/* * csr1212.c -- IEEE 1212 Control and Status Register support for Linux * * Copyright (C) 2003 Francois Retief * Steve Kinneberg * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* TODO List: * - Verify interface consistency: i.e., public functions that take a size * parameter expect size to be in bytes. * - Convenience functions for reading a block of data from a given offset. */ #ifndef __KERNEL__ #include #endif #include "csr1212.h" /* Permitted key type for each key id */ #define __I (1 << CSR1212_KV_TYPE_IMMEDIATE) #define __C (1 << CSR1212_KV_TYPE_CSR_OFFSET) #define __D (1 << CSR1212_KV_TYPE_DIRECTORY) #define __L (1 << CSR1212_KV_TYPE_LEAF) static const u_int8_t csr1212_key_id_type_map[0x30] = { 0, /* Reserved */ __D | __L, /* Descriptor */ __I | __D | __L, /* Bus_Dependent_Info */ __I | __D | __L, /* Vendor */ __I, /* Hardware_Version */ 0, 0, /* Reserved */ __D | __L, /* Module */ 0, 0, 0, 0, /* Reserved */ __I, /* Node_Capabilities */ __L, /* EUI_64 */ 0, 0, 0, /* Reserved */ __D, /* Unit */ __I, /* Specifier_ID */ __I, /* Version */ __I | __C | __D | __L, /* Dependent_Info */ __L, /* Unit_Location */ 0, /* Reserved */ __I, /* Model */ __D, /* Instance */ __L, /* Keyword */ __D, /* Feature */ __L, /* Extended_ROM */ __I, /* Extended_Key_Specifier_ID */ __I, /* Extended_Key */ __I | __C | __D | __L, /* Extended_Data */ __L, /* Modifiable_Descriptor */ __I, /* Directory_ID */ __I, /* Revision */ }; #undef __I #undef __C #undef __D #undef __L #define quads_to_bytes(_q) ((_q) * sizeof(u_int32_t)) #define bytes_to_quads(_b) (((_b) + sizeof(u_int32_t) - 1) / sizeof(u_int32_t)) static inline void free_keyval(struct csr1212_keyval *kv) { if ((kv->key.type == CSR1212_KV_TYPE_LEAF) && (kv->key.id != CSR1212_KV_ID_EXTENDED_ROM)) CSR1212_FREE(kv->value.leaf.data); CSR1212_FREE(kv); } static u_int16_t csr1212_crc16(const u_int32_t *buffer, size_t length) { int shift; u_int32_t data; u_int16_t sum, crc = 0; for (; length; length--) { data = CSR1212_BE32_TO_CPU(*buffer); buffer++; for (shift = 28; shift >= 0; shift -= 4 ) { sum = ((crc >> 12) ^ (data >> shift)) & 0xf; crc = (crc << 4) ^ (sum << 12) ^ (sum << 5) ^ (sum); } crc &= 0xffff; } return CSR1212_CPU_TO_BE16(crc); } #if 0 /* Microsoft computes the CRC with the bytes in reverse order. Therefore we * have a special version of the CRC algorithm to account for their buggy * software. */ static u_int16_t csr1212_msft_crc16(const u_int32_t *buffer, size_t length) { int shift; u_int32_t data; u_int16_t sum, crc = 0; for (; length; length--) { data = CSR1212_LE32_TO_CPU(*buffer); buffer++; for (shift = 28; shift >= 0; shift -= 4 ) { sum = ((crc >> 12) ^ (data >> shift)) & 0xf; crc = (crc << 4) ^ (sum << 12) ^ (sum << 5) ^ (sum); } crc &= 0xffff; } return CSR1212_CPU_TO_BE16(crc); } #endif static inline struct csr1212_dentry *csr1212_find_keyval(struct csr1212_keyval *dir, struct csr1212_keyval *kv) { struct csr1212_dentry *pos; for (pos = dir->value.directory.dentries_head; pos != NULL; pos = pos->next) { if (pos->kv == kv) return pos; } return NULL; } static inline struct csr1212_keyval *csr1212_find_keyval_offset(struct csr1212_keyval *kv_list, u_int32_t offset) { struct csr1212_keyval *kv; for (kv = kv_list->next; kv && (kv != kv_list); kv = kv->next) { if (kv->offset == offset) return kv; } return NULL; } /* Creation Routines */ struct csr1212_csr *csr1212_create_csr(struct csr1212_bus_ops *ops, size_t bus_info_size, void *private) { struct csr1212_csr *csr; csr = CSR1212_MALLOC(sizeof(*csr)); if (!csr) return NULL; csr->cache_head = csr1212_rom_cache_malloc(CSR1212_CONFIG_ROM_SPACE_OFFSET, CSR1212_CONFIG_ROM_SPACE_SIZE); if (!csr->cache_head) { CSR1212_FREE(csr); return NULL; } /* The keyval key id is not used for the root node, but a valid key id * that can be used for a directory needs to be passed to * csr1212_new_directory(). */ csr->root_kv = csr1212_new_directory(CSR1212_KV_ID_VENDOR); if (!csr->root_kv) { CSR1212_FREE(csr->cache_head); CSR1212_FREE(csr); return NULL; } csr->bus_info_data = csr->cache_head->data; csr->bus_info_len = bus_info_size; csr->crc_len = bus_info_size; csr->ops = ops; csr->private = private; csr->cache_tail = csr->cache_head; return csr; } void csr1212_init_local_csr(struct csr1212_csr *csr, const u_int32_t *bus_info_data, int max_rom) { static const int mr_map[] = { 4, 64, 1024, 0 }; #ifdef __KERNEL__ BUG_ON(max_rom & ~0x3); csr->max_rom = mr_map[max_rom]; #else if (max_rom & ~0x3) /* caller supplied invalid argument */ csr->max_rom = 0; else csr->max_rom = mr_map[max_rom]; #endif memcpy(csr->bus_info_data, bus_info_data, csr->bus_info_len); } static struct csr1212_keyval *csr1212_new_keyval(u_int8_t type, u_int8_t key) { struct csr1212_keyval *kv; if (key < 0x30 && ((csr1212_key_id_type_map[key] & (1 << type)) == 0)) return NULL; kv = CSR1212_MALLOC(sizeof(*kv)); if (!kv) return NULL; kv->key.type = type; kv->key.id = key; kv->associate = NULL; kv->refcnt = 1; kv->next = NULL; kv->prev = NULL; kv->offset = 0; kv->valid = 0; return kv; } struct csr1212_keyval *csr1212_new_immediate(u_int8_t key, u_int32_t value) { struct csr1212_keyval *kv = csr1212_new_keyval(CSR1212_KV_TYPE_IMMEDIATE, key); if (!kv) return NULL; kv->value.immediate = value; kv->valid = 1; return kv; } struct csr1212_keyval *csr1212_new_leaf(u_int8_t key, const void *data, size_t data_len) { struct csr1212_keyval *kv = csr1212_new_keyval(CSR1212_KV_TYPE_LEAF, key); if (!kv) return NULL; if (data_len > 0) { kv->value.leaf.data = CSR1212_MALLOC(data_len); if (!kv->value.leaf.data) { CSR1212_FREE(kv); return NULL; } if (data) memcpy(kv->value.leaf.data, data, data_len); } else { kv->value.leaf.data = NULL; } kv->value.leaf.len = bytes_to_quads(data_len); kv->offset = 0; kv->valid = 1; return kv; } struct csr1212_keyval *csr1212_new_csr_offset(u_int8_t key, u_int32_t csr_offset) { struct csr1212_keyval *kv = csr1212_new_keyval(CSR1212_KV_TYPE_CSR_OFFSET, key); if (!kv) return NULL; kv->value.csr_offset = csr_offset; kv->offset = 0; kv->valid = 1; return kv; } struct csr1212_keyval *csr1212_new_directory(u_int8_t key) { struct csr1212_keyval *kv = csr1212_new_keyval(CSR1212_KV_TYPE_DIRECTORY, key); if (!kv) return NULL; kv->value.directory.len = 0; kv->offset = 0; kv->value.directory.dentries_head = NULL; kv->value.directory.dentries_tail = NULL; kv->valid = 1; return kv; } int csr1212_associate_keyval(struct csr1212_keyval *kv, struct csr1212_keyval *associate) { if (!kv || !associate) return CSR1212_EINVAL; if (kv->key.id == CSR1212_KV_ID_DESCRIPTOR || (associate->key.id != CSR1212_KV_ID_DESCRIPTOR && associate->key.id != CSR1212_KV_ID_DEPENDENT_INFO && associate->key.id != CSR1212_KV_ID_EXTENDED_KEY && associate->key.id != CSR1212_KV_ID_EXTENDED_DATA && associate->key.id < 0x30)) return CSR1212_EINVAL; if (kv->key.id == CSR1212_KV_ID_EXTENDED_KEY_SPECIFIER_ID && associate->key.id != CSR1212_KV_ID_EXTENDED_KEY) return CSR1212_EINVAL; if (kv->key.id == CSR1212_KV_ID_EXTENDED_KEY && associate->key.id != CSR1212_KV_ID_EXTENDED_DATA) return CSR1212_EINVAL; if (associate->key.id == CSR1212_KV_ID_EXTENDED_KEY && kv->key.id != CSR1212_KV_ID_EXTENDED_KEY_SPECIFIER_ID) return CSR1212_EINVAL; if (associate->key.id == CSR1212_KV_ID_EXTENDED_DATA && kv->key.id != CSR1212_KV_ID_EXTENDED_KEY) return CSR1212_EINVAL; if (kv->associate) csr1212_release_keyval(kv->associate); associate->refcnt++; kv->associate = associate; return CSR1212_SUCCESS; } int csr1212_attach_keyval_to_directory(struct csr1212_keyval *dir, struct csr1212_keyval *kv) { struct csr1212_dentry *dentry; if (!kv || !dir || dir->key.type != CSR1212_KV_TYPE_DIRECTORY) return CSR1212_EINVAL; dentry = CSR1212_MALLOC(sizeof(*dentry)); if (!dentry) return CSR1212_ENOMEM; dentry->kv = kv; kv->refcnt++; dentry->next = NULL; dentry->prev = dir->value.directory.dentries_tail; if (!dir->value.directory.dentries_head) dir->value.directory.dentries_head = dentry; if (dir->value.directory.dentries_tail) dir->value.directory.dentries_tail->next = dentry; dir->value.directory.dentries_tail = dentry; return CSR1212_SUCCESS; } struct csr1212_keyval *csr1212_new_extended_immediate(u_int32_t spec, u_int32_t key, u_int32_t value) { struct csr1212_keyval *kvs, *kvk, *kvv; kvs = csr1212_new_immediate(CSR1212_KV_ID_EXTENDED_KEY_SPECIFIER_ID, spec); kvk = csr1212_new_immediate(CSR1212_KV_ID_EXTENDED_KEY, key); kvv = csr1212_new_immediate(CSR1212_KV_ID_EXTENDED_DATA, value); if (!kvs || !kvk || !kvv) { if (kvs) free_keyval(kvs); if (kvk) free_keyval(kvk); if (kvv) free_keyval(kvv); return NULL; } /* Don't keep a local reference to the extended key or value. */ kvk->refcnt = 0; kvv->refcnt = 0; csr1212_associate_keyval(kvk, kvv); csr1212_associate_keyval(kvs, kvk); return kvs; } struct csr1212_keyval *csr1212_new_extended_leaf(u_int32_t spec, u_int32_t key, const void *data, size_t data_len) { struct csr1212_keyval *kvs, *kvk, *kvv; kvs = csr1212_new_immediate(CSR1212_KV_ID_EXTENDED_KEY_SPECIFIER_ID, spec); kvk = csr1212_new_immediate(CSR1212_KV_ID_EXTENDED_KEY, key); kvv = csr1212_new_leaf(CSR1212_KV_ID_EXTENDED_DATA, data, data_len); if (!kvs || !kvk || !kvv) { if (kvs) free_keyval(kvs); if (kvk) free_keyval(kvk); if (kvv) free_keyval(kvv); return NULL; } /* Don't keep a local reference to the extended key or value. */ kvk->refcnt = 0; kvv->refcnt = 0; csr1212_associate_keyval(kvk, kvv); csr1212_associate_keyval(kvs, kvk); return kvs; } struct csr1212_keyval *csr1212_new_descriptor_leaf(u_int8_t dtype, u_int32_t specifier_id, const void *data, size_t data_len) { struct csr1212_keyval *kv; kv = csr1212_new_leaf(CSR1212_KV_ID_DESCRIPTOR, NULL, data_len + CSR1212_DESCRIPTOR_LEAF_OVERHEAD); if (!kv) return NULL; CSR1212_DESCRIPTOR_LEAF_SET_TYPE(kv, dtype); CSR1212_DESCRIPTOR_LEAF_SET_SPECIFIER_ID(kv, specifier_id); if (data) { memcpy(CSR1212_DESCRIPTOR_LEAF_DATA(kv), data, data_len); } return kv; } struct csr1212_keyval *csr1212_new_textual_descriptor_leaf(u_int8_t cwidth, u_int16_t cset, u_int16_t language, const void *data, size_t data_len) { struct csr1212_keyval *kv; char *lstr; kv = csr1212_new_descriptor_leaf(0, 0, NULL, data_len + CSR1212_TEXTUAL_DESCRIPTOR_LEAF_OVERHEAD); if (!kv) return NULL; CSR1212_TEXTUAL_DESCRIPTOR_LEAF_SET_WIDTH(kv, cwidth); CSR1212_TEXTUAL_DESCRIPTOR_LEAF_SET_CHAR_SET(kv, cset); CSR1212_TEXTUAL_DESCRIPTOR_LEAF_SET_LANGUAGE(kv, language); lstr = (char*)CSR1212_TEXTUAL_DESCRIPTOR_LEAF_DATA(kv); /* make sure last quadlet is zeroed out */ *((u_int32_t*)&(lstr[(data_len - 1) & ~0x3])) = 0; /* don't copy the NUL terminator */ memcpy(lstr, data, data_len); return kv; } static int csr1212_check_minimal_ascii(const char *s) { static const char minimal_ascii_table[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x07, 0x00, 0x00, 0x0a, 0x00, 0x0C, 0x0D, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x21, 0x22, 0x00, 0x00, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f, 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f, 0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f, 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5a, 0x00, 0x00, 0x00, 0x00, 0x5f, 0x00, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f, 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7a, 0x00, 0x00, 0x00, 0x00, 0x00, }; for (; *s; s++) { if (minimal_ascii_table[*s & 0x7F] != *s) return -1; /* failed */ } /* String conforms to minimal-ascii, as specified by IEEE 1212, * par. 7.4 */ return 0; } struct csr1212_keyval *csr1212_new_string_descriptor_leaf(const char *s) { /* Check if string conform to minimal_ascii format */ if (csr1212_check_minimal_ascii(s)) return NULL; /* IEEE 1212, par. 7.5.4.1 Textual descriptors (minimal ASCII) */ return csr1212_new_textual_descriptor_leaf(0, 0, 0, s, strlen(s)); } struct csr1212_keyval *csr1212_new_icon_descriptor_leaf(u_int32_t version, u_int8_t palette_depth, u_int8_t color_space, u_int16_t language, u_int16_t hscan, u_int16_t vscan, u_int32_t *palette, u_int32_t *pixels) { static const int pd[4] = { 0, 4, 16, 256 }; static const int cs[16] = { 4, 2 }; struct csr1212_keyval *kv; int palette_size; int pixel_size = (hscan * vscan + 3) & ~0x3; if (!pixels || (!palette && palette_depth) || (palette_depth & ~0x3) || (color_space & ~0xf)) return NULL; palette_size = pd[palette_depth] * cs[color_space]; kv = csr1212_new_descriptor_leaf(1, 0, NULL, palette_size + pixel_size + CSR1212_ICON_DESCRIPTOR_LEAF_OVERHEAD); if (!kv) return NULL; CSR1212_ICON_DESCRIPTOR_LEAF_SET_VERSION(kv, version); CSR1212_ICON_DESCRIPTOR_LEAF_SET_PALETTE_DEPTH(kv, palette_depth); CSR1212_ICON_DESCRIPTOR_LEAF_SET_COLOR_SPACE(kv, color_space); CSR1212_ICON_DESCRIPTOR_LEAF_SET_LANGUAGE(kv, language); CSR1212_ICON_DESCRIPTOR_LEAF_SET_HSCAN(kv, hscan); CSR1212_ICON_DESCRIPTOR_LEAF_SET_VSCAN(kv, vscan); if (palette_size) memcpy(CSR1212_ICON_DESCRIPTOR_LEAF_PALETTE(kv), palette, palette_size); memcpy(CSR1212_ICON_DESCRIPTOR_LEAF_PIXELS(kv), pixels, pixel_size); return kv; } struct csr1212_keyval *csr1212_new_modifiable_descriptor_leaf(u_int16_t max_size, u_int64_t address) { struct csr1212_keyval *kv; /* IEEE 1212, par. 7.5.4.3 Modifiable descriptors */ kv = csr1212_new_leaf(CSR1212_KV_ID_MODIFIABLE_DESCRIPTOR, NULL, sizeof(u_int64_t)); if(!kv) return NULL; CSR1212_MODIFIABLE_DESCRIPTOR_SET_MAX_SIZE(kv, max_size); CSR1212_MODIFIABLE_DESCRIPTOR_SET_ADDRESS_HI(kv, address); CSR1212_MODIFIABLE_DESCRIPTOR_SET_ADDRESS_LO(kv, address); return kv; } static int csr1212_check_keyword(const char *s) { for (; *s; s++) { if (('A' <= *s) && (*s <= 'Z')) continue; if (('0' <= *s) && (*s <= '9')) continue; if (*s == '-') continue; return -1; /* failed */ } /* String conforms to keyword, as specified by IEEE 1212, * par. 7.6.5 */ return CSR1212_SUCCESS; } struct csr1212_keyval *csr1212_new_keyword_leaf(int strc, const char *strv[]) { struct csr1212_keyval *kv; char *buffer; int i, data_len = 0; /* Check all keywords to see if they conform to restrictions: * Only the following characters is allowed ['A'..'Z','0'..'9','-'] * Each word is zero-terminated. * Also calculate the total length of the keywords. */ for (i = 0; i < strc; i++) { if (!strv[i] || csr1212_check_keyword(strv[i])) { return NULL; } data_len += strlen(strv[i]) + 1; /* Add zero-termination char. */ } /* IEEE 1212, par. 7.6.5 Keyword leaves */ kv = csr1212_new_leaf(CSR1212_KV_ID_KEYWORD, NULL, data_len); if (!kv) return NULL; buffer = (char *)kv->value.leaf.data; /* make sure last quadlet is zeroed out */ *((u_int32_t*)&(buffer[(data_len - 1) & ~0x3])) = 0; /* Copy keyword(s) into leaf data buffer */ for (i = 0; i < strc; i++) { int len = strlen(strv[i]) + 1; memcpy(buffer, strv[i], len); buffer += len; } return kv; } /* Destruction Routines */ void csr1212_detach_keyval_from_directory(struct csr1212_keyval *dir, struct csr1212_keyval *kv) { struct csr1212_dentry *dentry; if (!kv || !dir || dir->key.type != CSR1212_KV_TYPE_DIRECTORY) return; dentry = csr1212_find_keyval(dir, kv); if (!dentry) return; if (dentry->prev) dentry->prev->next = dentry->next; if (dentry->next) dentry->next->prev = dentry->prev; if (dir->value.directory.dentries_head == dentry) dir->value.directory.dentries_head = dentry->next; if (dir->value.directory.dentries_tail == dentry) dir->value.directory.dentries_tail = dentry->prev; CSR1212_FREE(dentry); csr1212_release_keyval(kv); } void csr1212_disassociate_keyval(struct csr1212_keyval *kv) { if (kv->associate) { csr1212_release_keyval(kv->associate); } kv->associate = NULL; } /* This function is used to free the memory taken by a keyval. If the given * keyval is a directory type, then any keyvals contained in that directory * will be destroyed as well if their respective refcnts are 0. By means of * list manipulation, this routine will descend a directory structure in a * non-recursive manner. */ void _csr1212_destroy_keyval(struct csr1212_keyval *kv) { struct csr1212_keyval *k, *a; struct csr1212_dentry dentry; struct csr1212_dentry *head, *tail; dentry.kv = kv; dentry.next = NULL; dentry.prev = NULL; head = &dentry; tail = head; while (head) { k = head->kv; while (k) { k->refcnt--; if (k->refcnt > 0) break; a = k->associate; if (k->key.type == CSR1212_KV_TYPE_DIRECTORY) { /* If the current entry is a directory, then move all * the entries to the destruction list. */ if (k->value.directory.dentries_head) { tail->next = k->value.directory.dentries_head; k->value.directory.dentries_head->prev = tail; tail = k->value.directory.dentries_tail; } } free_keyval(k); k = a; } head = head->next; if (head) { if (head->prev && head->prev != &dentry) { CSR1212_FREE(head->prev); } head->prev = NULL; } else if (tail != &dentry) CSR1212_FREE(tail); } } void csr1212_destroy_csr(struct csr1212_csr *csr) { struct csr1212_csr_rom_cache *c, *oc; struct csr1212_cache_region *cr, *ocr; csr1212_release_keyval(csr->root_kv); c = csr->cache_head; while (c) { oc = c; cr = c->filled_head; while (cr) { ocr = cr; cr = cr->next; CSR1212_FREE(ocr); } c = c->next; CSR1212_FREE(oc); } CSR1212_FREE(csr); } /* CSR Image Creation */ static int csr1212_append_new_cache(struct csr1212_csr *csr, size_t romsize) { struct csr1212_csr_rom_cache *cache; u_int64_t csr_addr; if (!csr || !csr->ops || !csr->ops->allocate_addr_range || !csr->ops->release_addr || csr->max_rom < 1) return CSR1212_EINVAL; /* ROM size must be a multiple of csr->max_rom */ romsize = (romsize + (csr->max_rom - 1)) & ~(csr->max_rom - 1); csr_addr = csr->ops->allocate_addr_range(romsize, csr->max_rom, csr->private); if (csr_addr == ~0ULL) { return CSR1212_ENOMEM; } if (csr_addr < CSR1212_REGISTER_SPACE_BASE) { /* Invalid address returned from allocate_addr_range(). */ csr->ops->release_addr(csr_addr, csr->private); return CSR1212_ENOMEM; } cache = csr1212_rom_cache_malloc(csr_addr - CSR1212_REGISTER_SPACE_BASE, romsize); if (!cache) { csr->ops->release_addr(csr_addr, csr->private); return CSR1212_ENOMEM; } cache->ext_rom = csr1212_new_keyval(CSR1212_KV_TYPE_LEAF, CSR1212_KV_ID_EXTENDED_ROM); if (!cache->ext_rom) { csr->ops->release_addr(csr_addr, csr->private); CSR1212_FREE(cache); return CSR1212_ENOMEM; } if (csr1212_attach_keyval_to_directory(csr->root_kv, cache->ext_rom) != CSR1212_SUCCESS) { csr1212_release_keyval(cache->ext_rom); csr->ops->release_addr(csr_addr, csr->private); CSR1212_FREE(cache); return CSR1212_ENOMEM; } cache->ext_rom->offset = csr_addr - CSR1212_REGISTER_SPACE_BASE; cache->ext_rom->value.leaf.len = -1; cache->ext_rom->value.leaf.data = cache->data; /* Add cache to tail of cache list */ cache->prev = csr->cache_tail; csr->cache_tail->next = cache; csr->cache_tail = cache; return CSR1212_SUCCESS; } static inline void csr1212_remove_cache(struct csr1212_csr *csr, struct csr1212_csr_rom_cache *cache) { if (csr->cache_head == cache) csr->cache_head = cache->next; if (csr->cache_tail == cache) csr->cache_tail = cache->prev; if (cache->prev) cache->prev->next = cache->next; if (cache->next) cache->next->prev = cache->prev; if (cache->ext_rom) { csr1212_detach_keyval_from_directory(csr->root_kv, cache->ext_rom); csr1212_release_keyval(cache->ext_rom); } CSR1212_FREE(cache); } static int csr1212_generate_layout_subdir(struct csr1212_keyval *dir, struct csr1212_keyval **layout_tail) { struct csr1212_dentry *dentry; struct csr1212_keyval *dkv; struct csr1212_keyval *last_extkey_spec = NULL; struct csr1212_keyval *last_extkey = NULL; int num_entries = 0; for (dentry = dir->value.directory.dentries_head; dentry; dentry = dentry->next) { for (dkv = dentry->kv; dkv; dkv = dkv->associate) { /* Special Case: Extended Key Specifier_ID */ if (dkv->key.id == CSR1212_KV_ID_EXTENDED_KEY_SPECIFIER_ID) { if (last_extkey_spec == NULL) { last_extkey_spec = dkv; } else if (dkv->value.immediate != last_extkey_spec->value.immediate) { last_extkey_spec = dkv; } else { continue; } /* Special Case: Extended Key */ } else if (dkv->key.id == CSR1212_KV_ID_EXTENDED_KEY) { if (last_extkey == NULL) { last_extkey = dkv; } else if (dkv->value.immediate != last_extkey->value.immediate) { last_extkey = dkv; } else { continue; } } num_entries += 1; switch(dkv->key.type) { default: case CSR1212_KV_TYPE_IMMEDIATE: case CSR1212_KV_TYPE_CSR_OFFSET: break; case CSR1212_KV_TYPE_LEAF: case CSR1212_KV_TYPE_DIRECTORY: /* Remove from list */ if (dkv->prev && (dkv->prev->next == dkv)) dkv->prev->next = dkv->next; if (dkv->next && (dkv->next->prev == dkv)) dkv->next->prev = dkv->prev; //if (dkv == *layout_tail) // *layout_tail = dkv->prev; /* Special case: Extended ROM leafs */ if (dkv->key.id == CSR1212_KV_ID_EXTENDED_ROM) { dkv->value.leaf.len = -1; /* Don't add Extended ROM leafs in the layout list, * they are handled differently. */ break; } /* Add to tail of list */ dkv->next = NULL; dkv->prev = *layout_tail; (*layout_tail)->next = dkv; *layout_tail = dkv; break; } } } return num_entries; } size_t csr1212_generate_layout_order(struct csr1212_keyval *kv) { struct csr1212_keyval *ltail = kv; size_t agg_size = 0; while(kv) { switch(kv->key.type) { case CSR1212_KV_TYPE_LEAF: /* Add 1 quadlet for crc/len field */ agg_size += kv->value.leaf.len + 1; break; case CSR1212_KV_TYPE_DIRECTORY: kv->value.directory.len = csr1212_generate_layout_subdir(kv, <ail); /* Add 1 quadlet for crc/len field */ agg_size += kv->value.directory.len + 1; break; } kv = kv->next; } return quads_to_bytes(agg_size); } struct csr1212_keyval *csr1212_generate_positions(struct csr1212_csr_rom_cache *cache, struct csr1212_keyval *start_kv, int start_pos) { struct csr1212_keyval *kv = start_kv; struct csr1212_keyval *okv = start_kv; int pos = start_pos; int kv_len = 0, okv_len = 0; cache->layout_head = kv; while(kv && pos < cache->size) { /* Special case: Extended ROM leafs */ if (kv->key.id != CSR1212_KV_ID_EXTENDED_ROM) { kv->offset = cache->offset + pos; } switch(kv->key.type) { case CSR1212_KV_TYPE_LEAF: kv_len = kv->value.leaf.len; break; case CSR1212_KV_TYPE_DIRECTORY: kv_len = kv->value.directory.len; break; default: /* Should never get here */ break; } pos += quads_to_bytes(kv_len + 1); if (pos <= cache->size) { okv = kv; okv_len = kv_len; kv = kv->next; } } cache->layout_tail = okv; cache->len = (okv->offset - cache->offset) + quads_to_bytes(okv_len + 1); return kv; } static void csr1212_generate_tree_subdir(struct csr1212_keyval *dir, u_int32_t *data_buffer) { struct csr1212_dentry *dentry; struct csr1212_keyval *last_extkey_spec = NULL; struct csr1212_keyval *last_extkey = NULL; int index = 0; for (dentry = dir->value.directory.dentries_head; dentry; dentry = dentry->next) { struct csr1212_keyval *a; for (a = dentry->kv; a; a = a->associate) { u_int32_t value = 0; /* Special Case: Extended Key Specifier_ID */ if (a->key.id == CSR1212_KV_ID_EXTENDED_KEY_SPECIFIER_ID) { if (last_extkey_spec == NULL) { last_extkey_spec = a; } else if (a->value.immediate != last_extkey_spec->value.immediate) { last_extkey_spec = a; } else { continue; } /* Special Case: Extended Key */ } else if (a->key.id == CSR1212_KV_ID_EXTENDED_KEY) { if (last_extkey == NULL) { last_extkey = a; } else if (a->value.immediate != last_extkey->value.immediate) { last_extkey = a; } else { continue; } } switch(a->key.type) { case CSR1212_KV_TYPE_IMMEDIATE: value = a->value.immediate; break; case CSR1212_KV_TYPE_CSR_OFFSET: value = a->value.csr_offset; break; case CSR1212_KV_TYPE_LEAF: value = a->offset; value -= dir->offset + quads_to_bytes(1+index); value = bytes_to_quads(value); break; case CSR1212_KV_TYPE_DIRECTORY: value = a->offset; value -= dir->offset + quads_to_bytes(1+index); value = bytes_to_quads(value); break; default: /* Should never get here */ break; /* GDB breakpoint */ } value |= (a->key.id & CSR1212_KV_KEY_ID_MASK) << CSR1212_KV_KEY_SHIFT; value |= (a->key.type & CSR1212_KV_KEY_TYPE_MASK) << (CSR1212_KV_KEY_SHIFT + CSR1212_KV_KEY_TYPE_SHIFT); data_buffer[index] = CSR1212_CPU_TO_BE32(value); index++; } } } void csr1212_fill_cache(struct csr1212_csr_rom_cache *cache) { struct csr1212_keyval *kv, *nkv; struct csr1212_keyval_img *kvi; for (kv = cache->layout_head; kv != cache->layout_tail->next; kv = nkv) { kvi = (struct csr1212_keyval_img *) (cache->data + bytes_to_quads(kv->offset - cache->offset)); switch(kv->key.type) { default: case CSR1212_KV_TYPE_IMMEDIATE: case CSR1212_KV_TYPE_CSR_OFFSET: /* Should never get here */ break; /* GDB breakpoint */ case CSR1212_KV_TYPE_LEAF: /* Don't copy over Extended ROM areas, they are * already filled out! */ if (kv->key.id != CSR1212_KV_ID_EXTENDED_ROM) memcpy(kvi->data, kv->value.leaf.data, quads_to_bytes(kv->value.leaf.len)); kvi->length = CSR1212_CPU_TO_BE16(kv->value.leaf.len); kvi->crc = csr1212_crc16(kvi->data, kv->value.leaf.len); break; case CSR1212_KV_TYPE_DIRECTORY: csr1212_generate_tree_subdir(kv, kvi->data); kvi->length = CSR1212_CPU_TO_BE16(kv->value.directory.len); kvi->crc = csr1212_crc16(kvi->data, kv->value.directory.len); break; } nkv = kv->next; if (kv->prev) kv->prev->next = NULL; if (kv->next) kv->next->prev = NULL; kv->prev = NULL; kv->next = NULL; } } int csr1212_generate_csr_image(struct csr1212_csr *csr) { struct csr1212_bus_info_block_img *bi; struct csr1212_csr_rom_cache *cache; struct csr1212_keyval *kv; size_t agg_size; int ret; int init_offset; if (!csr) return CSR1212_EINVAL; cache = csr->cache_head; bi = (struct csr1212_bus_info_block_img*)cache->data; bi->length = bytes_to_quads(csr->bus_info_len) - 1; bi->crc_length = bi->length; bi->crc = csr1212_crc16(bi->data, bi->crc_length); csr->root_kv->next = NULL; csr->root_kv->prev = NULL; agg_size = csr1212_generate_layout_order(csr->root_kv); init_offset = csr->bus_info_len; for (kv = csr->root_kv, cache = csr->cache_head; kv; cache = cache->next) { if (!cache) { /* Estimate approximate number of additional cache * regions needed (it assumes that the cache holding * the first 1K Config ROM space always exists). */ int est_c = agg_size / (CSR1212_EXTENDED_ROM_SIZE - (2 * sizeof(u_int32_t))) + 1; /* Add additional cache regions, extras will be * removed later */ for (; est_c; est_c--) { ret = csr1212_append_new_cache(csr, CSR1212_EXTENDED_ROM_SIZE); if (ret != CSR1212_SUCCESS) return ret; } /* Need to re-layout for additional cache regions */ agg_size = csr1212_generate_layout_order(csr->root_kv); kv = csr->root_kv; cache = csr->cache_head; init_offset = csr->bus_info_len; } kv = csr1212_generate_positions(cache, kv, init_offset); agg_size -= cache->len; init_offset = sizeof(u_int32_t); } /* Remove unused, excess cache regions */ while (cache) { struct csr1212_csr_rom_cache *oc = cache; cache = cache->next; csr1212_remove_cache(csr, oc); } /* Go through the list backward so that when done, the correct CRC * will be calculated for the Extended ROM areas. */ for(cache = csr->cache_tail; cache; cache = cache->prev) { /* Only Extended ROM caches should have this set. */ if (cache->ext_rom) { int leaf_size; /* Make sure the Extended ROM leaf is a multiple of * max_rom in size. */ if (csr->max_rom < 1) return CSR1212_EINVAL; leaf_size = (cache->len + (csr->max_rom - 1)) & ~(csr->max_rom - 1); /* Zero out the unused ROM region */ memset(cache->data + bytes_to_quads(cache->len), 0x00, leaf_size - cache->len); /* Subtract leaf header */ leaf_size -= sizeof(u_int32_t); /* Update the Extended ROM leaf length */ cache->ext_rom->value.leaf.len = bytes_to_quads(leaf_size); } else { /* Zero out the unused ROM region */ memset(cache->data + bytes_to_quads(cache->len), 0x00, cache->size - cache->len); } /* Copy the data into the cache buffer */ csr1212_fill_cache(cache); if (cache != csr->cache_head) { /* Set the length and CRC of the extended ROM. */ struct csr1212_keyval_img *kvi = (struct csr1212_keyval_img*)cache->data; kvi->length = CSR1212_CPU_TO_BE16(bytes_to_quads(cache->len) - 1); kvi->crc = csr1212_crc16(kvi->data, bytes_to_quads(cache->len) - 1); } } return CSR1212_SUCCESS; } int csr1212_read(struct csr1212_csr *csr, u_int32_t offset, void *buffer, u_int32_t len) { struct csr1212_csr_rom_cache *cache; for (cache = csr->cache_head; cache; cache = cache->next) { if (offset >= cache->offset && (offset + len) <= (cache->offset + cache->size)) { memcpy(buffer, &cache->data[bytes_to_quads(offset - cache->offset)], len); return CSR1212_SUCCESS; } } return CSR1212_ENOENT; } /* Parse a chunk of data as a Config ROM */ static int csr1212_parse_bus_info_block(struct csr1212_csr *csr) { struct csr1212_bus_info_block_img *bi; struct csr1212_cache_region *cr; int i; int ret; /* IEEE 1212 says that the entire bus info block should be readable in * a single transaction regardless of the max_rom value. * Unfortunately, many IEEE 1394 devices do not abide by that, so the * bus info block will be read 1 quadlet at a time. The rest of the * ConfigROM will be read according to the max_rom field. */ for (i = 0; i < csr->bus_info_len; i += sizeof(csr1212_quad_t)) { ret = csr->ops->bus_read(csr, CSR1212_CONFIG_ROM_SPACE_BASE + i, sizeof(csr1212_quad_t), &csr->cache_head->data[bytes_to_quads(i)], csr->private); if (ret != CSR1212_SUCCESS) return ret; } bi = (struct csr1212_bus_info_block_img*)csr->cache_head->data; csr->crc_len = quads_to_bytes(bi->crc_length); /* IEEE 1212 recommends that crc_len be equal to bus_info_len, but that is not * always the case, so read the rest of the crc area 1 quadlet at a time. */ for (i = csr->bus_info_len; i <= csr->crc_len; i += sizeof(csr1212_quad_t)) { ret = csr->ops->bus_read(csr, CSR1212_CONFIG_ROM_SPACE_BASE + i, sizeof(csr1212_quad_t), &csr->cache_head->data[bytes_to_quads(i)], csr->private); if (ret != CSR1212_SUCCESS) return ret; } if (bytes_to_quads(csr->bus_info_len - sizeof(csr1212_quad_t)) != bi->length) return CSR1212_EINVAL; #if 0 /* Apparently there are too many differnt wrong implementations of the * CRC algorithm that verifying them is moot. */ if ((csr1212_crc16(bi->data, bi->crc_length) != bi->crc) && (csr1212_msft_crc16(bi->data, bi->crc_length) != bi->crc)) return CSR1212_EINVAL; #endif cr = CSR1212_MALLOC(sizeof(*cr)); if (!cr) return CSR1212_ENOMEM; cr->next = NULL; cr->prev = NULL; cr->offset_start = 0; cr->offset_end = csr->crc_len + 4; csr->cache_head->filled_head = cr; csr->cache_head->filled_tail = cr; return CSR1212_SUCCESS; } static int csr1212_parse_dir_entry(struct csr1212_keyval *dir, csr1212_quad_t ki, u_int32_t kv_pos) { int ret = CSR1212_SUCCESS; struct csr1212_keyval *k = NULL; u_int32_t offset; switch(CSR1212_KV_KEY_TYPE(ki)) { case CSR1212_KV_TYPE_IMMEDIATE: k = csr1212_new_immediate(CSR1212_KV_KEY_ID(ki), CSR1212_KV_VAL(ki)); if (!k) { ret = CSR1212_ENOMEM; goto fail; } k->refcnt = 0; /* Don't keep local reference when parsing. */ break; case CSR1212_KV_TYPE_CSR_OFFSET: k = csr1212_new_csr_offset(CSR1212_KV_KEY_ID(ki), CSR1212_KV_VAL(ki)); if (!k) { ret = CSR1212_ENOMEM; goto fail; } k->refcnt = 0; /* Don't keep local reference when parsing. */ break; default: /* Compute the offset from 0xffff f000 0000. */ offset = quads_to_bytes(CSR1212_KV_VAL(ki)) + kv_pos; if (offset == kv_pos) { /* Uh-oh. Can't have a relative offset of 0 for Leaves * or Directories. The Config ROM image is most likely * messed up, so we'll just abort here. */ ret = CSR1212_EIO; goto fail; } k = csr1212_find_keyval_offset(dir, offset); if (k) break; /* Found it. */ if (CSR1212_KV_KEY_TYPE(ki) == CSR1212_KV_TYPE_DIRECTORY) { k = csr1212_new_directory(CSR1212_KV_KEY_ID(ki)); } else { k = csr1212_new_leaf(CSR1212_KV_KEY_ID(ki), NULL, 0); } if (!k) { ret = CSR1212_ENOMEM; goto fail; } k->refcnt = 0; /* Don't keep local reference when parsing. */ k->valid = 0; /* Contents not read yet so it's not valid. */ k->offset = offset; k->prev = dir; k->next = dir->next; dir->next->prev = k; dir->next = k; } ret = csr1212_attach_keyval_to_directory(dir, k); fail: if (ret != CSR1212_SUCCESS) { if (k) free_keyval(k); } return ret; } int csr1212_parse_keyval(struct csr1212_keyval *kv, struct csr1212_csr_rom_cache *cache) { struct csr1212_keyval_img *kvi; int i; int ret = CSR1212_SUCCESS; int kvi_len; kvi = (struct csr1212_keyval_img*)&cache->data[bytes_to_quads(kv->offset - cache->offset)]; kvi_len = CSR1212_BE16_TO_CPU(kvi->length); #if 0 /* Apparently there are too many differnt wrong implementations of the * CRC algorithm that verifying them is moot. */ if ((csr1212_crc16(kvi->data, kvi_len) != kvi->crc) && (csr1212_msft_crc16(kvi->data, kvi_len) != kvi->crc)) { ret = CSR1212_EINVAL; goto fail; } #endif switch(kv->key.type) { case CSR1212_KV_TYPE_DIRECTORY: for (i = 0; i < kvi_len; i++) { csr1212_quad_t ki = kvi->data[i]; /* Some devices put null entries in their unit * directories. If we come across such an entry, * then skip it. */ if (ki == 0x0) continue; ret = csr1212_parse_dir_entry(kv, ki, (kv->offset + quads_to_bytes(i + 1))); } kv->value.directory.len = kvi_len; break; case CSR1212_KV_TYPE_LEAF: if (kv->key.id != CSR1212_KV_ID_EXTENDED_ROM) { kv->value.leaf.data = CSR1212_MALLOC(quads_to_bytes(kvi_len)); if (!kv->value.leaf.data) { ret = CSR1212_ENOMEM; goto fail; } kv->value.leaf.len = kvi_len; memcpy(kv->value.leaf.data, kvi->data, quads_to_bytes(kvi_len)); } break; } kv->valid = 1; fail: return ret; } int _csr1212_read_keyval(struct csr1212_csr *csr, struct csr1212_keyval *kv) { struct csr1212_cache_region *cr, *ncr, *newcr = NULL; struct csr1212_keyval_img *kvi = NULL; struct csr1212_csr_rom_cache *cache; int cache_index; u_int64_t addr; u_int32_t *cache_ptr; u_int16_t kv_len = 0; if (!csr || !kv || csr->max_rom < 1) return CSR1212_EINVAL; /* First find which cache the data should be in (or go in if not read * yet). */ for (cache = csr->cache_head; cache; cache = cache->next) { if (kv->offset >= cache->offset && kv->offset < (cache->offset + cache->size)) break; } if (!cache) { csr1212_quad_t q; u_int32_t cache_size; /* Only create a new cache for Extended ROM leaves. */ if (kv->key.id != CSR1212_KV_ID_EXTENDED_ROM) return CSR1212_EINVAL; if (csr->ops->bus_read(csr, CSR1212_REGISTER_SPACE_BASE + kv->offset, sizeof(csr1212_quad_t), &q, csr->private)) { return CSR1212_EIO; } kv->value.leaf.len = CSR1212_BE32_TO_CPU(q) >> 16; cache_size = (quads_to_bytes(kv->value.leaf.len + 1) + (csr->max_rom - 1)) & ~(csr->max_rom - 1); cache = csr1212_rom_cache_malloc(kv->offset, cache_size); if (!cache) return CSR1212_ENOMEM; kv->value.leaf.data = &cache->data[1]; csr->cache_tail->next = cache; cache->prev = csr->cache_tail; cache->next = NULL; csr->cache_tail = cache; cache->filled_head = CSR1212_MALLOC(sizeof(*cache->filled_head)); if (!cache->filled_head) { return CSR1212_ENOMEM; } cache->filled_head->offset_start = 0; cache->filled_head->offset_end = sizeof(csr1212_quad_t); cache->filled_tail = cache->filled_head; cache->filled_head->next = NULL; cache->filled_head->prev = NULL; cache->data[0] = q; /* Don't read the entire extended ROM now. Pieces of it will * be read when entries inside it are read. */ return csr1212_parse_keyval(kv, cache); } cache_index = kv->offset - cache->offset; /* Now seach read portions of the cache to see if it is there. */ for (cr = cache->filled_head; cr; cr = cr->next) { if (cache_index < cr->offset_start) { newcr = CSR1212_MALLOC(sizeof(*newcr)); if (!newcr) return CSR1212_ENOMEM; newcr->offset_start = cache_index & ~(csr->max_rom - 1); newcr->offset_end = newcr->offset_start; newcr->next = cr; newcr->prev = cr->prev; cr->prev = newcr; cr = newcr; break; } else if ((cache_index >= cr->offset_start) && (cache_index < cr->offset_end)) { kvi = (struct csr1212_keyval_img*) (&cache->data[bytes_to_quads(cache_index)]); kv_len = quads_to_bytes(CSR1212_BE16_TO_CPU(kvi->length) + 1); break; } else if (cache_index == cr->offset_end) break; } if (!cr) { cr = cache->filled_tail; newcr = CSR1212_MALLOC(sizeof(*newcr)); if (!newcr) return CSR1212_ENOMEM; newcr->offset_start = cache_index & ~(csr->max_rom - 1); newcr->offset_end = newcr->offset_start; newcr->prev = cr; newcr->next = cr->next; cr->next = newcr; cr = newcr; cache->filled_tail = newcr; } while(!kvi || cr->offset_end < cache_index + kv_len) { cache_ptr = &cache->data[bytes_to_quads(cr->offset_end & ~(csr->max_rom - 1))]; addr = (CSR1212_CSR_ARCH_REG_SPACE_BASE + cache->offset + cr->offset_end) & ~(csr->max_rom - 1); if (csr->ops->bus_read(csr, addr, csr->max_rom, cache_ptr, csr->private)) { if (csr->max_rom == 4) /* We've got problems! */ return CSR1212_EIO; /* Apperently the max_rom value was a lie, set it to * do quadlet reads and try again. */ csr->max_rom = 4; continue; } cr->offset_end += csr->max_rom - (cr->offset_end & (csr->max_rom - 1)); if (!kvi && (cr->offset_end > cache_index)) { kvi = (struct csr1212_keyval_img*) (&cache->data[bytes_to_quads(cache_index)]); kv_len = quads_to_bytes(CSR1212_BE16_TO_CPU(kvi->length) + 1); } if ((kv_len + (kv->offset - cache->offset)) > cache->size) { /* The Leaf or Directory claims its length extends * beyond the ConfigROM image region and thus beyond the * end of our cache region. Therefore, we abort now * rather than seg faulting later. */ return CSR1212_EIO; } ncr = cr->next; if (ncr && (cr->offset_end >= ncr->offset_start)) { /* consolidate region entries */ ncr->offset_start = cr->offset_start; if (cr->prev) cr->prev->next = cr->next; ncr->prev = cr->prev; if (cache->filled_head == cr) cache->filled_head = ncr; CSR1212_FREE(cr); cr = ncr; } } return csr1212_parse_keyval(kv, cache); } int csr1212_parse_csr(struct csr1212_csr *csr) { static const int mr_map[] = { 4, 64, 1024, 0 }; struct csr1212_dentry *dentry; int ret; if (!csr || !csr->ops || !csr->ops->bus_read) return CSR1212_EINVAL; ret = csr1212_parse_bus_info_block(csr); if (ret != CSR1212_SUCCESS) return ret; if (!csr->ops->get_max_rom) csr->max_rom = mr_map[0]; /* default value */ else { int i = csr->ops->get_max_rom(csr->bus_info_data, csr->private); if (i & ~0x3) return CSR1212_EINVAL; csr->max_rom = mr_map[i]; } csr->cache_head->layout_head = csr->root_kv; csr->cache_head->layout_tail = csr->root_kv; csr->root_kv->offset = (CSR1212_CONFIG_ROM_SPACE_BASE & 0xffff) + csr->bus_info_len; csr->root_kv->valid = 0; csr->root_kv->next = csr->root_kv; csr->root_kv->prev = csr->root_kv; csr1212_get_keyval(csr, csr->root_kv); /* Scan through the Root directory finding all extended ROM regions * and make cache regions for them */ for (dentry = csr->root_kv->value.directory.dentries_head; dentry; dentry = dentry->next) { if (dentry->kv->key.id == CSR1212_KV_ID_EXTENDED_ROM) { csr1212_get_keyval(csr, dentry->kv); if (ret != CSR1212_SUCCESS) return ret; } } return CSR1212_SUCCESS; }