summaryrefslogtreecommitdiff
path: root/fs/pipe.c
AgeCommit message (Collapse)AuthorFilesLines
2020-04-02mm: kmem: rename memcg_kmem_(un)charge() into memcg_kmem_(un)charge_page()Roman Gushchin1-1/+1
Rename (__)memcg_kmem_(un)charge() into (__)memcg_kmem_(un)charge_page() to better reflect what they are actually doing: 1) call __memcg_kmem_(un)charge_memcg() to actually charge or uncharge the current memcg 2) set or clear the PageKmemcg flag Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Link: http://lkml.kernel.org/r/20200109202659.752357-4-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-02-18pipe: make sure to wake up everybody when the last reader/writer closesLinus Torvalds1-8/+10
Andrei Vagin reported that commit 0ddad21d3e99 ("pipe: use exclusive waits when reading or writing") broke one of the CRIU tests. He even has a trivial reproducer: #include <unistd.h> #include <sys/types.h> #include <sys/wait.h> int main() { int p[2]; pid_t p1, p2; int status; if (pipe(p) == -1) return 1; p1 = fork(); if (p1 == 0) { close(p[1]); read(p[0], &status, sizeof(status)); return 0; } p2 = fork(); if (p2 == 0) { close(p[1]); read(p[0], &status, sizeof(status)); return 0; } sleep(1); close(p[1]); wait(&status); wait(&status); return 0; } and the problem - once he points it out - is obvious. We use these nice exclusive waits, but when the last writer goes away, it then needs to wake up _every_ reader (and conversely, the last reader disappearing needs to wake every writer, of course). In fact, when going through this, we had several small oddities around how to wake things. We did in fact wake every reader when we changed the size of the pipe buffers. But that's entirely pointless, since that just acts as a possible source of new space - no new data to read. And when we change the size of the buffer, we don't need to wake all writers even when we add space - that case acts just as if somebody made space by reading, and any writer that finds itself not filling it up entirely will wake the next one. On the other hand, on the exit path, we tried to limit the wakeups with the proper poll keys etc, which is entirely pointless, because at that point we obviously need to wake up everybody. So don't do that: just wake up everybody - but only do that if the counts changed to zero. So fix those non-IO wakeups to be more proper: space change doesn't add any new data, but it might make room for writers, so it wakes up a writer. And the actual changes to reader/writer counts should wake up everybody, since everybody is affected (ie readers will all see EOF if the writers have gone away, and writers will all get EPIPE if all readers have gone away). Fixes: 0ddad21d3e99 ("pipe: use exclusive waits when reading or writing") Reported-and-tested-by: Andrei Vagin <avagin@gmail.com> Cc: Josh Triplett <josh@joshtriplett.org> Cc: Matthew Wilcox <willy@infradead.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-02-08pipe: use exclusive waits when reading or writingLinus Torvalds1-23/+44
This makes the pipe code use separate wait-queues and exclusive waiting for readers and writers, avoiding a nasty thundering herd problem when there are lots of readers waiting for data on a pipe (or, less commonly, lots of writers waiting for a pipe to have space). While this isn't a common occurrence in the traditional "use a pipe as a data transport" case, where you typically only have a single reader and a single writer process, there is one common special case: using a pipe as a source of "locking tokens" rather than for data communication. In particular, the GNU make jobserver code ends up using a pipe as a way to limit parallelism, where each job consumes a token by reading a byte from the jobserver pipe, and releases the token by writing a byte back to the pipe. This pattern is fairly traditional on Unix, and works very well, but will waste a lot of time waking up a lot of processes when only a single reader needs to be woken up when a writer releases a new token. A simplified test-case of just this pipe interaction is to create 64 processes, and then pass a single token around between them (this test-case also intentionally passes another token that gets ignored to test the "wake up next" logic too, in case anybody wonders about it): #include <unistd.h> int main(int argc, char **argv) { int fd[2], counters[2]; pipe(fd); counters[0] = 0; counters[1] = -1; write(fd[1], counters, sizeof(counters)); /* 64 processes */ fork(); fork(); fork(); fork(); fork(); fork(); do { int i; read(fd[0], &i, sizeof(i)); if (i < 0) continue; counters[0] = i+1; write(fd[1], counters, (1+(i & 1)) *sizeof(int)); } while (counters[0] < 1000000); return 0; } and in a perfect world, passing that token around should only cause one context switch per transfer, when the writer of a token causes a directed wakeup of just a single reader. But with the "writer wakes all readers" model we traditionally had, on my test box the above case causes more than an order of magnitude more scheduling: instead of the expected ~1M context switches, "perf stat" shows 231,852.37 msec task-clock # 15.857 CPUs utilized 11,250,961 context-switches # 0.049 M/sec 616,304 cpu-migrations # 0.003 M/sec 1,648 page-faults # 0.007 K/sec 1,097,903,998,514 cycles # 4.735 GHz 120,781,778,352 instructions # 0.11 insn per cycle 27,997,056,043 branches # 120.754 M/sec 283,581,233 branch-misses # 1.01% of all branches 14.621273891 seconds time elapsed 0.018243000 seconds user 3.611468000 seconds sys before this commit. After this commit, I get 5,229.55 msec task-clock # 3.072 CPUs utilized 1,212,233 context-switches # 0.232 M/sec 103,951 cpu-migrations # 0.020 M/sec 1,328 page-faults # 0.254 K/sec 21,307,456,166 cycles # 4.074 GHz 12,947,819,999 instructions # 0.61 insn per cycle 2,881,985,678 branches # 551.096 M/sec 64,267,015 branch-misses # 2.23% of all branches 1.702148350 seconds time elapsed 0.004868000 seconds user 0.110786000 seconds sys instead. Much better. [ Note! This kernel improvement seems to be very good at triggering a race condition in the make jobserver (in GNU make 4.2.1) for me. It's a long known bug that was fixed back in June 2017 by GNU make commit b552b0525198 ("[SV 51159] Use a non-blocking read with pselect to avoid hangs."). But there wasn't a new release of GNU make until 4.3 on Jan 19 2020, so a number of distributions may still have the buggy version. Some have backported the fix to their 4.2.1 release, though, and even without the fix it's quite timing-dependent whether the bug actually is hit. ] Josh Triplett says: "I've been hammering on your pipe fix patch (switching to exclusive wait queues) for a month or so, on several different systems, and I've run into no issues with it. The patch *substantially* improves parallel build times on large (~100 CPU) systems, both with parallel make and with other things that use make's pipe-based jobserver. All current distributions (including stable and long-term stable distributions) have versions of GNU make that no longer have the jobserver bug" Tested-by: Josh Triplett <josh@joshtriplett.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-12-22pipe: fix empty pipe check in pipe_write()Jan Stancek1-1/+1
LTP pipeio_1 test is hanging with v5.5-rc2-385-gb8e382a185eb, with read side observing empty pipe and sleeping and write side running out of space and then sleeping as well. In this scenario there are 5 writers and 1 reader. Problem is that after pipe_write() reacquires pipe lock, it re-checks for empty pipe with potentially stale 'head' and doesn't wake up read side anymore. pipe->tail can advance beyond 'head', because there are multiple writers. Use pipe->head for empty pipe check after reacquiring lock to observe current state. Testing: With patch, LTP pipeio_1 ran successfully in loop for 1 hour. Without patch it hanged within a minute. Fixes: 1b6b26ae7053 ("pipe: fix and clarify pipe write wakeup logic") Reported-by: Rachel Sibley <rasibley@redhat.com> Signed-off-by: Jan Stancek <jstancek@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-12-11pipe: simplify signal handling in pipe_read() and add commentsLinus Torvalds1-7/+29
There's no need to separately check for signals while inside the locked region, since we're going to do "wait_event_interruptible()" right afterwards anyway, and the error handling is much simpler there. The check for whether we had already read anything was also redundant, since we no longer do the odd merging of reads when there are pending writers. But perhaps more importantly, this adds commentary about why we still need to wake up possible writers even though we didn't read any data, and why we can skip all the finishing touches now if we get a signal (or had a signal pending) while waiting for more data. [ This is a split-out cleanup from my "make pipe IO use exclusive wait queues" thing, which I can't apply because it triggers a nasty bug in the GNU make jobserver - Linus ] Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-12-07pipe: don't use 'pipe_wait() for basic pipe IOLinus Torvalds1-3/+27
pipe_wait() may be simple, but since it relies on the pipe lock, it means that we have to do the wakeup while holding the lock. That's unfortunate, because the very first thing the waked entity will want to do is to get the pipe lock for itself. So get rid of the pipe_wait() usage by simply releasing the pipe lock, doing the wakeup (if required) and then using wait_event_interruptible() to wait on the right condition instead. wait_event_interruptible() handles races on its own by comparing the wakeup condition before and after adding itself to the wait queue, so you can use an optimistic unlocked condition for it. Cc: David Howells <dhowells@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-12-07pipe: remove 'waiting_writers' merging logicLinus Torvalds1-14/+5
This code is ancient, and goes back to when we only had a single page for the pipe buffers. The exact history is hidden in the mists of time (ie "before git", and in fact predates the BK repository too). At that long-ago point in time, it actually helped to try to merge big back-and-forth pipe reads and writes, and not limit pipe reads to the single pipe buffer in length just because that was all we had at a time. However, since then we've expanded the pipe buffers to multiple pages, and this logic really doesn't seem to make sense. And a lot of it is somewhat questionable (ie "hmm, the user asked for a non-blocking read, but we see that there's a writer pending, so let's wait anyway to get the extra data that the writer will have"). But more importantly, it makes the "go to sleep" logic much less obvious, and considering the wakeup issues we've had, I want to make for less of those kinds of things. Cc: David Howells <dhowells@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-12-07pipe: fix and clarify pipe read wakeup logicLinus Torvalds1-13/+18
This is the read side version of the previous commit: it simplifies the logic to only wake up waiting writers when necessary, and makes sure to use a synchronous wakeup. This time not so much for GNU make jobserver reasons (that pipe never fills up), but simply to get the writer going quickly again. A bit less verbose commentary this time, if only because I assume that the write side commentary isn't going to be ignored if you touch this code. Cc: David Howells <dhowells@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-12-07pipe: fix and clarify pipe write wakeup logicLinus Torvalds1-18/+41
The pipe rework ends up having been extra painful, partly becaused of actual bugs with ordering and caching of the pipe state, but also because of subtle performance issues. In particular, the pipe rework caused the kernel build to inexplicably slow down. The reason turns out to be that the GNU make jobserver (which limits the parallelism of the build) uses a pipe to implement a "token" system: a parallel submake will read a character from the pipe to get the job token before starting a new job, and will write a character back to the pipe when it is done. The overall job limit is thus easily controlled by just writing the appropriate number of initial token characters into the pipe. But to work well, that really means that the old behavior of write wakeups being synchronous (WF_SYNC) is very important - when the pipe writer wakes up a reader, we want the reader to actually get scheduled immediately. Otherwise you lose the parallelism of the build. The pipe rework lost that synchronous wakeup on write, and we had clearly all forgotten the reasons and rules for it. This rewrites the pipe write wakeup logic to do the required Wsync wakeups, but also clarifies the logic and avoids extraneous wakeups. It also ends up addign a number of comments about what oit does and why, so that we hopefully don't end up forgetting about this next time we change this code. Cc: David Howells <dhowells@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-12-07pipe: fix poll/select race introduced by the pipe reworkLinus Torvalds1-3/+15
The kernel wait queues have a basic rule to them: you add yourself to the wait-queue first, and then you check the things that you're going to wait on. That avoids the races with the event you're waiting for. The same goes for poll/select logic: the "poll_wait()" goes first, and then you check the things you're polling for. Of course, if you use locking, the ordering doesn't matter since the lock will serialize with anything that changes the state you're looking at. That's not the case here, though. So move the poll_wait() first in pipe_poll(), before you start looking at the pipe state. Fixes: 8cefc107ca54 ("pipe: Use head and tail pointers for the ring, not cursor and length") Cc: David Howells <dhowells@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-12-05Merge branch 'pipe-rework' (patches from David Howells)Linus Torvalds1-8/+7
Merge two fixes for the pipe rework from David Howells: "Here are a couple of patches to fix bugs syzbot found in the pipe changes: - An assertion check will sometimes trip when polling a pipe because the ring size and indices used are approximate and may be being changed simultaneously. An equivalent approximate calculation was done previously, but without the assertion check, so I've just dropped the check. To make it accurate, the pipe mutex would need to be taken or the spin lock could be used - but usage of the spinlock would need to be rolled out into splice, iov_iter and other places for that. - The index mask and the max_usage values cannot be cached across pipe_wait() as F_SETPIPE_SZ could have been called during the wait. This can cause pipe_write() to break" * pipe-rework: pipe: Fix missing mask update after pipe_wait() pipe: Remove assertion from pipe_poll()
2019-12-05pipe: Fix missing mask update after pipe_wait()David Howells1-6/+6
Fix pipe_write() to not cache the ring index mask and max_usage as their values are invalidated by calling pipe_wait() because the latter function drops the pipe lock, thereby allowing F_SETPIPE_SZ change them. Without this, pipe_write() may subsequently miscalculate the array indices and pipe fullness, leading to an oops like the following: BUG: KASAN: slab-out-of-bounds in pipe_write+0xc25/0xe10 fs/pipe.c:481 Write of size 8 at addr ffff8880771167a8 by task syz-executor.3/7987 ... CPU: 1 PID: 7987 Comm: syz-executor.3 Not tainted 5.4.0-rc2-syzkaller #0 ... Call Trace: pipe_write+0xc25/0xe10 fs/pipe.c:481 call_write_iter include/linux/fs.h:1895 [inline] new_sync_write+0x3fd/0x7e0 fs/read_write.c:483 __vfs_write+0x94/0x110 fs/read_write.c:496 vfs_write+0x18a/0x520 fs/read_write.c:558 ksys_write+0x105/0x220 fs/read_write.c:611 __do_sys_write fs/read_write.c:623 [inline] __se_sys_write fs/read_write.c:620 [inline] __x64_sys_write+0x6e/0xb0 fs/read_write.c:620 do_syscall_64+0xca/0x5d0 arch/x86/entry/common.c:290 entry_SYSCALL_64_after_hwframe+0x49/0xbe This is not a problem for pipe_read() as the mask is recalculated on each pass of the loop, after pipe_wait() has been called. Fixes: 8cefc107ca54 ("pipe: Use head and tail pointers for the ring, not cursor and length") Reported-by: syzbot+838eb0878ffd51f27c41@syzkaller.appspotmail.com Signed-off-by: David Howells <dhowells@redhat.com> Cc: Eric Biggers <ebiggers@kernel.org> [ Changed it to use a temporary variable 'mask' to avoid long lines -Linus ] Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-12-05pipe: Remove assertion from pipe_poll()David Howells1-2/+1
An assertion check was added to pipe_poll() to make sure that the ring occupancy isn't seen to overflow the ring size. However, since no locks are held when the three values are read, it is possible for F_SETPIPE_SZ to intervene and muck up the calculation, thereby causing the oops. Fix this by simply removing the assertion and accepting that the calculation might be approximate. Note that the previous code also had a similar issue, though there was no assertion check, since the occupancy counter and the ring size were not read with a lock held, so it's possible that the poll check might have malfunctioned then too. Also wake up all the waiters so that they can reissue their checks if there was a competing read or write. Fixes: 8cefc107ca54 ("pipe: Use head and tail pointers for the ring, not cursor and length") Reported-by: syzbot+d37abaade33a934f16f2@syzkaller.appspotmail.com Signed-off-by: David Howells <dhowells@redhat.com> cc: Eric Biggers <ebiggers@kernel.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-11-30Merge tag 'notifications-pipe-prep-20191115' of ↵Linus Torvalds1-93/+139
git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs Pull pipe rework from David Howells: "This is my set of preparatory patches for building a general notification queue on top of pipes. It makes a number of significant changes: - It removes the nr_exclusive argument from __wake_up_sync_key() as this is always 1. This prepares for the next step: - Adds wake_up_interruptible_sync_poll_locked() so that poll can be woken up from a function that's holding the poll waitqueue spinlock. - Change the pipe buffer ring to be managed in terms of unbounded head and tail indices rather than bounded index and length. This means that reading the pipe only needs to modify one index, not two. - A selection of helper functions are provided to query the state of the pipe buffer, plus a couple to apply updates to the pipe indices. - The pipe ring is allowed to have kernel-reserved slots. This allows many notification messages to be spliced in by the kernel without allowing userspace to pin too many pages if it writes to the same pipe. - Advance the head and tail indices inside the pipe waitqueue lock and use wake_up_interruptible_sync_poll_locked() to poke poll without having to take the lock twice. - Rearrange pipe_write() to preallocate the buffer it is going to write into and then drop the spinlock. This allows kernel notifications to then be added the ring whilst it is filling the buffer it allocated. The read side is stalled because the pipe mutex is still held. - Don't wake up readers on a pipe if there was already data in it when we added more. - Don't wake up writers on a pipe if the ring wasn't full before we removed a buffer" * tag 'notifications-pipe-prep-20191115' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs: pipe: Remove sync on wake_ups pipe: Increase the writer-wakeup threshold to reduce context-switch count pipe: Check for ring full inside of the spinlock in pipe_write() pipe: Remove redundant wakeup from pipe_write() pipe: Rearrange sequence in pipe_write() to preallocate slot pipe: Conditionalise wakeup in pipe_read() pipe: Advance tail pointer inside of wait spinlock in pipe_read() pipe: Allow pipes to have kernel-reserved slots pipe: Use head and tail pointers for the ring, not cursor and length Add wake_up_interruptible_sync_poll_locked() Remove the nr_exclusive argument from __wake_up_sync_key() pipe: Reduce #inclusion of pipe_fs_i.h
2019-11-25vfs: mark pipes and sockets as stream-like file descriptorsLinus Torvalds1-2/+4
In commit 3975b097e577 ("convert stream-like files -> stream_open, even if they use noop_llseek") Kirill used a coccinelle script to change "nonseekable_open()" to "stream_open()", which changed the trivial cases of stream-like file descriptors to the new model with FMODE_STREAM. However, the two big cases - sockets and pipes - don't actually have that trivial pattern at all, and were thus never converted to FMODE_STREAM even though it makes lots of sense to do so. That's particularly true when looking forward to the next change: getting rid of FMODE_ATOMIC_POS entirely, and just using FMODE_STREAM to decide whether f_pos updates are needed or not. And if they are, we'll always do them atomically. This came up because KCSAN (correctly) noted that the non-locked f_pos updates are data races: they are clearly benign for the case where we don't care, but it would be good to just not have that issue exist at all. Note that the reason we used FMODE_ATOMIC_POS originally is that only doing it for the minimal required case is "safer" in that it's possible that the f_pos locking can cause unnecessary serialization across the whole write() call. And in the worst case, that kind of serialization can cause deadlock issues: think writers that need readers to empty the state using the same file descriptor. [ Note that the locking is per-file descriptor - because it protects "f_pos", which is obviously per-file descriptor - so it only affects cases where you literally use the same file descriptor to both read and write. So a regular pipe that has separate reading and writing file descriptors doesn't really have this situation even though it's the obvious case of "reader empties what a bit writer concurrently fills" But we want to make pipes as being stream-line anyway, because we don't want the unnecessary overhead of locking, and because a named pipe can be (ab-)used by reading and writing to the same file descriptor. ] There are likely a lot of other cases that might want FMODE_STREAM, and looking for ".llseek = no_llseek" users and other cases that don't have an lseek file operation at all and making them use "stream_open()" might be a good idea. But pipes and sockets are likely to be the two main cases. Cc: Kirill Smelkov <kirr@nexedi.com> Cc: Eic Dumazet <edumazet@google.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Alan Stern <stern@rowland.harvard.edu> Cc: Marco Elver <elver@google.com> Cc: Andrea Parri <parri.andrea@gmail.com> Cc: Paul McKenney <paulmck@kernel.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-11-15pipe: Remove sync on wake_upsDavid Howells1-4/+4
2019-11-15pipe: Increase the writer-wakeup threshold to reduce context-switch countDavid Howells1-2/+4
Increase the threshold at which the reader sends a wake event to the writers in the queue such that the queue must be half empty before the wake is issued rather than the wake being issued when just a single slot available. This reduces the number of context switches in the tests significantly, without altering the amount of work achieved. With my pipe-bench program, there's a 20% reduction versus an unpatched kernel. Suggested-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Signed-off-by: David Howells <dhowells@redhat.com>
2019-11-15pipe: Check for ring full inside of the spinlock in pipe_write()David Howells1-0/+5
Make pipe_write() check to see if the ring has become full between it taking the pipe mutex, checking the ring status and then taking the spinlock. This can happen if a notification is written into the pipe as that happens without the pipe mutex. Signed-off-by: David Howells <dhowells@redhat.com>
2019-11-15pipe: Remove redundant wakeup from pipe_write()David Howells1-5/+0
Remove a redundant wakeup from pipe_write(). Signed-off-by: David Howells <dhowells@redhat.com>
2019-11-15pipe: Rearrange sequence in pipe_write() to preallocate slotDavid Howells1-18/+33
Rearrange the sequence in pipe_write() so that the allocation of the new buffer, the allocation of a ring slot and the attachment to the ring is done under the pipe wait spinlock and then the lock is dropped and the buffer can be filled. The data copy needs to be done with the spinlock unheld and irqs enabled, so the lock needs to be dropped first. However, the reader can't progress as we're holding pipe->mutex. We also need to drop the lock as that would impact others looking at the pipe waitqueue, such as poll(), the consumer and a future kernel message writer. We just abandon the preallocated slot if we get a copy error. Future writes may continue it and a future read will eventually recycle it. Signed-off-by: David Howells <dhowells@redhat.com>
2019-11-15pipe: Conditionalise wakeup in pipe_read()David Howells1-9/+6
Only do a wakeup in pipe_read() if we made space in a completely full buffer. The producer shouldn't be waiting on pipe->wait otherwise. Signed-off-by: David Howells <dhowells@redhat.com>
2019-11-15pipe: Advance tail pointer inside of wait spinlock in pipe_read()David Howells1-1/+7
Advance the pipe ring tail pointer inside of wait spinlock in pipe_read() so that the pipe can be written into with kernel notifications from contexts where pipe->mutex cannot be taken. Signed-off-by: David Howells <dhowells@redhat.com>
2019-11-15pipe: Allow pipes to have kernel-reserved slotsDavid Howells1-4/+6
Split pipe->ring_size into two numbers: (1) pipe->ring_size - indicates the hard size of the pipe ring. (2) pipe->max_usage - indicates the maximum number of pipe ring slots that userspace orchestrated events can fill. This allows for a pipe that is both writable by the general kernel notification facility and by userspace, allowing plenty of ring space for notifications to be added whilst preventing userspace from being able to pin too much unswappable kernel space. Signed-off-by: David Howells <dhowells@redhat.com>
2019-10-31pipe: Use head and tail pointers for the ring, not cursor and lengthDavid Howells1-73/+97
Convert pipes to use head and tail pointers for the buffer ring rather than pointer and length as the latter requires two atomic ops to update (or a combined op) whereas the former only requires one. (1) The head pointer is the point at which production occurs and points to the slot in which the next buffer will be placed. This is equivalent to pipe->curbuf + pipe->nrbufs. The head pointer belongs to the write-side. (2) The tail pointer is the point at which consumption occurs. It points to the next slot to be consumed. This is equivalent to pipe->curbuf. The tail pointer belongs to the read-side. (3) head and tail are allowed to run to UINT_MAX and wrap naturally. They are only masked off when the array is being accessed, e.g.: pipe->bufs[head & mask] This means that it is not necessary to have a dead slot in the ring as head == tail isn't ambiguous. (4) The ring is empty if "head == tail". A helper, pipe_empty(), is provided for this. (5) The occupancy of the ring is "head - tail". A helper, pipe_occupancy(), is provided for this. (6) The number of free slots in the ring is "pipe->ring_size - occupancy". A helper, pipe_space_for_user() is provided to indicate how many slots userspace may use. (7) The ring is full if "head - tail >= pipe->ring_size". A helper, pipe_full(), is provided for this. Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-25vfs: Convert pipe to use the new mount APIDavid Howells1-5/+10
Convert the pipe filesystem to the new internal mount API as the old one will be obsoleted and removed. This allows greater flexibility in communication of mount parameters between userspace, the VFS and the filesystem. See Documentation/filesystems/mount_api.txt for more information. Signed-off-by: David Howells <dhowells@redhat.com> cc: linux-fsdevel@vger.kernel.org Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2019-05-25mount_pseudo(): drop 'name' argument, switch to d_make_root()Al Viro1-1/+1
Once upon a time we used to set ->d_name of e.g. pipefs root so that d_path() on pipes would work. These days it's completely pointless - dentries of pipes are not even connected to pipefs root. However, mount_pseudo() had set the root dentry name (passed as the second argument) and callers kept inventing names to pass to it. Including those that didn't *have* any non-root dentries to start with... All of that had been pointless for about 8 years now; it's time to get rid of that cargo-culting... Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2019-04-14Merge branch 'page-refs' (page ref overflow)Linus Torvalds1-2/+2
Merge page ref overflow branch. Jann Horn reported that he can overflow the page ref count with sufficient memory (and a filesystem that is intentionally extremely slow). Admittedly it's not exactly easy. To have more than four billion references to a page requires a minimum of 32GB of kernel memory just for the pointers to the pages, much less any metadata to keep track of those pointers. Jann needed a total of 140GB of memory and a specially crafted filesystem that leaves all reads pending (in order to not ever free the page references and just keep adding more). Still, we have a fairly straightforward way to limit the two obvious user-controllable sources of page references: direct-IO like page references gotten through get_user_pages(), and the splice pipe page duplication. So let's just do that. * branch page-refs: fs: prevent page refcount overflow in pipe_buf_get mm: prevent get_user_pages() from overflowing page refcount mm: add 'try_get_page()' helper function mm: make page ref count overflow check tighter and more explicit
2019-04-14fs: prevent page refcount overflow in pipe_buf_getMatthew Wilcox1-2/+2
Change pipe_buf_get() to return a bool indicating whether it succeeded in raising the refcount of the page (if the thing in the pipe is a page). This removes another mechanism for overflowing the page refcount. All callers converted to handle a failure. Reported-by: Jann Horn <jannh@google.com> Signed-off-by: Matthew Wilcox <willy@infradead.org> Cc: stable@kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-12Merge branch 'work.misc' of ↵Linus Torvalds1-3/+29
git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs Pull misc vfs updates from Al Viro: "Assorted fixes (really no common topic here)" * 'work.misc' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: vfs: Make __vfs_write() static vfs: fix preadv64v2 and pwritev64v2 compat syscalls with offset == -1 pipe: stop using ->can_merge splice: don't merge into linked buffers fs: move generic stat response attr handling to vfs_getattr_nosec orangefs: don't reinitialize result_mask in ->getattr fs/devpts: always delete dcache dentry-s in dput()
2019-03-05memcg: localize memcg_kmem_enabled() checkShakeel Butt1-2/+1
Move the memcg_kmem_enabled() checks into memcg kmem charge/uncharge functions, so, the users don't have to explicitly check that condition. This is purely code cleanup patch without any functional change. Only the order of checks in memcg_charge_slab() can potentially be changed but the functionally it will be same. This should not matter as memcg_charge_slab() is not in the hot path. Link: http://lkml.kernel.org/r/20190103161203.162375-1-shakeelb@google.com Signed-off-by: Shakeel Butt <shakeelb@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-02-01pipe: stop using ->can_mergeJann Horn1-4/+16
Al Viro pointed out that since there is only one pipe buffer type to which new data can be appended, it isn't necessary to have a ->can_merge field in struct pipe_buf_operations, we can just check for a magic type. Suggested-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Jann Horn <jannh@google.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2019-02-01splice: don't merge into linked buffersJann Horn1-0/+14
Before this patch, it was possible for two pipes to affect each other after data had been transferred between them with tee(): ============ $ cat tee_test.c int main(void) { int pipe_a[2]; if (pipe(pipe_a)) err(1, "pipe"); int pipe_b[2]; if (pipe(pipe_b)) err(1, "pipe"); if (write(pipe_a[1], "abcd", 4) != 4) err(1, "write"); if (tee(pipe_a[0], pipe_b[1], 2, 0) != 2) err(1, "tee"); if (write(pipe_b[1], "xx", 2) != 2) err(1, "write"); char buf[5]; if (read(pipe_a[0], buf, 4) != 4) err(1, "read"); buf[4] = 0; printf("got back: '%s'\n", buf); } $ gcc -o tee_test tee_test.c $ ./tee_test got back: 'abxx' $ ============ As suggested by Al Viro, fix it by creating a separate type for non-mergeable pipe buffers, then changing the types of buffers in splice_pipe_to_pipe() and link_pipe(). Cc: <stable@vger.kernel.org> Fixes: 7c77f0b3f920 ("splice: implement pipe to pipe splicing") Fixes: 70524490ee2e ("[PATCH] splice: add support for sys_tee()") Suggested-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Jann Horn <jannh@google.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2018-08-13Merge branch 'work.open3' of ↵Linus Torvalds1-32/+11
git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs Pull vfs open-related updates from Al Viro: - "do we need fput() or put_filp()" rules are gone - it's always fput() now. We keep track of that state where it belongs - in ->f_mode. - int *opened mess killed - in finish_open(), in ->atomic_open() instances and in fs/namei.c code around do_last()/lookup_open()/atomic_open(). - alloc_file() wrappers with saner calling conventions are introduced (alloc_file_clone() and alloc_file_pseudo()); callers converted, with much simplification. - while we are at it, saner calling conventions for path_init() and link_path_walk(), simplifying things inside fs/namei.c (both on open-related paths and elsewhere). * 'work.open3' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (40 commits) few more cleanups of link_path_walk() callers allow link_path_walk() to take ERR_PTR() make path_init() unconditionally paired with terminate_walk() document alloc_file() changes make alloc_file() static do_shmat(): grab shp->shm_file earlier, switch to alloc_file_clone() new helper: alloc_file_clone() create_pipe_files(): switch the first allocation to alloc_file_pseudo() anon_inode_getfile(): switch to alloc_file_pseudo() hugetlb_file_setup(): switch to alloc_file_pseudo() ocxlflash_getfile(): switch to alloc_file_pseudo() cxl_getfile(): switch to alloc_file_pseudo() ... and switch shmem_file_setup() to alloc_file_pseudo() __shmem_file_setup(): reorder allocations new wrapper: alloc_file_pseudo() kill FILE_{CREATED,OPENED} switch atomic_open() and lookup_open() to returning 0 in all success cases document ->atomic_open() changes ->atomic_open(): return 0 in all success cases get rid of 'opened' in path_openat() and the helpers downstream ...
2018-07-12new helper: alloc_file_clone()Al Viro1-4/+2
alloc_file_clone(old_file, mode, ops): create a new struct file with ->f_path equal to that of old_file. pipe converted. Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2018-07-12create_pipe_files(): switch the first allocation to alloc_file_pseudo()Al Viro1-26/+8
Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2018-07-12alloc_file(): switch to passing O_... flags instead of FMODE_... modeAl Viro1-4/+4
... so that it could set both ->f_flags and ->f_mode, without callers having to set ->f_flags manually. Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2018-07-10create_pipe_files(): use fput() if allocation of the second file failsAl Viro1-4/+3
... just use put_pipe_info() to get the pipe->files down to 1 and let fput()-called pipe_release() do freeing. Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2018-06-28Revert changes to convert to ->poll_mask() and aio IOCB_CMD_POLLLinus Torvalds1-13/+9
The poll() changes were not well thought out, and completely unexplained. They also caused a huge performance regression, because "->poll()" was no longer a trivial file operation that just called down to the underlying file operations, but instead did at least two indirect calls. Indirect calls are sadly slow now with the Spectre mitigation, but the performance problem could at least be largely mitigated by changing the "->get_poll_head()" operation to just have a per-file-descriptor pointer to the poll head instead. That gets rid of one of the new indirections. But that doesn't fix the new complexity that is completely unwarranted for the regular case. The (undocumented) reason for the poll() changes was some alleged AIO poll race fixing, but we don't make the common case slower and more complex for some uncommon special case, so this all really needs way more explanations and most likely a fundamental redesign. [ This revert is a revert of about 30 different commits, not reverted individually because that would just be unnecessarily messy - Linus ] Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Christoph Hellwig <hch@lst.de> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-05-26pipe: convert to ->poll_maskChristoph Hellwig1-9/+13
Signed-off-by: Christoph Hellwig <hch@lst.de>
2018-04-02fs: add do_pipe2() helper; remove internal call to sys_pipe2()Dominik Brodowski1-2/+7
Using this helper removes an in-kernel call to the sys_pipe2() syscall. This patch is part of a series which removes in-kernel calls to syscalls. On this basis, the syscall entry path can be streamlined. For details, see http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net Cc: Alexander Viro <viro@zeniv.linux.org.uk> Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
2018-02-11vfs: do bulk POLL* -> EPOLL* replacementLinus Torvalds1-11/+11
This is the mindless scripted replacement of kernel use of POLL* variables as described by Al, done by this script: for V in IN OUT PRI ERR RDNORM RDBAND WRNORM WRBAND HUP RDHUP NVAL MSG; do L=`git grep -l -w POLL$V | grep -v '^t' | grep -v /um/ | grep -v '^sa' | grep -v '/poll.h$'|grep -v '^D'` for f in $L; do sed -i "-es/^\([^\"]*\)\(\<POLL$V\>\)/\\1E\\2/" $f; done done with de-mangling cleanups yet to come. NOTE! On almost all architectures, the EPOLL* constants have the same values as the POLL* constants do. But they keyword here is "almost". For various bad reasons they aren't the same, and epoll() doesn't actually work quite correctly in some cases due to this on Sparc et al. The next patch from Al will sort out the final differences, and we should be all done. Scripted-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-02-06pipe: read buffer limits atomicallyEric Biggers1-4/+9
The pipe buffer limits are accessed without any locking, and may be changed at any time by the sysctl handlers. In theory this could cause problems for expressions like the following: pipe_user_pages_hard && user_bufs > pipe_user_pages_hard ... since the assembly code might reference the 'pipe_user_pages_hard' memory location multiple times, and if the admin removes the limit by setting it to 0, there is a very brief window where processes could incorrectly observe the limit to be exceeded. Fix this by loading the limits with READ_ONCE() prior to use. Link: http://lkml.kernel.org/r/20180111052902.14409-8-ebiggers3@gmail.com Signed-off-by: Eric Biggers <ebiggers@google.com> Acked-by: Kees Cook <keescook@chromium.org> Acked-by: Joe Lawrence <joe.lawrence@redhat.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Willy Tarreau <w@1wt.eu> Cc: Mikulas Patocka <mpatocka@redhat.com> Cc: "Luis R . Rodriguez" <mcgrof@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-02-06pipe: simplify round_pipe_size()Eric Biggers1-11/+3
round_pipe_size() calculates the number of pages the requested size corresponds to, then rounds the page count up to the next power of 2. However, it also rounds everything < PAGE_SIZE up to PAGE_SIZE. Therefore, there's no need to actually translate the size into a page count; we just need to round the size up to the next power of 2. We do need to verify the size isn't greater than (1 << 31), since on 32-bit systems roundup_pow_of_two() would be undefined in that case. But that can just be combined with the UINT_MAX check which we need anyway now. Finally, update pipe_set_size() to not redundantly check the return value of round_pipe_size() for the "invalid size" case twice. Link: http://lkml.kernel.org/r/20180111052902.14409-7-ebiggers3@gmail.com Signed-off-by: Eric Biggers <ebiggers@google.com> Acked-by: Kees Cook <keescook@chromium.org> Acked-by: Joe Lawrence <joe.lawrence@redhat.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: "Luis R . Rodriguez" <mcgrof@kernel.org> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Mikulas Patocka <mpatocka@redhat.com> Cc: Willy Tarreau <w@1wt.eu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-02-06pipe: reject F_SETPIPE_SZ with size over UINT_MAXEric Biggers1-1/+4
A pipe's size is represented as an 'unsigned int'. As expected, writing a value greater than UINT_MAX to /proc/sys/fs/pipe-max-size fails with EINVAL. However, the F_SETPIPE_SZ fcntl silently truncates such values to 32 bits, rather than failing with EINVAL as expected. (It *does* fail with EINVAL for values above (1 << 31) but <= UINT_MAX.) Fix this by moving the check against UINT_MAX into round_pipe_size() which is called in both cases. Link: http://lkml.kernel.org/r/20180111052902.14409-6-ebiggers3@gmail.com Signed-off-by: Eric Biggers <ebiggers@google.com> Acked-by: Kees Cook <keescook@chromium.org> Acked-by: Joe Lawrence <joe.lawrence@redhat.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: "Luis R . Rodriguez" <mcgrof@kernel.org> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Mikulas Patocka <mpatocka@redhat.com> Cc: Willy Tarreau <w@1wt.eu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-02-06pipe: fix off-by-one error when checking buffer limitsEric Biggers1-2/+2
With pipe-user-pages-hard set to 'N', users were actually only allowed up to 'N - 1' buffers; and likewise for pipe-user-pages-soft. Fix this to allow up to 'N' buffers, as would be expected. Link: http://lkml.kernel.org/r/20180111052902.14409-5-ebiggers3@gmail.com Fixes: b0b91d18e2e9 ("pipe: fix limit checking in pipe_set_size()") Signed-off-by: Eric Biggers <ebiggers@google.com> Acked-by: Willy Tarreau <w@1wt.eu> Acked-by: Kees Cook <keescook@chromium.org> Acked-by: Joe Lawrence <joe.lawrence@redhat.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: "Luis R . Rodriguez" <mcgrof@kernel.org> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Mikulas Patocka <mpatocka@redhat.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-02-06pipe: actually allow root to exceed the pipe buffer limitsEric Biggers1-3/+8
pipe-user-pages-hard and pipe-user-pages-soft are only supposed to apply to unprivileged users, as documented in both Documentation/sysctl/fs.txt and the pipe(7) man page. However, the capabilities are actually only checked when increasing a pipe's size using F_SETPIPE_SZ, not when creating a new pipe. Therefore, if pipe-user-pages-hard has been set, the root user can run into it and be unable to create pipes. Similarly, if pipe-user-pages-soft has been set, the root user can run into it and have their pipes limited to 1 page each. Fix this by allowing the privileged override in both cases. Link: http://lkml.kernel.org/r/20180111052902.14409-4-ebiggers3@gmail.com Fixes: 759c01142a5d ("pipe: limit the per-user amount of pages allocated in pipes") Signed-off-by: Eric Biggers <ebiggers@google.com> Acked-by: Kees Cook <keescook@chromium.org> Acked-by: Joe Lawrence <joe.lawrence@redhat.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: "Luis R . Rodriguez" <mcgrof@kernel.org> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Mikulas Patocka <mpatocka@redhat.com> Cc: Willy Tarreau <w@1wt.eu> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-02-06pipe, sysctl: remove pipe_proc_fn()Eric Biggers1-10/+0
pipe_proc_fn() is no longer needed, as it only calls through to proc_dopipe_max_size(). Just put proc_dopipe_max_size() in the ctl_table entry directly, and remove the unneeded EXPORT_SYMBOL() and the ENOSYS stub for it. (The reason the ENOSYS stub isn't needed is that the pipe-max-size ctl_table entry is located directly in 'kern_table' rather than being registered separately. Therefore, the entry is already only defined when the kernel is built with sysctl support.) Link: http://lkml.kernel.org/r/20180111052902.14409-3-ebiggers3@gmail.com Signed-off-by: Eric Biggers <ebiggers@google.com> Acked-by: Kees Cook <keescook@chromium.org> Acked-by: Joe Lawrence <joe.lawrence@redhat.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: "Luis R . Rodriguez" <mcgrof@kernel.org> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Mikulas Patocka <mpatocka@redhat.com> Cc: Willy Tarreau <w@1wt.eu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-02-06pipe, sysctl: drop 'min' parameter from pipe-max-size converterEric Biggers1-7/+3
Patch series "pipe: buffer limits fixes and cleanups", v2. This series simplifies the sysctl handler for pipe-max-size and fixes another set of bugs related to the pipe buffer limits: - The root user wasn't allowed to exceed the limits when creating new pipes. - There was an off-by-one error when checking the limits, so a limit of N was actually treated as N - 1. - F_SETPIPE_SZ accepted values over UINT_MAX. - Reading the pipe buffer limits could be racy. This patch (of 7): Before validating the given value against pipe_min_size, do_proc_dopipe_max_size_conv() calls round_pipe_size(), which rounds the value up to pipe_min_size. Therefore, the second check against pipe_min_size is redundant. Remove it. Link: http://lkml.kernel.org/r/20180111052902.14409-2-ebiggers3@gmail.com Signed-off-by: Eric Biggers <ebiggers@google.com> Acked-by: Kees Cook <keescook@chromium.org> Acked-by: Joe Lawrence <joe.lawrence@redhat.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: "Luis R . Rodriguez" <mcgrof@kernel.org> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Mikulas Patocka <mpatocka@redhat.com> Cc: Willy Tarreau <w@1wt.eu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-27fs: annotate ->poll() instancesAl Viro1-2/+2
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2017-11-17pipe: add proc_dopipe_max_size() to safely assign pipe_max_sizeJoe Lawrence1-15/+3
pipe_max_size is assigned directly via procfs sysctl: static struct ctl_table fs_table[] = { ... { .procname = "pipe-max-size", .data = &pipe_max_size, .maxlen = sizeof(int), .mode = 0644, .proc_handler = &pipe_proc_fn, .extra1 = &pipe_min_size, }, ... int pipe_proc_fn(struct ctl_table *table, int write, void __user *buf, size_t *lenp, loff_t *ppos) { ... ret = proc_dointvec_minmax(table, write, buf, lenp, ppos) ... and then later rounded in-place a few statements later: ... pipe_max_size = round_pipe_size(pipe_max_size); ... This leaves a window of time between initial assignment and rounding that may be visible to other threads. (For example, one thread sets a non-rounded value to pipe_max_size while another reads its value.) Similar reads of pipe_max_size are potentially racy: pipe.c :: alloc_pipe_info() pipe.c :: pipe_set_size() Add a new proc_dopipe_max_size() that consolidates reading the new value from the user buffer, verifying bounds, and calling round_pipe_size() with a single assignment to pipe_max_size. Link: http://lkml.kernel.org/r/1507658689-11669-4-git-send-email-joe.lawrence@redhat.com Signed-off-by: Joe Lawrence <joe.lawrence@redhat.com> Reported-by: Mikulas Patocka <mpatocka@redhat.com> Reviewed-by: Mikulas Patocka <mpatocka@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Jens Axboe <axboe@kernel.dk> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>