.c.x -= bz_offset_approx.c.x; + bz1.c.y -= bz_offset_approx.c.y; + bz1.d.x -= bz_offset_approx.d.x; + bz1.d.y -= bz_offset_approx.d.y; +/* + Next we compute the dot product of bz1 with itself This involves squaring + the x and y polynomials and adding the result together. + + However, we want to multiply the coefficients so that we can treat the + result as a higher degree bezier curve. + + The following method is given in the Symbolic Computation section of + "Comparing Offset Curve Approximation Methods" by Elber, Lee and Kim + + k l ⎛ k⎞ i k-i⎛ l⎞ j l-j + B (t) B (t) = ⎜ ⎟ t (1-t) ⎜ ⎟ t (1-t) + i j ⎝ i⎠ ⎝ j⎠ + ⎛ k⎞ ⎛ l⎞ i+j k+l-i-j + = ⎜ ⎟ ⎜ ⎟ t (1-t) + ⎝ i⎠ ⎝ j⎠ + + ⎛ k⎞ ⎛ l⎞ + = ⎝ i⎠ ⎝ j⎠ k+l + ──────── B (t) + ⎛ k + l⎞ i+j + ⎝ i + j⎠ + + m n +C1(t) C2(t) = ∑ P_i B_i,m (t) ∑ P_j B_j,n (t) + i=0 j=0 + + m n + = ∑ ∑ P_i P_j B_i,m (t) B_j,n (t) + i=0 j=0 + + m+n m + n + = ∑ Q_k B_k (t) + k=0 + +Where Q_k is: + ⎛ m⎞ ⎛ n⎞ + ⎝ i⎠ ⎝ j⎠ + Q_k = P_i * P_j ───────── + ⎛ m+n⎞ + ⎝ i+j⎠ + +And for the case of degree 3 beziers + + ⎛ 3⎞ ⎛ 3⎞ + ⎝ i⎠ ⎝ j⎠ + Q_k = P_i * P_j ───────── + ⎛ 6 ⎞ + ⎝ i+j⎠ + + This expands to: + + i j + 0 0 0 = (1 * 1) / 1 = 1 + + 0 1 1 = (1 * 3) / 6 = .5 + 1 0 1 = (3 * 1) / 6 = .5 + + 0 2 2 = (1 * 3) / 15 = .2 + 1 1 2 = (3 * 3) / 15 = .6 + 2 0 2 = (3 * 1) / 15 = .2 + + 0 3 3 = (1 * 1) / 20 = .05 + 1 2 3 = (3 * 3) / 20 = .45 + 2 1 3 = (3 * 3) / 20 = .45 + 3 0 3 = (1 * 1) / 20 = .05 + + 1 3 4 = (3 * 1) / 15 = .2 + 2 2 4 = (3 * 3) / 15 = .6 + 3 1 4 = (1 * 3) / 15 = .2 + + 2 3 5 = (3 * 1) / 6 = .5 + 3 2 5 = (1 * 3) / 6 = .5 + + 3 3 6 = (1 * 1) / 1 = 1 + +Which simplifies to the following: + */ + + + bzprod[0] += bz1.a.x * bz1.a.x; + bzprod[0] += bz1.a.y * bz1.a.y; + + bzprod[1] += bz1.a.x * bz1.b.x; + bzprod[1] += bz1.a.y * bz1.b.y; + + bzprod[2] += bz1.a.x * bz1.c.x * 0.4; + bzprod[2] += bz1.b.x * bz1.b.x * 0.6; + bzprod[2] += bz1.a.y * bz1.c.y * 0.4; + bzprod[2] += bz1.b.y * bz1.b.y * 0.6; + + bzprod[3] += bz1.d.x * bz1.a.x * 0.1; + bzprod[3] += bz1.b.x * bz1.c.x * 0.9; + bzprod[3] += bz1.d.y * bz1.a.y * 0.1; + bzprod[3] += bz1.b.y * bz1.c.y * 0.9; + + bzprod[4] += bz1.b.x * bz1.d.x * 0.4; + bzprod[4] += bz1.c.x * bz1.c.x * 0.6; + bzprod[4] += bz1.d.y * bz1.b.y * 0.4; + bzprod[4] += bz1.c.y * bz1.c.y * 0.6; + + bzprod[5] += bz1.c.x * bz1.d.x; + bzprod[5] += bz1.d.y * bz1.c.y; + + bzprod[6] += bz1.d.x * bz1.d.x; + bzprod[6] += bz1.d.y * bz1.d.y; + + + /* the result is a bezier polynomial that represents the distance squared between + * the two input polynomials */ + + /* we don't need to subtract the desired offset because our metric doesn't depend on being centered around 0 */ +#if 1 + bzprod[0] -= (desired_offset*desired_offset); + bzprod[1] -= (desired_offset*desired_offset); + bzprod[2] -= (desired_offset*desired_offset); + bzprod[3] -= (desired_offset*desired_offset); + bzprod[4] -= (desired_offset*desired_offset); + bzprod[5] -= (desired_offset*desired_offset); + bzprod[6] -= (desired_offset*desired_offset); +#endif + *t = 0.5; + return !is_curvy_t(bzprod, sizeof(bzprod)/sizeof(bzprod[0])-1, max_error, t); +} + +void +print_knot (knots_t c) { + /*printf("(%.13a %.13a) (%.13a %.13a) (%.13a %.13a) (%.13a %.13a)\n", c.a.x, c.a.y, c.b.x, c.b.y, c.c.x, c.c.y, c.d.x, c.d.y);*/ + printf("(%.5f %.5f) (%.5f %.5f) (%.5f %.5f) (%.5f %.5f)\n", c.a.x, c.a.y, c.b.x, c.b.y, c.c.x, c.c.y, c.d.x, c.d.y); +} + +static knots_t +convolve_with_circle (knots_t spline, double dist) +{ + vector_t in_normal = normalize(perp(begin_tangent(spline))); + vector_t out_normal = normalize(perp(end_tangent(spline))); + /* find an arc the goes from the input normal to the output_normal */ + knots_t arc_spline = arc_segment_cart(in_normal, out_normal, 1, in_normal, out_normal); + + /* approximate convolving 'spline' with the arc spline (XXX: is convolve the right word?) */ + spline.a.x += dist * arc_spline.a.x; + spline.a.y += dist * arc_spline.a.y; + spline.b.x += dist * arc_spline.b.x; + spline.b.y += dist * arc_spline.b.y; + spline.c.x += dist * arc_spline.c.x; + spline.c.y += dist * arc_spline.c.y; + spline.d.x += dist * arc_spline.d.x; + spline.d.y += dist * arc_spline.d.y; + + return spline; +} + +/* This approach is inspired by "Approximation of circular arcs and offset curves by Bezier curves of high degree" + * by YJ Ahn, Y soo Kim, Y Shin. + * + * This is a similar idea to: + * "Offset approximation based on reparameterizaing the path of a moving point along the base circle", ZHAO, WANG + * and a bunch of papers by Lee et al. + * "Planar curve offset based on circle approximation" + * "New approximation methods of planar offset and convolution curves" + * "Polynomial/rational approximation of Minkowski sum boundary curves" + * + * However these other approaches produce curves of higher degree than the input curve making them unsuitable + * for use here. + * */ +static void +approximate_offset_curve_with_shin (knots_t self, double dist, void (*curve_fn)(void *, knots_t), void *closure) +{ + /* since we're going to approximating the offset curve with arcs + we want to ensure that we don't have any inflection points in our spline */ + inflection_points_t t_inflect = inflection_points(self); + + /* split the curve at the inflection points and convolve each with an approximation of + * a circle */ + knots_t remaining = self; + double adjusted_inflect = t_inflect.t2; + + /* check that the first inflection point is in range */ + if (t_inflect.t1 > 0 && t_inflect.t1 < 1) { + /* split at the inflection point */ + _de_casteljau_t (&self, &remaining, t_inflect.t1); + + /* approximate */ + curve_fn(closure, convolve_with_circle(self, dist)); + + /* reparamaterize the second inflection point over the 'remaining' spline: + * (domain between inflection points)/(domain of remaining) */ + adjusted_inflect = (t_inflect.t2-t_inflect.t1)/(1 - t_inflect.t1); + } + + /* check that the second inflection point is in range and not equal to t1. + * we don't use the reparameterized value so that test remains simple */ + if (t_inflect.t2 > t_inflect.t1 && t_inflect.t2 > 0 && t_inflect.t2 < 1) { + /* split into one segment */ + knots_t self = remaining; + _de_casteljau_t (&self, &remaining, adjusted_inflect); + curve_fn(closure, convolve_with_circle(self, dist)); + } + + /* deal with what's left of the spline */ + curve_fn(closure, convolve_with_circle(remaining, dist)); +} + +/* Computes the offset polygon for the control polygon of spline. We can + * use this is an approximation of the offset spline. This approximation is + * give by Tiller W, Hanson E G. in "Offsets of two-dimensional profile" */ +static knots_t +knot_offset (knots_t self, double width, cairo_bool_t *is_parallel) +{ + /* this code is inspired by the libart mitreing code */ + + /* difference vectors between each point in the knot */ + double dx0, dy0, dx1, dy1, dx2, dy2; + /* difference vector lengths */ + double ld0, ld1, ld2; + /* temporary vector for dealing with degeneracies */ + double last_x, last_y; + + double scale; + + /* normalized normal vectors for each difference vector */ + double dlx0, dly0, dlx1, dly1, dlx2, dly2; + + /* bisected/midpoint vectors */ + double dm1x, dm1y, dm2x, dm2y; + + double dmr2_1, dmr2_2; + + knots_t result; + + dx0 = self.b.x - self.a.x; + dy0 = self.b.y - self.a.y; + ld0 = sqrt(dx0*dx0 + dy0*dy0); + + dx1 = self.c.x - self.b.x; + dy1 = self.c.y - self.b.y; + ld1 = sqrt(dx1*dx1 + dy1*dy1); + + dx2 = self.d.x - self.c.x; + dy2 = self.d.y - self.c.y; + ld2 = sqrt(dx2*dx2 + dy2*dy2); + + /* compute normalized normals */ + scale = 1. / ld0; + dlx0 = -dy0 * scale; + dly0 = dx0 * scale; + + scale = 1. / ld1; + dlx1 = -dy1 * scale; + dly1 = dx1 * scale; + + scale = 1. / ld2; + dlx2 = -dy2 * scale; + dly2 = dx2 * scale; + + /* deal with any degeneracies in the spline by treating + * degenerate segments as having the same normal + * as their neighbour. If all of the segments are degenerate + * than we will fail the is_parallel test below */ + last_x = 0; + last_y = 0; + + /* first pass */ + if (ld0) { + last_x = dlx0; + last_y = dly0; + } + if (ld1) { + last_x = dlx1; + last_y = dly1; + } + if (ld2) { + last_x = dlx2; + last_y = dly2; + } + + /* second pass */ + if (!ld2) { + dlx2 = last_x; + dly2 = last_y; + } else { + last_x = dlx2; + last_y = dly2; + } + if (!ld1) { + dlx1 = last_x; + dly1 = last_y; + } else { + last_x = dlx1; + last_y = dly1; + } + if (!ld0) { + dlx0 = last_x; + dly0 = last_y; + } else { + last_x = dlx0; + last_y = dly0; + } + + /* mid-point vector sum */ + dm1x = (dlx0 + dlx1); + dm1y = (dly0 + dly1); + + dm2x = (dlx1 + dlx2); + dm2y = (dly1 + dly2); + + /* length squared of the mid-point vector sum */ + dmr2_1 = (dm1x * dm1x + dm1y * dm1y); + dmr2_2 = (dm2x * dm2x + dm2y * dm2y); + + /* the choice of this EPSILON is arbitrary and could use further study */ +#define PARALLEL_EPSILON 1e-6 + if (fabs(dmr2_1) < PARALLEL_EPSILON || fabs(dmr2_2) < PARALLEL_EPSILON) + *is_parallel = TRUE; + else + *is_parallel = FALSE; + + scale = width * 2 / dmr2_1; + dm1x *= scale; + dm1y *= scale; + + scale = width * 2 / dmr2_2; + dm2x *= scale; + dm2y *= scale; + + /* write out the result */ + result.a.x = self.a.x + dlx0 * width; + result.a.y = self.a.y + dly0 * width; + + result.b.x = self.b.x + dm1x; + result.b.y = self.b.y + dm1y; + + result.c.x = self.c.x + dm2x; + result.c.y = self.c.y + dm2y; + + result.d.x = self.d.x + dlx2 * width; + result.d.y = self.d.y + dly2 * width; + + return result; +} + +/* plan: + * if we approximate the original bezier curve with line segments + * and then produce an offset to those lines. We will end up + * with sharp angles at places of high curvature. + * + * It is at these places of high curvature that we want to approximate + * the offset with an arc instead of continuing to subdivide. + * + * How do we find the areas of high curvature? + * - Ideas: + * As we subdivide the original bezier + * we can get an idea of how flat it is. + * If the original bezier is flat but the offset approximation is not within our bounds + * we should stop recursing and approximate the segment with an arc. + * + * The degree of required flatness of the original curve should be related to the + * the offset length. The greater the offset distance the less flat the original + * bezier needs to be. + * + * pros: + * - this gives us an easier condition to reason about the termination of the + * algorithm because we terminate the recursion when the input bezier has + * been subdivided to 'flat' instead of when the offset is good. + * This is valuable because it's possible to create an input curve that does not have a + * good offset approximation down to the resolution of a double. + */ +void +curve_offset (knots_t self, double dist, double tolerance, void (*curve_fn)(void *, knots_t), void *closure) +{ + cairo_bool_t recurse; + double break_point; + double max_error = tolerance; + knots_t offset = knot_offset(self, dist, &recurse); + + if (!recurse) { + /* we need to make sure we have a finite offset before checking the error */ + ensure_finite(offset); + recurse = !error_within_bounds_elber(self, offset, dist, max_error, &break_point); + } else { + /* TODO: we could probably choose a better place to split than halfway + * for times when we know we're going to recurse */ + break_point = .5; + } + + if (recurse) { + /* error is too large. subdivide on max t and try again. */ + knots_t left = self; + knots_t right; + + cairo_bool_t is_continuous; + + /* We need to do something to handle regions of high curvature + * + * skia uses the first and second derivitives at the points of 'max curvature' to check for + * pinchynes. + * qt tests whether the points are close and reverse direction. + * float l = (orig->x1 - orig->x2)*(orig->x1 - orig->x2) + (orig->y3 - orig->y4)*(orig->y3 - orig->y4); + * float dot = (orig->x1 - orig->x2)*(orig->x3 - orig->x4) + (orig->y1 - orig->y2)*(orig->y3 - orig->y4); + * + * we just check if the knot is flat and has large error. + */ + if (is_knot_flat(self)) { + /* we don't want to recurse anymore because we're pretty flat, + * instead approximate the offset curve with an arc. + * + * The previously generated offset curve can become really bad if the the intersections + * are far away from the original curve (self) */ + + approximate_offset_curve_with_shin (self, dist, curve_fn, closure); + return; + } + + is_continuous = _de_casteljau_t(&left, &right, break_point); + + curve_offset(left, dist, tolerance, curve_fn, closure); + + if (!is_continuous) { + /* add circle: + we can use the exit the normal from the left side + as the begining normal of our cusp */ + vector_t normal = perp (end_tangent (left)); + semi_circle (left.d.x, left.d.y, dist, normal, curve_fn, closure); + } + + curve_offset(right, dist, tolerance, curve_fn, closure); + } else { + curve_fn(closure, offset); + } +} + diff --git a/src/cairo-spline-offset.h b/src/cairo-spline-offset.h new file mode 100644 index 000000000..9faa2cb49 --- /dev/null +++ b/src/cairo-spline-offset.h @@ -0,0 +1,18 @@ +typedef cairo_point_double_t point_t; +typedef struct _knots { + point_t a,b,c,d; +} knots_t; + +void print_knot(knots_t k); + +struct curve_list { + knots_t curve; + double dist; + struct curve_list *next; + struct curve_list *prev; +}; + +typedef struct curve_list curve_list_t; + +void +curve_offset(knots_t self, double offset, double tolerance, void (*curve_to_fn)(void *path, knots_t k), void *closure); diff --git a/src/cairo-stroke-to-path.c b/src/cairo-stroke-to-path.c new file mode 100644 index 000000000..8c0da821a --- /dev/null +++ b/src/cairo-stroke-to-path.c @@ -0,0 +1,1508 @@ +/* -*- Mode: c; tab-width: 8; c-basic-offset: 4; indent-tabs-mode: t; -*- */ +/* cairo - a vector graphics library with display and print output + * + * Copyright © 2009 Mozilla Foundation + * + * This library is free software; you can redistribute it and/or + * modify it either under the terms of the GNU Lesser General Public + * License version 2.1 as published by the Free Software Foundation + * (the "LGPL") or, at your option, under the terms of the Mozilla + * Public License Version 1.1 (the "MPL"). If you do not alter this + * notice, a recipient may use your version of this file under either + * the MPL or the LGPL. + * + * You should have received a copy of the LGPL along with this library + * in the file COPYING-LGPL-2.1; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + * You should have received a copy of the MPL along with this library + * in the file COPYING-MPL-1.1 + * + * The contents of this file are subject to the Mozilla Public License + * Version 1.1 (the "License"); you may not use this file except in + * compliance with the License. You may obtain a copy of the License at + * http://www.mozilla.org/MPL/ + * + * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY + * OF ANY KIND, either express or implied. See the LGPL or the MPL for + * the specific language governing rights and limitations. + * + * The Original Code is the cairo graphics library. + * + * The Initial Developer of the Original Code is Jeff Muizelaar + * + */ + +/* Takes a path as input and produces a stroked path as output. + * The resulting path may self intersect so it needs to be filled with + * a non-zero winding rule. */ + +#define _BSD_SOURCE /* for hypot() */ +#include "cairoint.h" +#include "cairo-path-fixed-private.h" +#include "cairo-spline-offset.h" + +#define printf(a, ...) + +typedef struct { + cairo_path_fixed_t *path; + cairo_matrix_t *ctm; + + /* we need to keep track of whether we've drawn anything yet + so that we can do a move_to to the intial point of a curve + before drawing it */ + cairo_bool_t has_current_point; + cairo_int_status_t status; +} path_output_t; + +static void line_to (path_output_t *path, double x, double y) +{ + if (path->ctm) + cairo_matrix_transform_point (path->ctm, &x, &y); + path->has_current_point = TRUE; + + if (!path->status) + path->status = _cairo_path_fixed_line_to (path->path, + _cairo_fixed_from_double(x), + _cairo_fixed_from_double(y)); +} + +static void curve_to (path_output_t *path, double x0, double y0, double x1, double y1, double x2, double y2) +{ + if (path->ctm) { + cairo_matrix_transform_point (path->ctm, &x0, &y0); + cairo_matrix_transform_point (path->ctm, &x1, &y1); + cairo_matrix_transform_point (path->ctm, &x2, &y2); + } + + if (!path->status) + path->status = _cairo_path_fixed_curve_to (path->path, + _cairo_fixed_from_double (x0), _cairo_fixed_from_double (y0), + _cairo_fixed_from_double (x1), _cairo_fixed_from_double (y1), + _cairo_fixed_from_double (x2), _cairo_fixed_from_double (y2)); + +} + +static void close_path (path_output_t *path) +{ + if (!path->status) + path->status = _cairo_path_fixed_close_path (path->path); + if (!path->status) + _cairo_path_fixed_new_sub_path (path->path); +} + +typedef point_t vector_t; + +static inline double +dot (vector_t a, vector_t b) +{ + return a.x * b.x + a.y * b.y; +} + +static cairo_bool_t +point_eq (point_t a, point_t b) +{ + return a.x == b.x && a.y == b.y; +} + +static inline vector_t +perp (vector_t v) +{ + vector_t p = {-v.y, v.x}; + return p; +} + +static inline vector_t +flip (vector_t a) +{ + vector_t ar; + ar.x = -a.x; + ar.y = -a.y; + return ar; +} + +/* given a normal rotate the vector 90 degrees to the right clockwise + * This function has a period of 4. e.g. swap(swap(swap(swap(x) == x */ +static vector_t +swap (vector_t a) +{ + vector_t ar; + /* one of these needs to be negative. We choose a.x so that we rotate to the right instead of negating */ + ar.x = a.y; + ar.y = -a.x; + return ar; +} + +static vector_t +unperp (vector_t a) +{ + return swap (a); +} + +/* Compute a spline approximation of the arc + centered at xc, yc from the angle a to the angle b + + The angle between a and b should not be more than a + quarter circle (pi/2) + + The approximation is similar to an approximation given in: + "Approximation of a cubic bezier curve by circular arcs and vice versa" + by Alekas Riškus. However that approximation becomes unstable when the + angle of the arc approaches 0. + + This approximation is inspired by a discusion with Boris Zbarsky + and essentially just computes: + + h = 4.0/3.0 * tan ((angle_B - angle_A) / 4.0); + + without converting to polar coordinates. + + A different way to do this is covered in "Approximation of a cubic bezier + curve by circular arcs and vice versa" by Alekas Riškus. However, the method + presented there doesn't handle arcs with angles close to 0 because it + divides by the perp dot product of the two angle vectors. + */ + +static void +arc_segment (path_output_t *path, + double xc, + double yc, + double radius, + vector_t a, + vector_t b) +{ + double r_sin_A, r_cos_A; + double r_sin_B, r_cos_B; + double h; + vector_t mid, mid2; + double l; + + r_sin_A = radius * a.y; + r_cos_A = radius * a.x; + r_sin_B = radius * b.y; + r_cos_B = radius * b.x; + + /* bisect the angle between 'a' and 'b' with 'mid' */ + mid.x = a.x + b.x; + mid.y = a.y + b.y; + l = sqrt(mid.x*mid.x + mid.y*mid.y); + mid.x /= l; + mid.y /= l; + + /* bisect the angle between 'a' and 'mid' with 'mid2' this is parallel to a + * line with angle (B - A)/4 */ + mid2.x = a.x + mid.x; + mid2.y = a.y + mid.y; + + h = (4./3.)*dot(perp(a), mid2)/dot(a, mid2); + //h = (4./3.)*(-a.y*mid.x + a.x*mid.y)/(a.x*mid2.x + a.y*mid2.y); + + curve_to (path, + xc + r_cos_A - h * r_sin_A, + yc + r_sin_A + h * r_cos_A, + xc + r_cos_B + h * r_sin_B, + yc + r_sin_B - h * r_cos_B, + xc + r_cos_B, + yc + r_sin_B); +} + + +static vector_t +bisect (vector_t a, vector_t b) +{ + vector_t mid; + double len; + + if (dot (a, b) >= 0) { + /* if the angle between a and b is accute, then we can + * just add the vectors and normalize */ + mid.x = a.x + b.x; + mid.y = a.y + b.y; + } else { + /* otherwise, we can flip a, add it + * and then use the perpendicular of the result */ + a = flip (a); + mid.x = a.x + b.x; + mid.y = a.y + b.y; + mid = perp (mid); + } + + /* normalize */ + /* because we assume that 'a' and 'b' are normalized, we can use + * sqrt instead of hypot because the range of mid is limited */ + len = sqrt (mid.x*mid.x + mid.y*mid.y); + mid.x /= len; + mid.y /= len; + return mid; +} + +static void +arc (path_output_t *path, double xc, double yc, double radius, vector_t a, vector_t b) +{ + /* find a vector that bisects the angle between a and b */ + vector_t mid_v = bisect (a, b); + + /* construct the arc using two curve segments */ + arc_segment (path, xc, yc, radius, a, mid_v); + arc_segment (path, xc, yc, radius, mid_v, b); +} + +static inline void +join_round (path_output_t *path, point_t center, vector_t a, vector_t b, double radius) +{ + /* + int ccw = dot (perp (b), a) >= 0; // XXX: is this always true? + yes, otherwise we have an interior angle. + assert (ccw); + */ + arc (path, center.x, center.y, radius, a, b); +} + +static void +draw_circle (path_output_t *path, point_t center, double radius) +{ + vector_t a = {1, 0}; + vector_t b = {-1, 0}; + + /* draw a line to the begining of the arc */ + line_to (path, center.x + radius * a.x, center.y + radius * a.y); + + arc (path, center.x, center.y, radius, a, b); + arc (path, center.x, center.y, radius, b, a); +} + +static point_t +c2p (cairo_matrix_t *ctm_inverse, cairo_point_t c) +{ + point_t p; + p.x = _cairo_fixed_to_double(c.x); + p.y = _cairo_fixed_to_double(c.y); + if (ctm_inverse) + cairo_matrix_transform_point (ctm_inverse, &p.x, &p.y); + + return p; +} + +#if 1 +static vector_t +compute_normal (point_t p0, point_t p1) +{ + vector_t n; + /* u is parallel vector */ + double ux = p1.x - p0.x; + double uy = p1.y - p0.y; + + /* we actually want the inverse square root here. then we won't have to divide */ + double ulen = hypot(ux, uy); + /* cairo uses hypot which does sqrt(ux*ux + uy*uy) without the accuracy problems + i.e. hypot is slower, but more accurate */ + assert (ulen != 0); + // v is perpendicular *unit* vector + n.x = -uy/ulen; + n.y = ux/ulen; + + return n; +} +#else +#include <emmintrin.h> +/* a quick and dirty sse implementation. This is much lower + * precision than the version above and not as fast as it + * could be. */ +static vector_t +compute_normal (point_t p0, point_t p1) +{ + vector_t n; + /* u is parallel vector */ + float ux = p1.x - p0.x; + float uy = p1.y - p0.y; + + + __m128 mux = _mm_load_ss (&ux); + __m128 muy = _mm_load_ss (&uy); + + __m128 mux2 = _mm_mul_ss(mux, mux); + __m128 muy2 = _mm_mul_ss(muy, muy); + + __m128 rlen = _mm_rsqrt_ss(_mm_add_ss(muy2, mux2)); +#if 1 + mux = _mm_mul_ss(mux, rlen); + muy = _mm_sub_ps(_mm_setzero_ps(), _mm_mul_ss(muy, rlen)); //negate + __m128 results = _mm_shuffle_ps (mux, muy, _MM_SHUFFLE(0, 0, 0, 0)); // get bottom words + results = _mm_shuffle_ps (results, results, _MM_SHUFFLE(0, 0, 0, 2)); // x and y +#else + rlen = _mm_shuffle_ps (rlen, rlen, _MM_SHUFFLE(0, 0, 0, 0)); // get bottom words + muy = _mm_sub_ps(_mm_setzero_ps(), muy); + __m128 results = _mm_shuffle_ps (mux, muy, _MM_SHUFFLE(0, 0, 0, 0)); // get bottom words + results = _mm_shuffle_ps (results, results, _MM_SHUFFLE(0, 0, 0, 2)); // x and y + results = _mm_mul_ps(mux, rlen); +#endif + + + __m128d result = _mm_cvtps_pd (results); + _mm_storeu_pd(&n.x, result); +#if 0 + __m128 muxy = _mm_shuffle_ps (mux, muy, _MM_SHUFFLE(0, 0, 0, 0)); // get bottom words + /* we actually want the inverse square root here. then we won't have to divide */ + muxy = _mm_mul_ps(muxy, muxy); + muxy = _mm_shuffle_ps (mux, muy, _MM_SHUFFLE(0, 0, 0, 0)); // get bottom words +#endif + return n; +} +#endif + + + +/* computes the outgoing normal for curve given by a,b,c,d + * returning the original normal if the curve is point */ +static vector_t +curve_normal (vector_t original_normal, point_t a, point_t b, point_t c, point_t d) +{ + vector_t n = original_normal; + if (point_eq (c, d)) { + if (point_eq (b, c)) { + if (!point_eq (a, b)) { + n = compute_normal (a, b); + } + } else { + n = compute_normal (b, c); + } + } else { + n = compute_normal (c, d); + } + return n; +} +static void ensure_finite (knots_t k) +{ + + if (!( + isfinite(k.a.x) && + isfinite(k.a.y) && + isfinite(k.b.x) && + isfinite(k.b.y) && + isfinite(k.c.x) && + isfinite(k.c.y) && + isfinite(k.d.x) && + isfinite(k.d.y))) { + print_knot(k); + assert(0); + } +} + + +static void offset_curve_to(void *closure, knots_t c) +{ + path_output_t *path = closure; + ensure_finite(c); + //XXX: it would be nice if we didn't have to check this for every point + if (!path->has_current_point) + line_to(path, c.a.x, c.a.y); + curve_to(path, c.b.x, c.b.y, c.c.x, c.c.y, c.d.x, c.d.y); +} + +static void +draw_offset_curve (path_output_t *path, + point_t a, point_t b, point_t c, point_t d, double offset) +{ + knots_t curve = {a, b, c, d}; + /* we want greater tolerance when the lines we are stroking are narrower + * because any deviations will be more noticeable. + * Fortunately, the narrow the lines are the easier it is to approximate + * the offset curve. It could be argued that this is a bad choice because + * one could draw two large but slightly different stroke widths on top of + * each other and the result wouldn't necessarily match. However, + * I'm not sure if tha's actually a problem. */ + double tolerance = offset * 2 / 500.; /* the choice of 500 is pretty arbitrary */ + + curve_offset(curve, offset, tolerance, offset_curve_to, path); +} + +/* Finds the intersection of two lines each defined by a point and a normal. + From "Example 2: Find the interesection of two lines" of + "The Pleasures of "Perp Dot" Products" + F. S. Hill, Jr. */ +static point_t +line_intersection (point_t A, vector_t a_perp, point_t B, vector_t b_perp) +{ + point_t intersection; + double denom; + double t; + + vector_t a = unperp(a_perp); + vector_t c = {B.x - A.x, B.y - A.y}; + denom = dot(b_perp, a); + if (denom == 0.0) { + assert(0 && "TROUBLE"); + } + + t = dot (b_perp, c)/denom; + + intersection.x = A.x+t*(a.x); + intersection.y = A.y+t*(a.y); + + return intersection; +} + +static cairo_bool_t +is_interior_angle (vector_t a, vector_t b) { + /* angles of 180 and 0 degress will evaluate to 0, however + * we to treat 180 as an interior angle and 180 as an exterior angle */ + return dot (perp (a), b) > 0 || + (a.x == b.x && a.y == b.y); /* 0 degrees is interior */ +} + +static void +join_segment_line (path_output_t *path, cairo_stroke_style_t *style, point_t p, vector_t s1_normal, vector_t s2_normal) +{ + double miter_limit = style->miter_limit; + cairo_line_join_t join = style->line_join; + double offset = style->line_width/2; + + point_t start = {p.x + s1_normal.x*offset, p.y + s1_normal.y*offset}; + point_t end = {p.x + s2_normal.x*offset, p.y + s2_normal.y*offset}; + + if (is_interior_angle (s1_normal, s2_normal)) { + line_to(path, start.x, start.y); + //XXX: while you wouldn't think this point is necessary, it is when we the segments we are joining + //are shorter than the line width + /* qt does a check to avoid adding this additional point when possible */ + line_to(path, p.x, p.y); + + line_to(path, end.x, end.y); + } else { + switch (join) { + case CAIRO_LINE_JOIN_ROUND: + line_to(path, start.x, start.y); + join_round(path, p, s1_normal, s2_normal, offset); + break; + case CAIRO_LINE_JOIN_MITER: + { + double in_dot_out = -s1_normal.x*s2_normal.x + -s1_normal.y*s2_normal.y; + // XXX: we are going to have an extra colinear segment here */ + if (2 <= miter_limit*miter_limit * (1 - in_dot_out)) { + point_t intersection = line_intersection(start, s1_normal, end, s2_normal); + line_to(path, intersection.x, intersection.y); + break; + } + } + // fall through + case CAIRO_LINE_JOIN_BEVEL: + line_to(path, start.x, start.y); + line_to(path, end.x, end.y); + break; + } + } +} + + +static void +join_segment_curve (path_output_t *path, cairo_stroke_style_t *style, point_t p, vector_t s1_normal, vector_t s2_normal) +{ + cairo_line_join_t join = style->line_join; + double offset = style->line_width/2; + double miter_limit = style->miter_limit; + + point_t start = {p.x + s1_normal.x*offset, p.y + s1_normal.y*offset}; + point_t end = {p.x + s2_normal.x*offset, p.y + s2_normal.y*offset}; + if (is_interior_angle (s1_normal, s2_normal)) { + //XXX: while you wouldn't think this point is necessary, it is when we the segments we are joining + //are shorter than the line width + /* qt does a check to avoid adding this additional point when possible */ + line_to(path, p.x, p.y); + line_to(path, end.x, end.y); + } else { + switch (join) { + case CAIRO_LINE_JOIN_ROUND: + join_round(path, p, s1_normal, s2_normal, offset); + break; + case CAIRO_LINE_JOIN_MITER: + { + double in_dot_out = -s1_normal.x*s2_normal.x + -s1_normal.y*s2_normal.y; + // XXX: we are going to have an extra colinear segment here */ + if (2 <= miter_limit*miter_limit * (1 - in_dot_out)) { + point_t intersection = line_intersection(start, s1_normal, end, s2_normal); + line_to(path, intersection.x, intersection.y); + break; + } + } + // fall through + case CAIRO_LINE_JOIN_BEVEL: + line_to(path, end.x, end.y); + break; + } + } +} + +/* we have some different options as to what the semantics of cap_line should be: + - here's how skia's works: + - it uses a virtual function call instead of a switch statement. + - it assumes that the caller has added the start point of the cap + - here's an interesting bit: the square capper has different behaviour + depending on whether the last segment is a curve or not. + If it is a line it will adjust the last point of the path + and only set the outside point of the cap. This avoids the + the extra points when capping a square line. + - qt and mesa's openvg state tracker do this cute thing + where they treat caps as joins. i.e a butt cap maps + to a miter join, a round cap to a round join and + a square cap is special cased. + 3 line segments are always emitted for a square cap + it seems the code assumes that the first point is implied? + + I don't think the similarities of caps and joins outweigh the differences. Further + I think keeping them separate makes it easier to understand. +*/ +static void +cap_line (path_output_t *path, cairo_stroke_style_t *style, point_t end, vector_t normal) +{ + cairo_line_cap_t cap = style->line_cap; + double offset = style->line_width/2; + + /* This function will add additional unnecessary lines when it is called after a curve + * segment. I'm not sure it's worth trying to eliminate them */ + switch (cap) { + case CAIRO_LINE_CAP_ROUND: + { + line_to (path, end.x + offset*normal.x, end.y + offset*normal.y); + arc(path, end.x, end.y, offset, normal, flip(normal)); + break; + } + case CAIRO_LINE_CAP_SQUARE: + { + // parallel vector + double vx = normal.y; + double vy = -normal.x; + // move the end point down the line by offset + end.x += vx*offset; + end.y += vy*offset; + + // offset the end point of last_line to draw the cap at the end + line_to(path, end.x + offset*normal.x, end.y + offset*normal.y); + line_to(path, end.x - offset*normal.x, end.y - offset*normal.y); + break; + } + case CAIRO_LINE_CAP_BUTT: + { + line_to (path, end.x + offset*normal.x, end.y + offset*normal.y); + // offset the end point of last_line to draw the cap at the end + line_to(path, end.x - offset*normal.x, end.y - offset*normal.y); + break; + } + } +} + +#define cairo_path_head(path__) (&(path__)->buf.base) +#define cairo_path_tail(path__) cairo_path_buf_prev (cairo_path_head (path__)) + +#define cairo_path_buf_next(pos__) \ + cairo_list_entry ((pos__)->link.next, cairo_path_buf_t, link) +#define cairo_path_buf_prev(pos__) \ + cairo_list_entry ((pos__)->link.prev, cairo_path_buf_t, link) + +// index is the first segment we need to deal with +typedef struct { + const cairo_path_buf_t *buf; + cairo_point_t *points; + unsigned int op_index; + const cairo_path_buf_t *first; +} path_ittr; + +static const uint8_t num_args[] = { + 1, /* cairo_path_move_to */ + 1, /* cairo_path_op_line_to */ + 3, /* cairo_path_op_curve_to */ + 0, /* cairo_path_op_close_path */ + }; + +static inline path_ittr +ittr_next (path_ittr index) +{ + index.points += num_args[(int)index.buf->op[index.op_index]]; + index.op_index++; + if (index.op_index == index.buf->num_ops) { + index.buf = cairo_path_buf_next (index.buf); +#ifdef ITTR_DEBUG + if (index.buf == index.first) { + assert(0); + index.buf = NULL; + index.points = NULL; + index.op_index = 0xbaadf00d; + } +#endif + index.op_index = 0; + index.points = index.buf->points; + } + return index; +} + +static inline path_ittr +ittr_prev (path_ittr index) +{ + if (index.op_index == 0) { + index.buf = cairo_path_buf_prev (index.buf); + index.op_index = index.buf->num_ops-1; + index.points = index.buf->points + (index.buf->num_points); + } else { + index.op_index--; + } + index.points -= num_args[(int)index.buf->op[index.op_index]]; + return index; +} + +static inline cairo_path_op_t +ittr_op (path_ittr i) +{ + return i.buf->op[i.op_index]; +} + +static cairo_bool_t +ittr_done(path_ittr i) +{ + return i.buf == NULL; +} + +static cairo_bool_t +ittr_last (path_ittr i) +{ + return i.op_index+1 == i.buf->num_ops && cairo_path_buf_next(i.buf) == i.first; +} + +static cairo_bool_t +ittr_eq (path_ittr a, path_ittr b) +{ + return a.buf == b.buf && a.op_index == b.op_index; +} + + +static void +draw_degenerate_path (path_output_t *path_out, cairo_stroke_style_t *style, point_t point) +{ + if (style->line_cap == CAIRO_LINE_CAP_ROUND) { + draw_circle(path_out, point, style->line_width/2); + } +} + +/* it might be interesting to see if we can just skip degenerate segments... */ + +static cairo_status_t +_cairo_subpath_stroke_to_path (path_ittr *ittr, + cairo_stroke_style_t *stroke_style, + path_output_t *path_out, + cairo_matrix_t *ctm_inverse) +{ + double offset = stroke_style->line_width/2; + cairo_status_t status = CAIRO_STATUS_SUCCESS; + path_ittr i = *ittr; + cairo_matrix_t *ctm_i = ctm_inverse; + + point_t begin = c2p (ctm_i, i.points[0]); + point_t end_point = begin; + + cairo_path_op_t op; + cairo_point_t *points; + vector_t end_normal; + vector_t initial_normal; + point_t end; + + int op_count = 0; + cairo_bool_t closed_path = FALSE; + point_t last_point; + vector_t closed_normal; + + assert(ittr_op(i) == CAIRO_PATH_OP_MOVE_TO); + + /* handle beginging of the line: we want to get an intial normal to work with + * before we start drawing */ + while (1) { + i = ittr_next (i); + op = ittr_op (i); + points = i.points; + + if (op == CAIRO_PATH_OP_MOVE_TO) { + *ittr = i; + draw_degenerate_path(path_out, stroke_style, begin); + return CAIRO_STATUS_SUCCESS; + } + + if (op == CAIRO_PATH_OP_CLOSE_PATH) { + *ittr = ittr_next (i); + draw_degenerate_path(path_out, stroke_style, begin); + return CAIRO_STATUS_SUCCESS; + } + + if (op == CAIRO_PATH_OP_LINE_TO) { + point_t p = c2p(ctm_i, points[0]); + //XXX: it would be better if we compared points in fixed point... + if (!point_eq(begin, p)) { + initial_normal = compute_normal(begin, p); + break; + } + } else { + point_t p0 = c2p(ctm_i, points[0]); + point_t p1 = c2p(ctm_i, points[1]); + point_t p2 = c2p(ctm_i, points[2]); + assert(ittr_op (i) == CAIRO_PATH_OP_CURVE_TO); + //XXX: maybe use the helper function? + if (!point_eq (begin, p0)) { + initial_normal = compute_normal (begin, p0); + break; + } else { + if (!point_eq (begin, p1)) { + initial_normal = compute_normal (begin, p1); + break; + } else { + if (!point_eq (begin, p2)) { + initial_normal = compute_normal (begin, p2); + break; + } + } + } + } + + if (ittr_last (i)) { + /* if we had a normal for the last op we would have broken out already */ + printf("degen\n"); + *ittr = i; + draw_degenerate_path (path_out, stroke_style, begin); + return CAIRO_STATUS_SUCCESS; + } + } + + end_normal = initial_normal; + + /* end_normal needs to be the normal between i.points[] and the preceeding point */ + while (!ittr_last (i)) { + op_count++; + + i = ittr_next (i); + cairo_path_op_t next_op = ittr_op (i); + cairo_point_t *next_points = i.points; + + switch (next_op) { + case CAIRO_PATH_OP_MOVE_TO: + *ittr = i; + i = ittr_prev (i); + op_count--; + // we are done with the current subpath + // cap it and return to the begining + //assert(0); + goto done; + case CAIRO_PATH_OP_LINE_TO: + case CAIRO_PATH_OP_CURVE_TO: + // get first point of next_op + end = c2p (ctm_i, next_points[0]); + break; + case CAIRO_PATH_OP_CLOSE_PATH: + // close the path + // XXX: relies on the fact that CLOSE_PATH is never the last path_op (it is always followed by an OP_MOVE) + closed_path = TRUE; + // the first point of the first op + end = c2p (ctm_i, ittr->points[0]); + break; + default: + ASSERT_NOT_REACHED; + } + if (unlikely (status)) + return status; + + switch (op) { + case CAIRO_PATH_OP_CURVE_TO: + { + point_t p0 = c2p (ctm_i, points[0]); + point_t p1 = c2p (ctm_i, points[1]); + point_t p2 = c2p (ctm_i, points[2]); + + vector_t n2 = end_normal; + if (!point_eq (p0, p1)) + n2 = compute_normal (p0, p1); + if (!point_eq (p1, p2)) + n2 = compute_normal (p1, p2); + end_normal = n2; + + draw_offset_curve (path_out, begin, + p0, + p1, + p2, + offset); + + if (!point_eq (p2, end)) { + vector_t n3 = compute_normal (p2, end); + join_segment_curve (path_out, stroke_style, p2, n2, n3); + end_normal = n3; + } + + begin = p2; + end_point = begin; + } + break; + case CAIRO_PATH_OP_LINE_TO: + { + point_t mid = c2p (ctm_i, points[0]); + if (!point_eq (mid, end)) { + vector_t n1 = end_normal; + vector_t n2 = compute_normal (mid, end); + join_segment_line (path_out, stroke_style, mid, n1, n2); + end_normal = n2; + begin = mid; + end_point = mid; + } + } + break; + default: + ASSERT_NOT_REACHED; + } + if (closed_path) + break; + op = next_op; + points = next_points; + }; + + if (!closed_path) + *ittr = i; +done: + // op should be set the last op in the path + if (closed_path) { + point_t first_point = c2p (ctm_i, ittr->points[0]); + + assert(ittr_op (*ittr) == CAIRO_PATH_OP_MOVE_TO); + closed_normal = end_normal; + last_point = end_point; + join_segment_line (path_out, stroke_style, first_point, end_normal, initial_normal); + + // XXX: is this right? + begin = first_point; + *ittr = ittr_next (i); + path_out->has_current_point = FALSE; + close_path (path_out); + } else { + if (op == CAIRO_PATH_OP_CURVE_TO) { + point_t p0 = c2p (ctm_i, points[0]); + point_t p1 = c2p (ctm_i, points[1]); + point_t p2 = c2p (ctm_i, points[2]); + + /* draw capped curve segment */ + draw_offset_curve (path_out, end_point, p0, p1, p2, offset); + cap_line (path_out, stroke_style, p2, curve_normal (end_normal, end_point, p0, p1, p2)); + draw_offset_curve (path_out, p2, p1, p0, end_point, offset); + + begin = p0; + } else if (op == CAIRO_PATH_OP_LINE_TO) { + begin = c2p (ctm_i, points[0]); + cap_line (path_out, stroke_style, begin, end_normal); + } else { + assert(0); + } + } + + end_normal = flip (end_normal); + + // pre-conditions + i = ittr_prev(i); + op = ittr_op(i); + points = i.points; + + /* traverse backwards to the begining drawing + * the other side of the stroked path */ + while (op_count) { + i = ittr_prev (i); + cairo_path_op_t next_op = ittr_op (i); + cairo_point_t *next_points = i.points; + + switch (next_op) { + case CAIRO_PATH_OP_MOVE_TO: + end = c2p (ctm_i, next_points[0]); + break; + case CAIRO_PATH_OP_LINE_TO: + end = c2p (ctm_i, next_points[0]); + break; + case CAIRO_PATH_OP_CURVE_TO: + // get first point of next_op + end = c2p (ctm_i, next_points[2]); + break; + case CAIRO_PATH_OP_CLOSE_PATH: + // close the path + assert(0); + break; + default: + ASSERT_NOT_REACHED; + } + if (unlikely (status)) + return status; + + switch (op) { + case CAIRO_PATH_OP_CURVE_TO: + { + point_t p2 = c2p (ctm_i, points[2]); + point_t p1 = c2p (ctm_i, points[1]); + point_t p0 = c2p (ctm_i, points[0]); + if (!point_eq (p2, p1)) { + vector_t n0 = compute_normal (p2, p1); + // XXX whether we use join_segment_line or join_segment_curve here depends + // on whether we are coming from a line or from a curve. Does it matter? + // this used to be join_segment_curve but it was wrong for the following: + // cairo_move_to(cr, 550, 400); + // cairo_curve_to(cr, 531.687500, 469.878906, 415.203125, 506.437500, 247.179688, 524.625000); + // cairo_line_to(cr, 257.945312, 624.046875); + join_segment_line (path_out, stroke_style, p2, end_normal, n0); + end_normal = n0; + } + end_normal = curve_normal (end_normal, p2, p1, p0, end); + draw_offset_curve (path_out, + p2, + p1, + p0, + end, + offset); + //XXX: this feels suspect... + begin = p0; + end_point = end; + } + break; + case CAIRO_PATH_OP_LINE_TO: + { + point_t mid = c2p (ctm_i, points[0]); + vector_t n1 = end_normal; + if (!point_eq (mid, end)) { + vector_t n2 = compute_normal (mid, end); + join_segment_line (path_out, stroke_style, mid, n1, n2); + end_normal = n2; + begin = mid; + end_point = end; + } + } + break; + default: + ASSERT_NOT_REACHED; + } + + points = next_points; + op = next_op; + op_count--; + + } + + if (closed_path) { + vector_t n2 = end_normal; + printf("finish closed\n"); + assert(ittr_op (i) == CAIRO_PATH_OP_MOVE_TO); + if (!point_eq (end_point, last_point)) { + n2 = compute_normal (end_point, last_point); + join_segment_line (path_out, stroke_style, c2p (ctm_i, i.points[0]), end_normal, n2); + } + + join_segment_line (path_out, stroke_style, last_point, n2, flip (closed_normal)); + } else { + cap_line (path_out, stroke_style, end_point, end_normal); + } + close_path (path_out); + + return CAIRO_STATUS_SUCCESS; +} + +typedef struct { + point_t point; + vector_t normal; +} dash_point_t; + +static double +distance (point_t p0, point_t p1) +{ + double ux = p1.x - p0.x; + double uy = p1.y - p0.y; + return hypot(ux, uy); +} + +/* i points to the last op we've just finished */ +static dash_point_t +skip_subpath (dash_point_t start_point, path_output_t *path_out, path_ittr *i, path_ittr subpath_start, path_ittr *subpath_end, cairo_matrix_t *ctm_i, cairo_bool_t *closed, double length) +{ + //XXX: review the naming of points to make sure it makes sense and is consistent + path_ittr index = *i; + path_ittr next_index; + dash_point_t end_point = start_point; + point_t next_point; + cairo_bool_t done = FALSE; + + assert(!ittr_last(index)); + + next_index = ittr_next(index); + + printf("skip_subpath: %d\n", index.op_index); + + if (ittr_op(next_index) == CAIRO_PATH_OP_CLOSE_PATH) { + *closed = TRUE; + next_index = subpath_start; + } + + assert(ittr_op(next_index) == CAIRO_PATH_OP_LINE_TO || ittr_eq(next_index, subpath_start)); + next_point = c2p(ctm_i, next_index.points[0]); + + while (length > 0) { //XXX: is this condition even needed? + double d = distance(end_point.point, next_point); + assert(ittr_op(next_index) == CAIRO_PATH_OP_LINE_TO || ittr_op(next_index) == CAIRO_PATH_OP_MOVE_TO); + printf("d(%d): %f of %f\n", index.op_index, d, length); + if (d >= length) { + /* move the end_point a distance 'length' along the line with the normal end_point.normal */ + end_point.point.x += -end_point.normal.y*-length; + end_point.point.y += end_point.normal.x*-length; + length = 0; + printf("skippath break\n"); + break; + } else { + end_point.point = next_point; + + if (ittr_eq(next_index, subpath_start)) { + /* we've passed the begining; we are done */ + done = TRUE; + break; + } + + if (ittr_last(next_index)) { + /* we're at the end of the path; we are done */ + *subpath_end = next_index; + done = TRUE; + break; + } + + index = next_index; + next_index = ittr_next(next_index); + + if (ittr_op(next_index) == CAIRO_PATH_OP_CLOSE_PATH) { + /* we have a closed path so wrap around toward the begining (subpath_start) */ + *closed = TRUE; + *subpath_end = ittr_next(next_index); + next_index = subpath_start; + } else if (ittr_op(next_index) == CAIRO_PATH_OP_MOVE_TO) { + *subpath_end = next_index; + done = TRUE; + break; + } + + next_point = c2p(ctm_i, next_index.points[0]); + if (!point_eq(end_point.point, next_point)) { + /* XXX: we might be able to avoid computing the normal for every point we vist + * and instead only compute it for the last segment */ + end_point.normal = compute_normal(end_point.point, next_point); + } + + printf("next %f %f\n", d, length); + length -= d; + } + } + + *i = index; + + if (done) + i->buf = NULL; + + return end_point; +} + +static dash_point_t +dash_subpath (dash_point_t start_point, path_output_t *path_out, path_ittr *index, path_ittr subpath_start, path_ittr *subpath_done, cairo_matrix_t *ctm_i, cairo_stroke_style_t *style, double length, int begin_on, cairo_bool_t *closed, double start_length) +{ + dash_point_t end_point; + point_t first = start_point.point; + path_ittr i = *index; + path_ittr subpath_end = {}; + int closed_path = 0; + int done = 0; + vector_t n1 = start_point.normal; + path_ittr start_index = i; + path_ittr next_i; + point_t p1; + // investigate more normal reuse. + // ideally we would only compute the normal for each segment once + // deal with short paths (count < 3) + assert(!ittr_last(i)); + printf("dash_subpath(%f): %d: %f %f\n", length, i.op_index, first.x, first.y); + + next_i = ittr_next(i); + + if (ittr_op(next_i) == CAIRO_PATH_OP_CLOSE_PATH) { + subpath_end = i; + *subpath_done = ittr_next(next_i); + next_i = subpath_start; + *closed = TRUE; + } + + assert(ittr_op(next_i) == CAIRO_PATH_OP_LINE_TO || ittr_eq(next_i, subpath_start)); + //printf("off: %f %f, %f %f\n", end_point.point.x, end_point.point.y, path[index].x, path[index].y); + p1 = c2p(ctm_i, next_i.points[0]); + do { + double d; + vector_t n2; + point_t p2; + assert(ittr_op(next_i) == CAIRO_PATH_OP_LINE_TO || ittr_eq(next_i, subpath_start)); + d = distance (first, p1); + if (d >= length) { + end_point.point.x = first.x + length*n1.y; + end_point.point.y = first.y + length*-n1.x; + end_point.normal = n1; + break; + } + + if (ittr_last (next_i)) { + /* we're at the end so we must be done */ + done = 1; + *subpath_done = next_i; + end_point.point = c2p(ctm_i, next_i.points[0]); + end_point.normal = n1; + break; + } + + /* We don't have enough length in the current segment so get the next one + * This means advancing i and next_i */ + + if (ittr_eq(next_i, subpath_start)) { + /* we're already at the beginning of the path so we don't have anything left to dash */ + printf("done\n"); + //XXX done the path + done = 1; + if (!begin_on) { + /* we didn't skip the initial segment; so we're all done */ + length = 0; + end_point.point = c2p(ctm_i, next_i.points[0]); + end_point.normal = n1; + break; + } else { + /* the initial segment started on, so join with it and draw it */ + length = start_length; + i = next_i; + next_i = ittr_next(next_i); + } + } else { + i = next_i; + next_i = ittr_next(next_i); + + if (ittr_op(next_i) == CAIRO_PATH_OP_CLOSE_PATH) { + subpath_end = i; + *subpath_done = ittr_next(next_i); + next_i = subpath_start; + *closed = TRUE; + } else if (ittr_op(next_i) == CAIRO_PATH_OP_MOVE_TO) { + done = 1; + end_point.point = c2p(ctm_i, i.points[0]); + end_point.normal = n1; + *subpath_done = next_i; + //XXX: it would be good if we could avoid doing this ittr_prev() + i = ittr_prev(i); + printf("dash: segment end break\n"); + break; + } + length -= d; + } + + p2 = c2p(ctm_i, next_i.points[0]); + if (!point_eq(p1, p2)) { + n2 = compute_normal(p1, p2); + end_point.normal = n2; + end_point.point = p2; + } + + if (ittr_eq(next_i, start_index)) { + // we've reached the place where we started so we need to loop the path instead of + // capping it + done = 1; + closed_path = 1; + /* + gcc complains that end_point can be used uninitialzed in this function because we don't set + it here when we break out of the loop. I don't think we can get to here without setting end_point + and here's why: + + p2 == start_index point + p1 must have the same value as p2 + + the only time that next_i can equal start_index is when start_index == subpath_start + this means that the whole path needs to be here. However, unless the path is degenerate + end_point will be set. But no degenerate paths will pass into here because they will be + found else where. + + Can we make this more explict? + */ + printf("closed path\n"); + // XXX: do we need to set end_point here? normally we would get an end_point from the code above. + // but if we have a degenerate path we won't + break; + } + + // XXX: having to check this twice sort of sucks + if (!point_eq(p1, p2)) { + join_segment_line(path_out, style, p1, n1, n2); + n1 = n2; + first = p1; + p1 = p2; + } + } while (1); + + /* at this point end_point must be initialized and 'i' must point to the point before the end_point */ + + *index = i; + + point_t closed_p1; + point_t closed_p2; + vector_t closed_n1; + vector_t closed_n2; + vector_t closed_n3; + if (closed_path) { + // join the line back with itself + closed_p1 = c2p (ctm_i, i.points[0]); + closed_p2 = end_point.point; + closed_n1 = n1; + closed_n2 = compute_normal (closed_p1, closed_p2); + closed_n3 = compute_normal (closed_p2, c2p(ctm_i, ittr_next (next_i).points[0])); + join_segment_line (path_out, style, closed_p1, closed_n1, closed_n2); + join_segment_line (path_out, style, closed_p2, closed_n2, closed_n3); + close_path (path_out); + } else { + // draw cap + cap_line (path_out, style, end_point.point, end_point.normal); + } + + start_point.normal = flip (start_point.normal); + + /* draw the other side of the path, returning to the begining */ + n1 = flip (end_point.normal); + p1 = c2p (ctm_i, i.points[0]); + path_ittr prev_i = i; + while (!ittr_eq (prev_i, start_index)) { + i = prev_i; + if (ittr_eq (prev_i, subpath_start)) { + prev_i = subpath_end; + } else { + prev_i = ittr_prev (prev_i); + } + point_t p2 = c2p (ctm_i, prev_i.points[0]); + if (!point_eq (p1, p2)) { + vector_t n2 = compute_normal (p1, p2); + join_segment_line (path_out, style, p1, n1, n2); + + n1 = n2; + p1 = p2; + } + } + + /* finish up */ + + if (closed_path) { + join_segment_line (path_out, style, closed_p2, flip (closed_n3), flip (closed_n2)); + join_segment_line (path_out, style, closed_p1, flip (closed_n2), flip (closed_n1)); + close_path (path_out); + } else { + /* draw cap */ + cap_line(path_out, style, start_point.point, start_point.normal); + close_path (path_out); + } + + if (done) + index->buf = NULL; + + return end_point; + +} + +static cairo_status_t +_cairo_subpath_dash_to_path (path_ittr *ittr, + cairo_stroke_style_t *style, + path_output_t *path_out, + cairo_matrix_t *ctm_i) +{ + + cairo_bool_t on = TRUE, begin_on, closed = FALSE; + + double length, start_length; + + double *dash = style->dash; + double dash_init = style->dash_offset; + int dash_len = style->num_dashes; + int dash_state = 0; + path_ittr index = *ittr; + path_ittr subpath_end = {}; + + dash_point_t start_point; + dash_point_t end_point; + path_ittr subpath_start = index; + + assert(ittr_op(index) == CAIRO_PATH_OP_MOVE_TO); + + ///XXX: this code is different from cairo, figure out which is better + /* intiailize dash state */ + length = dash[dash_state++ % dash_len]; + + /* decrease dash_init until we are in the correct dash_state */ + /* the intervals are closed */ + /* we make sure that we don't skip over 0 length segments */ + while (length > 0 && dash_init - length >= 0) { + dash_init -= length; + on = !on; + length = dash[dash_state++ % dash_len]; + } + + begin_on = on; + length -= dash_init; + printf("subpath starts %s with length of %f\n", on ? "on" : "off", length); + + start_length = length; + + start_point.point = c2p(ctm_i, index.points[0]); + //XXX: to share this with the non dashed code we need to deal with dash on/off + while (1) { + if (ittr_op(ittr_next(index)) == CAIRO_PATH_OP_LINE_TO) { + point_t p = c2p(ctm_i, ittr_next(index).points[0]); + if (!point_eq(start_point.point, p)) { + /* we have a normal so we can start the regular stroking process */ + start_point.normal = compute_normal(start_point.point, c2p(ctm_i, ittr_next(index).points[0])); + break; + } + } + index = ittr_next(index); + + if (ittr_op(index) == CAIRO_PATH_OP_MOVE_TO) { + *ittr = index; + if (on) + draw_degenerate_path (path_out, style, start_point.point); + return CAIRO_STATUS_SUCCESS; + } + + if (ittr_op(index) == CAIRO_PATH_OP_CLOSE_PATH) { + *ittr = ittr_next(index); + if (on) + draw_degenerate_path (path_out, style, start_point.point); + return CAIRO_STATUS_SUCCESS; + } + + if (ittr_last(index)) { + *ittr = index; + if (on) + draw_degenerate_path (path_out, style, start_point.point); + return CAIRO_STATUS_SUCCESS; + } + } + + end_point = start_point; + + /* the first segment is special because we might need to join with it. However, we won't know + * what to do until we reach the end of the subpath + * Different renderers behave differently here: + * No Join: skia, qt, mesa openvg, coregraphics + * Join: opera, cairo, ghostscript, adobe */ + if (begin_on) { + on = !on; + /* if the first dash segment is larger than the entire line we'll skip the whole thing */ + end_point = skip_subpath (end_point, path_out, &index, subpath_start, &subpath_end, ctm_i, &closed, length); + length = dash[dash_state++ % dash_len]; + printf("done skip: %d\n", index.op_index); + if (ittr_done(index)) { + printf("reset\n"); + // flip to back on so that we don't skip everything again + on = !on; + index = *ittr; + length = start_length; + end_point = start_point; + } + } + + do { + printf("index: %d\n", index.op_index); + if (on) { + end_point = dash_subpath (end_point, path_out, &index, subpath_start, &subpath_end, ctm_i, style, length, begin_on, &closed, start_length); + } else { + end_point = skip_subpath (end_point, path_out, &index, subpath_start, &subpath_end, ctm_i, &closed, length); + } + on = !on; + length = dash[dash_state++ % dash_len]; + + // cairo does an implicit move_to after a close_path so we need to start a new sub path + _cairo_path_fixed_new_sub_path (path_out->path); + } while (!ittr_done(index)); + + *ittr = index; + // draw the initial segment if we haven't yet. + if ((!closed && begin_on) || (closed && on)) { + printf("draw initial %f\n", start_length); + index = subpath_start; + end_point = start_point; + end_point = dash_subpath (end_point, path_out, &index, subpath_start, &subpath_start, ctm_i, style, start_length, begin_on, &closed, start_length); + } + *ittr = subpath_end; + return CAIRO_STATUS_SUCCESS; +} + +static cairo_status_t +_cairo_path_dash_to_path (const cairo_path_fixed_t *path, + cairo_stroke_style_t *stroke_style, + cairo_path_fixed_t *path_out, + cairo_matrix_t *ctm, + cairo_matrix_t *ctm_inverse) +{ + path_ittr i; + path_output_t output_path; + + output_path.status = CAIRO_STATUS_SUCCESS; + output_path.ctm = ctm; + output_path.path = path_out; + + i.buf = i.first = cairo_path_head(path); + i.op_index = 0; + i.points = i.buf->points; + + while (!ittr_last(i)) { + _cairo_subpath_dash_to_path(&i, stroke_style, &output_path, ctm_inverse); + } + + return output_path.status; +} + +cairo_status_t +_cairo_path_stroke_to_path (const cairo_path_fixed_t *path, + cairo_stroke_style_t *stroke_style, + cairo_path_fixed_t *path_out, + cairo_matrix_t *ctm, + cairo_matrix_t *ctm_inverse, + double tolerance) +{ + path_ittr i; + path_output_t output_path; + + cairo_status_t status = CAIRO_STATUS_SUCCESS; + + /* if we have an empty path, we're alredy done */ + if (cairo_path_head(path)->num_ops == 0) + return CAIRO_STATUS_SUCCESS; + + if (stroke_style->num_dashes > 0) { + if (path->has_curve_to) { + /* Dashing curved paths directly is tricky because I know of no easy way + to split a bezier curve at a particular length. So, for now, flatten the + path before dashing it */ + cairo_path_fixed_t flat_path; + status = _cairo_path_fixed_init_flat_copy (&flat_path, + path, + tolerance); + + if (unlikely(status)) { + _cairo_path_fixed_fini (&flat_path); + return status; + } + + status = _cairo_path_dash_to_path (&flat_path, stroke_style, path_out, ctm, ctm_inverse); + _cairo_path_fixed_fini (&flat_path); + return status; + } else { + return _cairo_path_dash_to_path (path, stroke_style, path_out, ctm, ctm_inverse); + } + } + + output_path.status = CAIRO_STATUS_SUCCESS; + output_path.ctm = ctm; + output_path.path = path_out; + + i.buf = i.first = cairo_path_head (path); + i.op_index = 0; + i.points = i.buf->points; + + while (!ittr_last (i)) { + output_path.has_current_point = FALSE; + _cairo_subpath_stroke_to_path (&i, stroke_style, &output_path, ctm_inverse); + } + + return output_path.status; +} diff --git a/src/cairo.c b/src/cairo.c index 157f898f4..8e488dd49 100644 --- a/src/cairo.c +++ b/src/cairo.c @@ -4156,6 +4156,15 @@ cairo_append_path (cairo_t *cr, _cairo_set_error (cr, status); } +cairo_path_t * +cairo_stroke_to_path (cairo_t *cr) +{ + if (unlikely (cr->status)) + return _cairo_path_create_in_error (cr->status); + + return _cairo_stroked_path_create (cr->path, cr->gstate); +} + /** * cairo_status: * @cr: a cairo context diff --git a/src/cairo.h b/src/cairo.h index 136c5dbf2..33883527d 100644 --- a/src/cairo.h +++ b/src/cairo.h @@ -1926,6 +1926,9 @@ cairo_append_path (cairo_t *cr, cairo_public void cairo_path_destroy (cairo_path_t *path); +cairo_public cairo_path_t * +cairo_stroke_to_path (cairo_t *cr); + /* Error status queries */ cairo_public cairo_status_t diff --git a/src/cairoint.h b/src/cairoint.h index 346fc51ff..774c06c3c 100644 --- a/src/cairoint.h +++ b/src/cairoint.h @@ -1130,6 +1130,11 @@ cairo_private cairo_status_t _cairo_path_fixed_init_copy (cairo_path_fixed_t *path, const cairo_path_fixed_t *other); +cairo_private cairo_status_t +_cairo_path_fixed_init_flat_copy (cairo_path_fixed_t *path, + const cairo_path_fixed_t *other, + double tolerance); + cairo_private cairo_bool_t _cairo_path_fixed_is_equal (const cairo_path_fixed_t *path, const cairo_path_fixed_t *other); @@ -1326,6 +1331,15 @@ _cairo_path_fixed_stroke_to_traps (const cairo_path_fixed_t *path, double tolerance, cairo_traps_t *traps); +/* cairo-stroke-to-path.c */ +cairo_status_t +_cairo_path_stroke_to_path (const cairo_path_fixed_t *path, + cairo_stroke_style_t *stroke_style, + cairo_path_fixed_t *path_out, + cairo_matrix_t *ctm, + cairo_matrix_t *ctm_invserse, + double tolerance); // XXX: the matrices could probably be const + cairo_private cairo_status_t _cairo_path_fixed_stroke_to_shaper (cairo_path_fixed_t *path, const cairo_stroke_style_t *stroke_style, |