diff options
author | Andrey Konovalov <andreyknvl@google.com> | 2019-12-04 16:52:43 -0800 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2019-12-04 19:44:14 -0800 |
commit | eec028c9386ed1a692aa01a85b55952202b41619 (patch) | |
tree | 66ae93661da098afe6d9864455c751751e311d43 /Documentation | |
parent | 6d13de1489b6bf539695f96d945de3860e6d5e17 (diff) |
kcov: remote coverage support
Patch series " kcov: collect coverage from usb and vhost", v3.
This patchset extends kcov to allow collecting coverage from backgound
kernel threads. This extension requires custom annotations for each of
the places where coverage collection is desired. This patchset
implements this for hub events in the USB subsystem and for vhost
workers. See the first patch description for details about the kcov
extension. The other two patches apply this kcov extension to USB and
vhost.
Examples of other subsystems that might potentially benefit from this
when custom annotations are added (the list is based on
process_one_work() callers for bugs recently reported by syzbot):
1. fs: writeback wb_workfn() worker,
2. net: addrconf_dad_work()/addrconf_verify_work() workers,
3. net: neigh_periodic_work() worker,
4. net/p9: p9_write_work()/p9_read_work() workers,
5. block: blk_mq_run_work_fn() worker.
These patches have been used to enable coverage-guided USB fuzzing with
syzkaller for the last few years, see the details here:
https://github.com/google/syzkaller/blob/master/docs/linux/external_fuzzing_usb.md
This patchset has been pushed to the public Linux kernel Gerrit
instance:
https://linux-review.googlesource.com/c/linux/kernel/git/torvalds/linux/+/1524
This patch (of 3):
Add background thread coverage collection ability to kcov.
With KCOV_ENABLE coverage is collected only for syscalls that are issued
from the current process. With KCOV_REMOTE_ENABLE it's possible to
collect coverage for arbitrary parts of the kernel code, provided that
those parts are annotated with kcov_remote_start()/kcov_remote_stop().
This allows to collect coverage from two types of kernel background
threads: the global ones, that are spawned during kernel boot in a
limited number of instances (e.g. one USB hub_event() worker thread is
spawned per USB HCD); and the local ones, that are spawned when a user
interacts with some kernel interface (e.g. vhost workers).
To enable collecting coverage from a global background thread, a unique
global handle must be assigned and passed to the corresponding
kcov_remote_start() call. Then a userspace process can pass a list of
such handles to the KCOV_REMOTE_ENABLE ioctl in the handles array field
of the kcov_remote_arg struct. This will attach the used kcov device to
the code sections, that are referenced by those handles.
Since there might be many local background threads spawned from
different userspace processes, we can't use a single global handle per
annotation. Instead, the userspace process passes a non-zero handle
through the common_handle field of the kcov_remote_arg struct. This
common handle gets saved to the kcov_handle field in the current
task_struct and needs to be passed to the newly spawned threads via
custom annotations. Those threads should in turn be annotated with
kcov_remote_start()/kcov_remote_stop().
Internally kcov stores handles as u64 integers. The top byte of a
handle is used to denote the id of a subsystem that this handle belongs
to, and the lower 4 bytes are used to denote the id of a thread instance
within that subsystem. A reserved value 0 is used as a subsystem id for
common handles as they don't belong to a particular subsystem. The
bytes 4-7 are currently reserved and must be zero. In the future the
number of bytes used for the subsystem or handle ids might be increased.
When a particular userspace process collects coverage by via a common
handle, kcov will collect coverage for each code section that is
annotated to use the common handle obtained as kcov_handle from the
current task_struct. However non common handles allow to collect
coverage selectively from different subsystems.
Link: http://lkml.kernel.org/r/e90e315426a384207edbec1d6aa89e43008e4caf.1572366574.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Jason Wang <jasowang@redhat.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: David Windsor <dwindsor@gmail.com>
Cc: Elena Reshetova <elena.reshetova@intel.com>
Cc: Anders Roxell <anders.roxell@linaro.org>
Cc: Alexander Potapenko <glider@google.com>
Cc: Marco Elver <elver@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'Documentation')
-rw-r--r-- | Documentation/dev-tools/kcov.rst | 129 |
1 files changed, 129 insertions, 0 deletions
diff --git a/Documentation/dev-tools/kcov.rst b/Documentation/dev-tools/kcov.rst index 42b612677799..36890b026e77 100644 --- a/Documentation/dev-tools/kcov.rst +++ b/Documentation/dev-tools/kcov.rst @@ -34,6 +34,7 @@ Profiling data will only become accessible once debugfs has been mounted:: Coverage collection ------------------- + The following program demonstrates coverage collection from within a test program using kcov: @@ -128,6 +129,7 @@ only need to enable coverage (disable happens automatically on thread end). Comparison operands collection ------------------------------ + Comparison operands collection is similar to coverage collection: .. code-block:: c @@ -202,3 +204,130 @@ Comparison operands collection is similar to coverage collection: Note that the kcov modes (coverage collection or comparison operands) are mutually exclusive. + +Remote coverage collection +-------------------------- + +With KCOV_ENABLE coverage is collected only for syscalls that are issued +from the current process. With KCOV_REMOTE_ENABLE it's possible to collect +coverage for arbitrary parts of the kernel code, provided that those parts +are annotated with kcov_remote_start()/kcov_remote_stop(). + +This allows to collect coverage from two types of kernel background +threads: the global ones, that are spawned during kernel boot in a limited +number of instances (e.g. one USB hub_event() worker thread is spawned per +USB HCD); and the local ones, that are spawned when a user interacts with +some kernel interface (e.g. vhost workers). + +To enable collecting coverage from a global background thread, a unique +global handle must be assigned and passed to the corresponding +kcov_remote_start() call. Then a userspace process can pass a list of such +handles to the KCOV_REMOTE_ENABLE ioctl in the handles array field of the +kcov_remote_arg struct. This will attach the used kcov device to the code +sections, that are referenced by those handles. + +Since there might be many local background threads spawned from different +userspace processes, we can't use a single global handle per annotation. +Instead, the userspace process passes a non-zero handle through the +common_handle field of the kcov_remote_arg struct. This common handle gets +saved to the kcov_handle field in the current task_struct and needs to be +passed to the newly spawned threads via custom annotations. Those threads +should in turn be annotated with kcov_remote_start()/kcov_remote_stop(). + +Internally kcov stores handles as u64 integers. The top byte of a handle +is used to denote the id of a subsystem that this handle belongs to, and +the lower 4 bytes are used to denote the id of a thread instance within +that subsystem. A reserved value 0 is used as a subsystem id for common +handles as they don't belong to a particular subsystem. The bytes 4-7 are +currently reserved and must be zero. In the future the number of bytes +used for the subsystem or handle ids might be increased. + +When a particular userspace proccess collects coverage by via a common +handle, kcov will collect coverage for each code section that is annotated +to use the common handle obtained as kcov_handle from the current +task_struct. However non common handles allow to collect coverage +selectively from different subsystems. + +.. code-block:: c + + struct kcov_remote_arg { + unsigned trace_mode; + unsigned area_size; + unsigned num_handles; + uint64_t common_handle; + uint64_t handles[0]; + }; + + #define KCOV_INIT_TRACE _IOR('c', 1, unsigned long) + #define KCOV_DISABLE _IO('c', 101) + #define KCOV_REMOTE_ENABLE _IOW('c', 102, struct kcov_remote_arg) + + #define COVER_SIZE (64 << 10) + + #define KCOV_TRACE_PC 0 + + #define KCOV_SUBSYSTEM_COMMON (0x00ull << 56) + #define KCOV_SUBSYSTEM_USB (0x01ull << 56) + + #define KCOV_SUBSYSTEM_MASK (0xffull << 56) + #define KCOV_INSTANCE_MASK (0xffffffffull) + + static inline __u64 kcov_remote_handle(__u64 subsys, __u64 inst) + { + if (subsys & ~KCOV_SUBSYSTEM_MASK || inst & ~KCOV_INSTANCE_MASK) + return 0; + return subsys | inst; + } + + #define KCOV_COMMON_ID 0x42 + #define KCOV_USB_BUS_NUM 1 + + int main(int argc, char **argv) + { + int fd; + unsigned long *cover, n, i; + struct kcov_remote_arg *arg; + + fd = open("/sys/kernel/debug/kcov", O_RDWR); + if (fd == -1) + perror("open"), exit(1); + if (ioctl(fd, KCOV_INIT_TRACE, COVER_SIZE)) + perror("ioctl"), exit(1); + cover = (unsigned long*)mmap(NULL, COVER_SIZE * sizeof(unsigned long), + PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0); + if ((void*)cover == MAP_FAILED) + perror("mmap"), exit(1); + + /* Enable coverage collection via common handle and from USB bus #1. */ + arg = calloc(1, sizeof(*arg) + sizeof(uint64_t)); + if (!arg) + perror("calloc"), exit(1); + arg->trace_mode = KCOV_TRACE_PC; + arg->area_size = COVER_SIZE; + arg->num_handles = 1; + arg->common_handle = kcov_remote_handle(KCOV_SUBSYSTEM_COMMON, + KCOV_COMMON_ID); + arg->handles[0] = kcov_remote_handle(KCOV_SUBSYSTEM_USB, + KCOV_USB_BUS_NUM); + if (ioctl(fd, KCOV_REMOTE_ENABLE, arg)) + perror("ioctl"), free(arg), exit(1); + free(arg); + + /* + * Here the user needs to trigger execution of a kernel code section + * that is either annotated with the common handle, or to trigger some + * activity on USB bus #1. + */ + sleep(2); + + n = __atomic_load_n(&cover[0], __ATOMIC_RELAXED); + for (i = 0; i < n; i++) + printf("0x%lx\n", cover[i + 1]); + if (ioctl(fd, KCOV_DISABLE, 0)) + perror("ioctl"), exit(1); + if (munmap(cover, COVER_SIZE * sizeof(unsigned long))) + perror("munmap"), exit(1); + if (close(fd)) + perror("close"), exit(1); + return 0; + } |