summaryrefslogtreecommitdiff
path: root/arch/x86/entry/calling.h
AgeCommit message (Collapse)AuthorFilesLines
2019-07-28Merge branch master from ↵Thomas Gleixner1-0/+6
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git Pick up the spectre documentation so the Grand Schemozzle can be added.
2019-07-17x86/paravirt: Make read_cr2() CALLEE_SAVEPeter Zijlstra1-0/+6
The one paravirt read_cr2() implementation (Xen) is actually quite trivial and doesn't need to clobber anything other than the return register. Making read_cr2() CALLEE_SAVE avoids all the PUSH/POP nonsense and allows more convenient use from assembly. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Juergen Gross <jgross@suse.com> Cc: bp@alien8.de Cc: rostedt@goodmis.org Cc: luto@kernel.org Cc: torvalds@linux-foundation.org Cc: hpa@zytor.com Cc: dave.hansen@linux.intel.com Cc: zhe.he@windriver.com Cc: joel@joelfernandes.org Cc: devel@etsukata.com Link: https://lkml.kernel.org/r/20190711114335.887392493@infradead.org
2019-07-09x86/speculation: Prepare entry code for Spectre v1 swapgs mitigationsJosh Poimboeuf1-0/+17
Spectre v1 isn't only about array bounds checks. It can affect any conditional checks. The kernel entry code interrupt, exception, and NMI handlers all have conditional swapgs checks. Those may be problematic in the context of Spectre v1, as kernel code can speculatively run with a user GS. For example: if (coming from user space) swapgs mov %gs:<percpu_offset>, %reg mov (%reg), %reg1 When coming from user space, the CPU can speculatively skip the swapgs, and then do a speculative percpu load using the user GS value. So the user can speculatively force a read of any kernel value. If a gadget exists which uses the percpu value as an address in another load/store, then the contents of the kernel value may become visible via an L1 side channel attack. A similar attack exists when coming from kernel space. The CPU can speculatively do the swapgs, causing the user GS to get used for the rest of the speculative window. The mitigation is similar to a traditional Spectre v1 mitigation, except: a) index masking isn't possible; because the index (percpu offset) isn't user-controlled; and b) an lfence is needed in both the "from user" swapgs path and the "from kernel" non-swapgs path (because of the two attacks described above). The user entry swapgs paths already have SWITCH_TO_KERNEL_CR3, which has a CR3 write when PTI is enabled. Since CR3 writes are serializing, the lfences can be skipped in those cases. On the other hand, the kernel entry swapgs paths don't depend on PTI. To avoid unnecessary lfences for the user entry case, create two separate features for alternative patching: X86_FEATURE_FENCE_SWAPGS_USER X86_FEATURE_FENCE_SWAPGS_KERNEL Use these features in entry code to patch in lfences where needed. The features aren't enabled yet, so there's no functional change. Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Dave Hansen <dave.hansen@intel.com>
2019-06-25x86/stackframe: Move ENCODE_FRAME_POINTER to asm/frame.hPeter Zijlstra1-15/+0
In preparation for wider use, move the ENCODE_FRAME_POINTER macros to a common header and provide inline asm versions. These macros are used to encode a pt_regs frame for the unwinder; see unwind_frame.c:decode_frame_pointer(). Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-01-06jump_label: move 'asm goto' support test to KconfigMasahiro Yamada1-1/+1
Currently, CONFIG_JUMP_LABEL just means "I _want_ to use jump label". The jump label is controlled by HAVE_JUMP_LABEL, which is defined like this: #if defined(CC_HAVE_ASM_GOTO) && defined(CONFIG_JUMP_LABEL) # define HAVE_JUMP_LABEL #endif We can improve this by testing 'asm goto' support in Kconfig, then make JUMP_LABEL depend on CC_HAS_ASM_GOTO. Ugly #ifdef HAVE_JUMP_LABEL will go away, and CONFIG_JUMP_LABEL will match to the real kernel capability. Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com> Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc) Tested-by: Sedat Dilek <sedat.dilek@gmail.com>
2018-12-19Revert "x86/jump-labels: Macrofy inline assembly code to work around GCC ↵Ingo Molnar1-1/+1
inlining bugs" This reverts commit 5bdcd510c2ac9efaf55c4cbd8d46421d8e2320cd. The macro based workarounds for GCC's inlining bugs caused regressions: distcc and other distro build setups broke, and the fixes are not easy nor will they solve regressions on already existing installations. So we are reverting this patch and the 8 followup patches. What makes this revert easier is that GCC9 will likely include the new 'asm inline' syntax that makes inlining of assembly blocks a lot more robust. This is a superior method to any macro based hackeries - and might even be backported to GCC8, which would make all modern distros get the inlining fixes as well. Many thanks to Masahiro Yamada and others for helping sort out these problems. Reported-by: Masahiro Yamada <yamada.masahiro@socionext.com> Reviewed-by: Borislav Petkov <bp@alien8.de> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Cc: Juergen Gross <jgross@suse.com> Cc: Richard Biener <rguenther@suse.de> Cc: Kees Cook <keescook@chromium.org> Cc: Segher Boessenkool <segher@kernel.crashing.org> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Nadav Amit <namit@vmware.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-11-01Merge tag 'stackleak-v4.20-rc1' of ↵Linus Torvalds1-0/+14
git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux Pull stackleak gcc plugin from Kees Cook: "Please pull this new GCC plugin, stackleak, for v4.20-rc1. This plugin was ported from grsecurity by Alexander Popov. It provides efficient stack content poisoning at syscall exit. This creates a defense against at least two classes of flaws: - Uninitialized stack usage. (We continue to work on improving the compiler to do this in other ways: e.g. unconditional zero init was proposed to GCC and Clang, and more plugin work has started too). - Stack content exposure. By greatly reducing the lifetime of valid stack contents, exposures via either direct read bugs or unknown cache side-channels become much more difficult to exploit. This complements the existing buddy and heap poisoning options, but provides the coverage for stacks. The x86 hooks are included in this series (which have been reviewed by Ingo, Dave Hansen, and Thomas Gleixner). The arm64 hooks have already been merged through the arm64 tree (written by Laura Abbott and reviewed by Mark Rutland and Will Deacon). With VLAs having been removed this release, there is no need for alloca() protection, so it has been removed from the plugin" * tag 'stackleak-v4.20-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux: arm64: Drop unneeded stackleak_check_alloca() stackleak: Allow runtime disabling of kernel stack erasing doc: self-protection: Add information about STACKLEAK feature fs/proc: Show STACKLEAK metrics in the /proc file system lkdtm: Add a test for STACKLEAK gcc-plugins: Add STACKLEAK plugin for tracking the kernel stack x86/entry: Add STACKLEAK erasing the kernel stack at the end of syscalls
2018-10-06x86/jump-labels: Macrofy inline assembly code to work around GCC inlining bugsNadav Amit1-1/+1
As described in: 77b0bf55bc67: ("kbuild/Makefile: Prepare for using macros in inline assembly code to work around asm() related GCC inlining bugs") GCC's inlining heuristics are broken with common asm() patterns used in kernel code, resulting in the effective disabling of inlining. The workaround is to set an assembly macro and call it from the inline assembly block - which is also a minor cleanup for the jump-label code. As a result the code size is slightly increased, but inlining decisions are better: text data bss dec hex filename 18163528 10226300 2957312 31347140 1de51c4 ./vmlinux before 18163608 10227348 2957312 31348268 1de562c ./vmlinux after (+1128) And functions such as intel_pstate_adjust_policy_max(), kvm_cpu_accept_dm_intr(), kvm_register_readl() are inlined. Tested-by: Kees Cook <keescook@chromium.org> Signed-off-by: Nadav Amit <namit@vmware.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Kate Stewart <kstewart@linuxfoundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Philippe Ombredanne <pombredanne@nexb.com> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20181005202718.229565-4-namit@vmware.com Link: https://lore.kernel.org/lkml/20181003213100.189959-11-namit@vmware.com/T/#u Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-09-04x86/entry: Add STACKLEAK erasing the kernel stack at the end of syscallsAlexander Popov1-0/+14
The STACKLEAK feature (initially developed by PaX Team) has the following benefits: 1. Reduces the information that can be revealed through kernel stack leak bugs. The idea of erasing the thread stack at the end of syscalls is similar to CONFIG_PAGE_POISONING and memzero_explicit() in kernel crypto, which all comply with FDP_RIP.2 (Full Residual Information Protection) of the Common Criteria standard. 2. Blocks some uninitialized stack variable attacks (e.g. CVE-2017-17712, CVE-2010-2963). That kind of bugs should be killed by improving C compilers in future, which might take a long time. This commit introduces the code filling the used part of the kernel stack with a poison value before returning to userspace. Full STACKLEAK feature also contains the gcc plugin which comes in a separate commit. The STACKLEAK feature is ported from grsecurity/PaX. More information at: https://grsecurity.net/ https://pax.grsecurity.net/ This code is modified from Brad Spengler/PaX Team's code in the last public patch of grsecurity/PaX based on our understanding of the code. Changes or omissions from the original code are ours and don't reflect the original grsecurity/PaX code. Performance impact: Hardware: Intel Core i7-4770, 16 GB RAM Test #1: building the Linux kernel on a single core 0.91% slowdown Test #2: hackbench -s 4096 -l 2000 -g 15 -f 25 -P 4.2% slowdown So the STACKLEAK description in Kconfig includes: "The tradeoff is the performance impact: on a single CPU system kernel compilation sees a 1% slowdown, other systems and workloads may vary and you are advised to test this feature on your expected workload before deploying it". Signed-off-by: Alexander Popov <alex.popov@linux.com> Acked-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com> Acked-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Kees Cook <keescook@chromium.org>
2018-04-05syscalls/x86: Extend register clearing on syscall entry to lower registersDominik Brodowski1-0/+2
To reduce the chance that random user space content leaks down the call chain in registers, also clear lower registers on syscall entry: For 64-bit syscalls, extend the register clearing in PUSH_AND_CLEAR_REGS to %dx and %cx. This should not hurt at all, also on the other callers of that macro. We do not need to clear %rdi and %rsi for syscall entry, as those registers are used to pass the parameters to do_syscall_64(). For the 32-bit compat syscalls, do_int80_syscall_32() and do_fast_syscall_32() each only take one parameter. Therefore, extend the register clearing to %dx, %cx, and %si in entry_SYSCALL_compat and entry_INT80_compat. Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20180405095307.3730-8-linux@dominikbrodowski.net Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-02-21x86/entry/64: Simplify ENCODE_FRAME_POINTERJosh Poimboeuf1-6/+1
On 64-bit, the stack pointer is always aligned on interrupt, so instead of setting the LSB of the pt_regs address, we can just add 1 to it. Suggested-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrew Lutomirski <luto@kernel.org> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dominik Brodowski <linux@dominikbrodowski.net> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20180221024214.lhl5jfgw33c4vz3m@treble Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-02-17x86/entry/64: Use 'xorl' for faster register clearingDominik Brodowski1-8/+8
On some x86 CPU microarchitectures using 'xorq' to clear general-purpose registers is slower than 'xorl'. As 'xorl' is sufficient to clear all 64 bits of these registers due to zero-extension [*], switch the x86 64-bit entry code to use 'xorl'. No change in functionality and no change in code size. [*] According to Intel 64 and IA-32 Architecture Software Developer's Manual, section 3.4.1.1, the result of 32-bit operands are "zero- extended to a 64-bit result in the destination general-purpose register." The AMD64 Architecture Programmer’s Manual Volume 3, Appendix B.1, describes the same behaviour. Suggested-by: Denys Vlasenko <dvlasenk@redhat.com> Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20180214175924.23065-3-linux@dominikbrodowski.net [ Improved on the changelog a bit. ] Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-02-17x86/entry: Reduce the code footprint of the 'idtentry' macroDominik Brodowski1-1/+10
Play a little trick in the generic PUSH_AND_CLEAR_REGS macro to insert the GP registers "above" the original return address. This allows us to (re-)insert the macro in error_entry() and paranoid_entry() and to remove it from the idtentry macro. This reduces the static footprint significantly: text data bss dec hex filename 24307 0 0 24307 5ef3 entry_64.o-orig 20987 0 0 20987 51fb entry_64.o Co-developed-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20180214175924.23065-2-linux@dominikbrodowski.net [ Small tweaks to comments. ] Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-02-13x86/entry/64: Remove the unused 'icebp' macroBorislav Petkov1-4/+0
That macro was touched around 2.5.8 times, judging by the full history linux repo, but it was unused even then. Get rid of it already. Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux@dominikbrodowski.net Link: http://lkml.kernel.org/r/20180212201318.GD14640@pd.tnic Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-02-13x86/entry/64: Indent PUSH_AND_CLEAR_REGS and POP_REGS properlyDominik Brodowski1-4/+4
... same as the other macros in arch/x86/entry/calling.h Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: dan.j.williams@intel.com Link: http://lkml.kernel.org/r/20180211104949.12992-8-linux@dominikbrodowski.net Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-02-13x86/entry/64: Get rid of the ALLOC_PT_GPREGS_ON_STACK and ↵Dominik Brodowski1-41/+1
SAVE_AND_CLEAR_REGS macros Previously, error_entry() and paranoid_entry() saved the GP registers onto stack space previously allocated by its callers. Combine these two steps in the callers, and use the generic PUSH_AND_CLEAR_REGS macro for that. This adds a significant amount ot text size. However, Ingo Molnar points out that: "these numbers also _very_ significantly over-represent the extra footprint. The assumptions that resulted in us compressing the IRQ entry code have changed very significantly with the new x86 IRQ allocation code we introduced in the last year: - IRQ vectors are usually populated in tightly clustered groups. With our new vector allocator code the typical per CPU allocation percentage on x86 systems is ~3 device vectors and ~10 fixed vectors out of ~220 vectors - i.e. a very low ~6% utilization (!). [...] The days where we allocated a lot of vectors on every CPU and the compression of the IRQ entry code text mattered are over. - Another issue is that only a small minority of vectors is frequent enough to actually matter to cache utilization in practice: 3-4 key IPIs and 1-2 device IRQs at most - and those vectors tend to be tightly clustered as well into about two groups, and are probably already on 2-3 cache lines in practice. For the common case of 'cache cold' IRQs it's the depth of the call chain and the fragmentation of the resulting I$ that should be the main performance limit - not the overall size of it. - The CPU side cost of IRQ delivery is still very expensive even in the best, most cached case, as in 'over a thousand cycles'. So much stuff is done that maybe contemporary x86 IRQ entry microcode already prefetches the IDT entry and its expected call target address."[*] [*] http://lkml.kernel.org/r/20180208094710.qnjixhm6hybebdv7@gmail.com The "testb $3, CS(%rsp)" instruction in the idtentry macro does not need modification. Previously, %rsp was manually decreased by 15*8; with this patch, %rsp is decreased by 15 pushq instructions. [jpoimboe@redhat.com: unwind hint improvements] Suggested-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: dan.j.williams@intel.com Link: http://lkml.kernel.org/r/20180211104949.12992-7-linux@dominikbrodowski.net Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-02-13x86/entry/64: Use PUSH_AND_CLEAN_REGS in more casesDominik Brodowski1-3/+3
entry_SYSCALL_64_after_hwframe() and nmi() can be converted to use PUSH_AND_CLEAN_REGS instead of opencoded variants thereof. Due to the interleaving, the additional XOR-based clearing of R8 and R9 in entry_SYSCALL_64_after_hwframe() should not have any noticeable negative implications. Suggested-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: dan.j.williams@intel.com Link: http://lkml.kernel.org/r/20180211104949.12992-6-linux@dominikbrodowski.net Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-02-13x86/entry/64: Introduce the PUSH_AND_CLEAN_REGS macroDominik Brodowski1-0/+36
Those instances where ALLOC_PT_GPREGS_ON_STACK is called just before SAVE_AND_CLEAR_REGS can trivially be replaced by PUSH_AND_CLEAN_REGS. This macro uses PUSH instead of MOV and should therefore be faster, at least on newer CPUs. Suggested-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: dan.j.williams@intel.com Link: http://lkml.kernel.org/r/20180211104949.12992-5-linux@dominikbrodowski.net Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-02-13x86/entry/64: Interleave XOR register clearing with PUSH instructionsDominik Brodowski1-21/+19
Same as is done for syscalls, interleave XOR with PUSH instructions for exceptions/interrupts, in order to minimize the cost of the additional instructions required for register clearing. Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: dan.j.williams@intel.com Link: http://lkml.kernel.org/r/20180211104949.12992-4-linux@dominikbrodowski.net Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-02-13x86/entry/64: Merge the POP_C_REGS and POP_EXTRA_REGS macros into a single ↵Dominik Brodowski1-4/+11
POP_REGS macro The two special, opencoded cases for POP_C_REGS can be handled by ASM macros. Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: dan.j.williams@intel.com Link: http://lkml.kernel.org/r/20180211104949.12992-3-linux@dominikbrodowski.net Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-02-13x86/entry/64: Merge SAVE_C_REGS and SAVE_EXTRA_REGS, remove unused extensionsDominik Brodowski1-42/+15
All current code paths call SAVE_C_REGS and then immediately SAVE_EXTRA_REGS. Therefore, merge these two macros and order the MOV sequeneces properly. While at it, remove the macros to save all except specific registers, as these macros have been unused for a long time. Suggested-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: dan.j.williams@intel.com Link: http://lkml.kernel.org/r/20180211104949.12992-2-linux@dominikbrodowski.net Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-02-06x86/entry/64: Clear registers for exceptions/interrupts, to reduce ↵Dan Williams1-0/+19
speculation attack surface Clear the 'extra' registers on entering the 64-bit kernel for exceptions and interrupts. The common registers are not cleared since they are likely clobbered well before they can be exploited in a speculative execution attack. Originally-From: Andi Kleen <ak@linux.intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Cc: <stable@vger.kernel.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/151787989146.7847.15749181712358213254.stgit@dwillia2-desk3.amr.corp.intel.com [ Made small improvements to the changelog and the code comments. ] Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-01-14x86/pti: Fix !PCID and sanitize definesThomas Gleixner1-17/+19
The switch to the user space page tables in the low level ASM code sets unconditionally bit 12 and bit 11 of CR3. Bit 12 is switching the base address of the page directory to the user part, bit 11 is switching the PCID to the PCID associated with the user page tables. This fails on a machine which lacks PCID support because bit 11 is set in CR3. Bit 11 is reserved when PCID is inactive. While the Intel SDM claims that the reserved bits are ignored when PCID is disabled, the AMD APM states that they should be cleared. This went unnoticed as the AMD APM was not checked when the code was developed and reviewed and test systems with Intel CPUs never failed to boot. The report is against a Centos 6 host where the guest fails to boot, so it's not yet clear whether this is a virt issue or can happen on real hardware too, but thats irrelevant as the AMD APM clearly ask for clearing the reserved bits. Make sure that on non PCID machines bit 11 is not set by the page table switching code. Andy suggested to rename the related bits and masks so they are clearly describing what they should be used for, which is done as well for clarity. That split could have been done with alternatives but the macro hell is horrible and ugly. This can be done on top if someone cares to remove the extra orq. For now it's a straight forward fix. Fixes: 6fd166aae78c ("x86/mm: Use/Fix PCID to optimize user/kernel switches") Reported-by: Laura Abbott <labbott@redhat.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: stable <stable@vger.kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Willy Tarreau <w@1wt.eu> Cc: David Woodhouse <dwmw@amazon.co.uk> Link: https://lkml.kernel.org/r/alpine.DEB.2.20.1801140009150.2371@nanos
2017-12-23x86/mm: Optimize RESTORE_CR3Peter Zijlstra1-2/+28
Most NMI/paranoid exceptions will not in fact change pagetables and would thus not require TLB flushing, however RESTORE_CR3 uses flushing CR3 writes. Restores to kernel PCIDs can be NOFLUSH, because we explicitly flush the kernel mappings and now that we track which user PCIDs need flushing we can avoid those too when possible. This does mean RESTORE_CR3 needs an additional scratch_reg, luckily both sites have plenty available. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Laight <David.Laight@aculab.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Eduardo Valentin <eduval@amazon.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Juergen Gross <jgross@suse.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Will Deacon <will.deacon@arm.com> Cc: aliguori@amazon.com Cc: daniel.gruss@iaik.tugraz.at Cc: hughd@google.com Cc: keescook@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-12-23x86/mm: Use/Fix PCID to optimize user/kernel switchesPeter Zijlstra1-13/+59
We can use PCID to retain the TLBs across CR3 switches; including those now part of the user/kernel switch. This increases performance of kernel entry/exit at the cost of more expensive/complicated TLB flushing. Now that we have two address spaces, one for kernel and one for user space, we need two PCIDs per mm. We use the top PCID bit to indicate a user PCID (just like we use the PFN LSB for the PGD). Since we do TLB invalidation from kernel space, the existing code will only invalidate the kernel PCID, we augment that by marking the corresponding user PCID invalid, and upon switching back to userspace, use a flushing CR3 write for the switch. In order to access the user_pcid_flush_mask we use PER_CPU storage, which means the previously established SWAPGS vs CR3 ordering is now mandatory and required. Having to do this memory access does require additional registers, most sites have a functioning stack and we can spill one (RAX), sites without functional stack need to otherwise provide the second scratch register. Note: PCID is generally available on Intel Sandybridge and later CPUs. Note: Up until this point TLB flushing was broken in this series. Based-on-code-from: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Laight <David.Laight@aculab.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Eduardo Valentin <eduval@amazon.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Juergen Gross <jgross@suse.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Will Deacon <will.deacon@arm.com> Cc: aliguori@amazon.com Cc: daniel.gruss@iaik.tugraz.at Cc: hughd@google.com Cc: keescook@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-12-23x86/mm/pti: Add infrastructure for page table isolationThomas Gleixner1-0/+7
Add the initial files for kernel page table isolation, with a minimal init function and the boot time detection for this misfeature. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Laight <David.Laight@aculab.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Eduardo Valentin <eduval@amazon.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Juergen Gross <jgross@suse.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Will Deacon <will.deacon@arm.com> Cc: aliguori@amazon.com Cc: daniel.gruss@iaik.tugraz.at Cc: hughd@google.com Cc: keescook@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-12-23x86/mm/pti: Prepare the x86/entry assembly code for entry/exit CR3 switchingDave Hansen1-0/+66
PAGE_TABLE_ISOLATION needs to switch to a different CR3 value when it enters the kernel and switch back when it exits. This essentially needs to be done before leaving assembly code. This is extra challenging because the switching context is tricky: the registers that can be clobbered can vary. It is also hard to store things on the stack because there is an established ABI (ptregs) or the stack is entirely unsafe to use. Establish a set of macros that allow changing to the user and kernel CR3 values. Interactions with SWAPGS: Previous versions of the PAGE_TABLE_ISOLATION code relied on having per-CPU scratch space to save/restore a register that can be used for the CR3 MOV. The %GS register is used to index into our per-CPU space, so SWAPGS *had* to be done before the CR3 switch. That scratch space is gone now, but the semantic that SWAPGS must be done before the CR3 MOV is retained. This is good to keep because it is not that hard to do and it allows to do things like add per-CPU debugging information. What this does in the NMI code is worth pointing out. NMIs can interrupt *any* context and they can also be nested with NMIs interrupting other NMIs. The comments below ".Lnmi_from_kernel" explain the format of the stack during this situation. Changing the format of this stack is hard. Instead of storing the old CR3 value on the stack, this depends on the *regular* register save/restore mechanism and then uses %r14 to keep CR3 during the NMI. It is callee-saved and will not be clobbered by the C NMI handlers that get called. [ PeterZ: ESPFIX optimization ] Based-on-code-from: Andy Lutomirski <luto@kernel.org> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: David Laight <David.Laight@aculab.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Eduardo Valentin <eduval@amazon.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Juergen Gross <jgross@suse.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Will Deacon <will.deacon@arm.com> Cc: aliguori@amazon.com Cc: daniel.gruss@iaik.tugraz.at Cc: hughd@google.com Cc: keescook@google.com Cc: linux-mm@kvack.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-12-17Merge commit 'upstream-x86-entry' into WIP.x86/mmIngo Molnar1-50/+19
Pull in a minimal set of v4.15 entry code changes, for a base for the MM isolation patches. Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-11-02License cleanup: add SPDX GPL-2.0 license identifier to files with no licenseGreg Kroah-Hartman1-0/+1
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02x86/entry/64: Remove the RESTORE_..._REGS infrastructureAndy Lutomirski1-52/+0
All users of RESTORE_EXTRA_REGS, RESTORE_C_REGS and such, and REMOVE_PT_GPREGS_FROM_STACK are gone. Delete the macros. Signed-off-by: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bpetkov@suse.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/c32672f6e47c561893316d48e06c7656b1039a36.1509609304.git.luto@kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-11-02x86/entry/64: Simplify reg restore code in the standard IRET pathsAndy Lutomirski1-0/+21
The old code restored all the registers with movq instead of pop. In theory, this was done because some CPUs have higher movq throughput, but any gain there would be tiny and is almost certainly outweighed by the higher text size. This saves 96 bytes of text. Signed-off-by: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bpetkov@suse.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/ad82520a207ccd851b04ba613f4f752b33ac05f7.1509609304.git.luto@kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-07-18x86/entry/64: Add unwind hint annotationsJosh Poimboeuf1-0/+5
Add unwind hint annotations to entry_64.S. This will enable the ORC unwinder to unwind through any location in the entry code including syscalls, interrupts, and exceptions. Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Jiri Slaby <jslaby@suse.cz> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: live-patching@vger.kernel.org Link: http://lkml.kernel.org/r/b9f6d478aadf68ba57c739dcfac34ec0dc021c4c.1499786555.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-10-21x86/entry/unwind: Create stack frames for saved interrupt registersJosh Poimboeuf1-0/+20
With frame pointers, when a task is interrupted, its stack is no longer completely reliable because the function could have been interrupted before it had a chance to save the previous frame pointer on the stack. So the caller of the interrupted function could get skipped by a stack trace. This is problematic for live patching, which needs to know whether a stack trace of a sleeping task can be relied upon. There's currently no way to detect if a sleeping task was interrupted by a page fault exception or preemption before it went to sleep. Another issue is that when dumping the stack of an interrupted task, the unwinder has no way of knowing where the saved pt_regs registers are, so it can't print them. This solves those issues by encoding the pt_regs pointer in the frame pointer on entry from an interrupt or an exception. This patch also updates the unwinder to be able to decode it, because otherwise the unwinder would be broken by this change. Note that this causes a change in the behavior of the unwinder: each instance of a pt_regs on the stack is now considered a "frame". So callers of unwind_get_return_address() will now get an occasional 'regs->ip' address that would have previously been skipped over. Suggested-by: Andy Lutomirski <luto@amacapital.net> Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/8b9f84a21e39d249049e0547b559ff8da0df0988.1476973742.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-10-21entry/64: Remove unused ZERO_EXTRA_REGS macroAlexander Kuleshov1-9/+0
Signed-off-by: Alexander Kuleshov <kuleshovmail@gmail.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Andy Lutomirski <luto@kernel.org> Link: http://lkml.kernel.org/r/20161020120704.24042-1-kuleshovmail@gmail.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-10-20x86/entry/64: Remove unused 'addskip' parameter of the ↵Alexander Kuleshov1-2/+2
ALLOC_PT_GPREGS_ON_STACK macro Signed-off-by: Alexander Kuleshov <kuleshovmail@gmail.com> Reviewed-by: Borislav Petkov <bp@suse.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20161019191108.2230-1-kuleshovmail@gmail.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-01-19x86/asm/entry: Remove unused SAVE_ALL/RESTORE_ALL macros for !CONFIG_x86_64Alexander Kuleshov1-31/+0
SAVE_ALL and RESTORE_ALL macros for !CONFIG_X86_64 were introduced in commit: 1a338ac32 commit ('sched, x86: Optimize the preempt_schedule() call') ... and were used in the ___preempt_schedule() and ___preempt_schedule_context() functions from the arch/x86/kernel/preempt.S. But the arch/x86/kernel/preempt.S file was removed in the following commit: 0ad6e3c5 commit ('x86: Speed up ___preempt_schedule*() by using THUNK helpers') The ___preempt_schedule()/___preempt_schedule_context() functions were reimplemeted and do not use SAVE_ALL/RESTORE_ALL anymore. These macros have no users anymore, so we can remove them. Signed-off-by: Alexander Kuleshov <kuleshovmail@gmail.com> Acked-by: Andy Lutomirski <luto@amacapital.net> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Borislav Petkov <bp@suse.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1453126394-13717-1-git-send-email-kuleshovmail@gmail.com [ Improved the changelog. ] Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-11-24x86/entry/64: Bypass enter_from_user_mode on non-context-tracking bootsAndy Lutomirski1-0/+15
On CONFIG_CONTEXT_TRACKING kernels that have context tracking disabled at runtime (which includes most distro kernels), we still have the overhead of a call to enter_from_user_mode in interrupt and exception entries. If jump labels are available, this uses the jump label infrastructure to skip the call. Signed-off-by: Andy Lutomirski <luto@kernel.org> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/73ee804fff48cd8c66b65b724f9f728a11a8c686.1447361906.git.luto@kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-07-07x86/asm/entry/64: Save all regs on interrupt entryAndy Lutomirski1-3/+0
To prepare for the big rewrite of the error and interrupt exit paths, we will need pt_regs completely filled in. It's already completely filled in when error_exit runs, so rearrange interrupt handling to match it. This will slow down interrupt handling very slightly (eight instructions), but the simplification it enables will be more than worth it. Signed-off-by: Andy Lutomirski <luto@kernel.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Denys Vlasenko <vda.linux@googlemail.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Kees Cook <keescook@chromium.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: paulmck@linux.vnet.ibm.com Link: http://lkml.kernel.org/r/d8a766a7f558b30e6e01352854628a2d9943460c.1435952415.git.luto@kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-07-06x86/asm/entry/32: Replace RESTORE_RSI_RDI with open-coded 32-bit readsDenys Vlasenko1-6/+0
This doesn't change much, but uses shorter 32-bit insns: -48 8b 74 24 68 mov 0x68(%rsp),%rsi -48 8b 7c 24 70 mov 0x70(%rsp),%rdi -48 8b 54 24 60 mov 0x60(%rsp),%rdx +8b 54 24 60 mov 0x60(%rsp),%edx +8b 74 24 68 mov 0x68(%rsp),%esi +8b 7c 24 70 mov 0x70(%rsp),%edi and does the loads in pt_regs order. Since these are the only uses of RESTORE_RSI_RDI[_RDX], drop these macros. Signed-off-by: Denys Vlasenko <dvlasenk@redhat.com> Cc: Alexei Starovoitov <ast@plumgrid.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Kees Cook <keescook@chromium.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Drewry <wad@chromium.org> Link: http://lkml.kernel.org/r/1435954742-2545-1-git-send-email-dvlasenk@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-06-04x86/asm/entry: Move arch/x86/include/asm/calling.h to arch/x86/entry/Ingo Molnar1-0/+243
asm/calling.h is private to the entry code, make this more apparent by moving it to the new arch/x86/entry/ directory. Cc: Borislav Petkov <bp@alien8.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Brian Gerst <brgerst@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>