/* * mac80211_hwsim - software simulator of 802.11 radio(s) for mac80211 * Copyright (c) 2008, Jouni Malinen * Copyright (c) 2011, Javier Lopez * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ /* * TODO: * - Add TSF sync and fix IBSS beacon transmission by adding * competition for "air time" at TBTT * - RX filtering based on filter configuration (data->rx_filter) */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "mac80211_hwsim.h" #define WARN_QUEUE 100 #define MAX_QUEUE 200 MODULE_AUTHOR("Jouni Malinen"); MODULE_DESCRIPTION("Software simulator of 802.11 radio(s) for mac80211"); MODULE_LICENSE("GPL"); static u32 wmediumd_pid; static int radios = 2; module_param(radios, int, 0444); MODULE_PARM_DESC(radios, "Number of simulated radios"); static bool fake_hw_scan; module_param(fake_hw_scan, bool, 0444); MODULE_PARM_DESC(fake_hw_scan, "Install fake (no-op) hw-scan handler"); /** * enum hwsim_regtest - the type of regulatory tests we offer * * These are the different values you can use for the regtest * module parameter. This is useful to help test world roaming * and the driver regulatory_hint() call and combinations of these. * If you want to do specific alpha2 regulatory domain tests simply * use the userspace regulatory request as that will be respected as * well without the need of this module parameter. This is designed * only for testing the driver regulatory request, world roaming * and all possible combinations. * * @HWSIM_REGTEST_DISABLED: No regulatory tests are performed, * this is the default value. * @HWSIM_REGTEST_DRIVER_REG_FOLLOW: Used for testing the driver regulatory * hint, only one driver regulatory hint will be sent as such the * secondary radios are expected to follow. * @HWSIM_REGTEST_DRIVER_REG_ALL: Used for testing the driver regulatory * request with all radios reporting the same regulatory domain. * @HWSIM_REGTEST_DIFF_COUNTRY: Used for testing the drivers calling * different regulatory domains requests. Expected behaviour is for * an intersection to occur but each device will still use their * respective regulatory requested domains. Subsequent radios will * use the resulting intersection. * @HWSIM_REGTEST_WORLD_ROAM: Used for testing the world roaming. We accomplish * this by using a custom beacon-capable regulatory domain for the first * radio. All other device world roam. * @HWSIM_REGTEST_CUSTOM_WORLD: Used for testing the custom world regulatory * domain requests. All radios will adhere to this custom world regulatory * domain. * @HWSIM_REGTEST_CUSTOM_WORLD_2: Used for testing 2 custom world regulatory * domain requests. The first radio will adhere to the first custom world * regulatory domain, the second one to the second custom world regulatory * domain. All other devices will world roam. * @HWSIM_REGTEST_STRICT_FOLLOW_: Used for testing strict regulatory domain * settings, only the first radio will send a regulatory domain request * and use strict settings. The rest of the radios are expected to follow. * @HWSIM_REGTEST_STRICT_ALL: Used for testing strict regulatory domain * settings. All radios will adhere to this. * @HWSIM_REGTEST_STRICT_AND_DRIVER_REG: Used for testing strict regulatory * domain settings, combined with secondary driver regulatory domain * settings. The first radio will get a strict regulatory domain setting * using the first driver regulatory request and the second radio will use * non-strict settings using the second driver regulatory request. All * other devices should follow the intersection created between the * first two. * @HWSIM_REGTEST_ALL: Used for testing every possible mix. You will need * at least 6 radios for a complete test. We will test in this order: * 1 - driver custom world regulatory domain * 2 - second custom world regulatory domain * 3 - first driver regulatory domain request * 4 - second driver regulatory domain request * 5 - strict regulatory domain settings using the third driver regulatory * domain request * 6 and on - should follow the intersection of the 3rd, 4rth and 5th radio * regulatory requests. */ enum hwsim_regtest { HWSIM_REGTEST_DISABLED = 0, HWSIM_REGTEST_DRIVER_REG_FOLLOW = 1, HWSIM_REGTEST_DRIVER_REG_ALL = 2, HWSIM_REGTEST_DIFF_COUNTRY = 3, HWSIM_REGTEST_WORLD_ROAM = 4, HWSIM_REGTEST_CUSTOM_WORLD = 5, HWSIM_REGTEST_CUSTOM_WORLD_2 = 6, HWSIM_REGTEST_STRICT_FOLLOW = 7, HWSIM_REGTEST_STRICT_ALL = 8, HWSIM_REGTEST_STRICT_AND_DRIVER_REG = 9, HWSIM_REGTEST_ALL = 10, }; /* Set to one of the HWSIM_REGTEST_* values above */ static int regtest = HWSIM_REGTEST_DISABLED; module_param(regtest, int, 0444); MODULE_PARM_DESC(regtest, "The type of regulatory test we want to run"); static const char *hwsim_alpha2s[] = { "FI", "AL", "US", "DE", "JP", "AL", }; static const struct ieee80211_regdomain hwsim_world_regdom_custom_01 = { .n_reg_rules = 4, .alpha2 = "99", .reg_rules = { REG_RULE(2412-10, 2462+10, 40, 0, 20, 0), REG_RULE(2484-10, 2484+10, 40, 0, 20, 0), REG_RULE(5150-10, 5240+10, 40, 0, 30, 0), REG_RULE(5745-10, 5825+10, 40, 0, 30, 0), } }; static const struct ieee80211_regdomain hwsim_world_regdom_custom_02 = { .n_reg_rules = 2, .alpha2 = "99", .reg_rules = { REG_RULE(2412-10, 2462+10, 40, 0, 20, 0), REG_RULE(5725-10, 5850+10, 40, 0, 30, NL80211_RRF_PASSIVE_SCAN | NL80211_RRF_NO_IBSS), } }; struct hwsim_vif_priv { u32 magic; u8 bssid[ETH_ALEN]; bool assoc; u16 aid; }; #define HWSIM_VIF_MAGIC 0x69537748 static inline void hwsim_check_magic(struct ieee80211_vif *vif) { struct hwsim_vif_priv *vp = (void *)vif->drv_priv; WARN_ON(vp->magic != HWSIM_VIF_MAGIC); } static inline void hwsim_set_magic(struct ieee80211_vif *vif) { struct hwsim_vif_priv *vp = (void *)vif->drv_priv; vp->magic = HWSIM_VIF_MAGIC; } static inline void hwsim_clear_magic(struct ieee80211_vif *vif) { struct hwsim_vif_priv *vp = (void *)vif->drv_priv; vp->magic = 0; } struct hwsim_sta_priv { u32 magic; }; #define HWSIM_STA_MAGIC 0x6d537748 static inline void hwsim_check_sta_magic(struct ieee80211_sta *sta) { struct hwsim_sta_priv *sp = (void *)sta->drv_priv; WARN_ON(sp->magic != HWSIM_STA_MAGIC); } static inline void hwsim_set_sta_magic(struct ieee80211_sta *sta) { struct hwsim_sta_priv *sp = (void *)sta->drv_priv; sp->magic = HWSIM_STA_MAGIC; } static inline void hwsim_clear_sta_magic(struct ieee80211_sta *sta) { struct hwsim_sta_priv *sp = (void *)sta->drv_priv; sp->magic = 0; } static struct class *hwsim_class; static struct net_device *hwsim_mon; /* global monitor netdev */ #define CHAN2G(_freq) { \ .band = IEEE80211_BAND_2GHZ, \ .center_freq = (_freq), \ .hw_value = (_freq), \ .max_power = 20, \ } #define CHAN5G(_freq) { \ .band = IEEE80211_BAND_5GHZ, \ .center_freq = (_freq), \ .hw_value = (_freq), \ .max_power = 20, \ } static const struct ieee80211_channel hwsim_channels_2ghz[] = { CHAN2G(2412), /* Channel 1 */ CHAN2G(2417), /* Channel 2 */ CHAN2G(2422), /* Channel 3 */ CHAN2G(2427), /* Channel 4 */ CHAN2G(2432), /* Channel 5 */ CHAN2G(2437), /* Channel 6 */ CHAN2G(2442), /* Channel 7 */ CHAN2G(2447), /* Channel 8 */ CHAN2G(2452), /* Channel 9 */ CHAN2G(2457), /* Channel 10 */ CHAN2G(2462), /* Channel 11 */ CHAN2G(2467), /* Channel 12 */ CHAN2G(2472), /* Channel 13 */ CHAN2G(2484), /* Channel 14 */ }; static const struct ieee80211_channel hwsim_channels_5ghz[] = { CHAN5G(5180), /* Channel 36 */ CHAN5G(5200), /* Channel 40 */ CHAN5G(5220), /* Channel 44 */ CHAN5G(5240), /* Channel 48 */ CHAN5G(5260), /* Channel 52 */ CHAN5G(5280), /* Channel 56 */ CHAN5G(5300), /* Channel 60 */ CHAN5G(5320), /* Channel 64 */ CHAN5G(5500), /* Channel 100 */ CHAN5G(5520), /* Channel 104 */ CHAN5G(5540), /* Channel 108 */ CHAN5G(5560), /* Channel 112 */ CHAN5G(5580), /* Channel 116 */ CHAN5G(5600), /* Channel 120 */ CHAN5G(5620), /* Channel 124 */ CHAN5G(5640), /* Channel 128 */ CHAN5G(5660), /* Channel 132 */ CHAN5G(5680), /* Channel 136 */ CHAN5G(5700), /* Channel 140 */ CHAN5G(5745), /* Channel 149 */ CHAN5G(5765), /* Channel 153 */ CHAN5G(5785), /* Channel 157 */ CHAN5G(5805), /* Channel 161 */ CHAN5G(5825), /* Channel 165 */ }; static const struct ieee80211_rate hwsim_rates[] = { { .bitrate = 10 }, { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, { .bitrate = 60 }, { .bitrate = 90 }, { .bitrate = 120 }, { .bitrate = 180 }, { .bitrate = 240 }, { .bitrate = 360 }, { .bitrate = 480 }, { .bitrate = 540 } }; static spinlock_t hwsim_radio_lock; static struct list_head hwsim_radios; struct mac80211_hwsim_data { struct list_head list; struct ieee80211_hw *hw; struct device *dev; struct ieee80211_supported_band bands[2]; struct ieee80211_channel channels_2ghz[ARRAY_SIZE(hwsim_channels_2ghz)]; struct ieee80211_channel channels_5ghz[ARRAY_SIZE(hwsim_channels_5ghz)]; struct ieee80211_rate rates[ARRAY_SIZE(hwsim_rates)]; struct mac_address addresses[2]; struct ieee80211_channel *channel; unsigned long beacon_int; /* in jiffies unit */ unsigned int rx_filter; bool started, idle, scanning; struct mutex mutex; struct timer_list beacon_timer; enum ps_mode { PS_DISABLED, PS_ENABLED, PS_AUTO_POLL, PS_MANUAL_POLL } ps; bool ps_poll_pending; struct dentry *debugfs; struct dentry *debugfs_ps; struct sk_buff_head pending; /* packets pending */ /* * Only radios in the same group can communicate together (the * channel has to match too). Each bit represents a group. A * radio can be in more then one group. */ u64 group; struct dentry *debugfs_group; int power_level; /* difference between this hw's clock and the real clock, in usecs */ u64 tsf_offset; }; struct hwsim_radiotap_hdr { struct ieee80211_radiotap_header hdr; __le64 rt_tsft; u8 rt_flags; u8 rt_rate; __le16 rt_channel; __le16 rt_chbitmask; } __packed; /* MAC80211_HWSIM netlinf family */ static struct genl_family hwsim_genl_family = { .id = GENL_ID_GENERATE, .hdrsize = 0, .name = "MAC80211_HWSIM", .version = 1, .maxattr = HWSIM_ATTR_MAX, }; /* MAC80211_HWSIM netlink policy */ static struct nla_policy hwsim_genl_policy[HWSIM_ATTR_MAX + 1] = { [HWSIM_ATTR_ADDR_RECEIVER] = { .type = NLA_UNSPEC, .len = 6*sizeof(u8) }, [HWSIM_ATTR_ADDR_TRANSMITTER] = { .type = NLA_UNSPEC, .len = 6*sizeof(u8) }, [HWSIM_ATTR_FRAME] = { .type = NLA_BINARY, .len = IEEE80211_MAX_DATA_LEN }, [HWSIM_ATTR_FLAGS] = { .type = NLA_U32 }, [HWSIM_ATTR_RX_RATE] = { .type = NLA_U32 }, [HWSIM_ATTR_SIGNAL] = { .type = NLA_U32 }, [HWSIM_ATTR_TX_INFO] = { .type = NLA_UNSPEC, .len = IEEE80211_TX_MAX_RATES*sizeof( struct hwsim_tx_rate)}, [HWSIM_ATTR_COOKIE] = { .type = NLA_U64 }, }; static netdev_tx_t hwsim_mon_xmit(struct sk_buff *skb, struct net_device *dev) { /* TODO: allow packet injection */ dev_kfree_skb(skb); return NETDEV_TX_OK; } static __le64 __mac80211_hwsim_get_tsf(struct mac80211_hwsim_data *data) { struct timeval tv = ktime_to_timeval(ktime_get_real()); u64 now = tv.tv_sec * USEC_PER_SEC + tv.tv_usec; return cpu_to_le64(now + data->tsf_offset); } static u64 mac80211_hwsim_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct mac80211_hwsim_data *data = hw->priv; return le64_to_cpu(__mac80211_hwsim_get_tsf(data)); } static void mac80211_hwsim_set_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u64 tsf) { struct mac80211_hwsim_data *data = hw->priv; struct timeval tv = ktime_to_timeval(ktime_get_real()); u64 now = tv.tv_sec * USEC_PER_SEC + tv.tv_usec; data->tsf_offset = tsf - now; } static void mac80211_hwsim_monitor_rx(struct ieee80211_hw *hw, struct sk_buff *tx_skb) { struct mac80211_hwsim_data *data = hw->priv; struct sk_buff *skb; struct hwsim_radiotap_hdr *hdr; u16 flags; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx_skb); struct ieee80211_rate *txrate = ieee80211_get_tx_rate(hw, info); if (!netif_running(hwsim_mon)) return; skb = skb_copy_expand(tx_skb, sizeof(*hdr), 0, GFP_ATOMIC); if (skb == NULL) return; hdr = (struct hwsim_radiotap_hdr *) skb_push(skb, sizeof(*hdr)); hdr->hdr.it_version = PKTHDR_RADIOTAP_VERSION; hdr->hdr.it_pad = 0; hdr->hdr.it_len = cpu_to_le16(sizeof(*hdr)); hdr->hdr.it_present = cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) | (1 << IEEE80211_RADIOTAP_RATE) | (1 << IEEE80211_RADIOTAP_TSFT) | (1 << IEEE80211_RADIOTAP_CHANNEL)); hdr->rt_tsft = __mac80211_hwsim_get_tsf(data); hdr->rt_flags = 0; hdr->rt_rate = txrate->bitrate / 5; hdr->rt_channel = cpu_to_le16(data->channel->center_freq); flags = IEEE80211_CHAN_2GHZ; if (txrate->flags & IEEE80211_RATE_ERP_G) flags |= IEEE80211_CHAN_OFDM; else flags |= IEEE80211_CHAN_CCK; hdr->rt_chbitmask = cpu_to_le16(flags); skb->dev = hwsim_mon; skb_set_mac_header(skb, 0); skb->ip_summed = CHECKSUM_UNNECESSARY; skb->pkt_type = PACKET_OTHERHOST; skb->protocol = htons(ETH_P_802_2); memset(skb->cb, 0, sizeof(skb->cb)); netif_rx(skb); } static void mac80211_hwsim_monitor_ack(struct ieee80211_hw *hw, const u8 *addr) { struct mac80211_hwsim_data *data = hw->priv; struct sk_buff *skb; struct hwsim_radiotap_hdr *hdr; u16 flags; struct ieee80211_hdr *hdr11; if (!netif_running(hwsim_mon)) return; skb = dev_alloc_skb(100); if (skb == NULL) return; hdr = (struct hwsim_radiotap_hdr *) skb_put(skb, sizeof(*hdr)); hdr->hdr.it_version = PKTHDR_RADIOTAP_VERSION; hdr->hdr.it_pad = 0; hdr->hdr.it_len = cpu_to_le16(sizeof(*hdr)); hdr->hdr.it_present = cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) | (1 << IEEE80211_RADIOTAP_CHANNEL)); hdr->rt_flags = 0; hdr->rt_rate = 0; hdr->rt_channel = cpu_to_le16(data->channel->center_freq); flags = IEEE80211_CHAN_2GHZ; hdr->rt_chbitmask = cpu_to_le16(flags); hdr11 = (struct ieee80211_hdr *) skb_put(skb, 10); hdr11->frame_control = cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_ACK); hdr11->duration_id = cpu_to_le16(0); memcpy(hdr11->addr1, addr, ETH_ALEN); skb->dev = hwsim_mon; skb_set_mac_header(skb, 0); skb->ip_summed = CHECKSUM_UNNECESSARY; skb->pkt_type = PACKET_OTHERHOST; skb->protocol = htons(ETH_P_802_2); memset(skb->cb, 0, sizeof(skb->cb)); netif_rx(skb); } static bool hwsim_ps_rx_ok(struct mac80211_hwsim_data *data, struct sk_buff *skb) { switch (data->ps) { case PS_DISABLED: return true; case PS_ENABLED: return false; case PS_AUTO_POLL: /* TODO: accept (some) Beacons by default and other frames only * if pending PS-Poll has been sent */ return true; case PS_MANUAL_POLL: /* Allow unicast frames to own address if there is a pending * PS-Poll */ if (data->ps_poll_pending && memcmp(data->hw->wiphy->perm_addr, skb->data + 4, ETH_ALEN) == 0) { data->ps_poll_pending = false; return true; } return false; } return true; } struct mac80211_hwsim_addr_match_data { bool ret; const u8 *addr; }; static void mac80211_hwsim_addr_iter(void *data, u8 *mac, struct ieee80211_vif *vif) { struct mac80211_hwsim_addr_match_data *md = data; if (memcmp(mac, md->addr, ETH_ALEN) == 0) md->ret = true; } static bool mac80211_hwsim_addr_match(struct mac80211_hwsim_data *data, const u8 *addr) { struct mac80211_hwsim_addr_match_data md; if (memcmp(addr, data->hw->wiphy->perm_addr, ETH_ALEN) == 0) return true; md.ret = false; md.addr = addr; ieee80211_iterate_active_interfaces_atomic(data->hw, mac80211_hwsim_addr_iter, &md); return md.ret; } static void mac80211_hwsim_tx_frame_nl(struct ieee80211_hw *hw, struct sk_buff *my_skb, int dst_pid) { struct sk_buff *skb; struct mac80211_hwsim_data *data = hw->priv; struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) my_skb->data; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(my_skb); void *msg_head; unsigned int hwsim_flags = 0; int i; struct hwsim_tx_rate tx_attempts[IEEE80211_TX_MAX_RATES]; if (data->idle) { wiphy_debug(hw->wiphy, "Trying to TX when idle - reject\n"); dev_kfree_skb(my_skb); return; } if (data->ps != PS_DISABLED) hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PM); /* If the queue contains MAX_QUEUE skb's drop some */ if (skb_queue_len(&data->pending) >= MAX_QUEUE) { /* Droping until WARN_QUEUE level */ while (skb_queue_len(&data->pending) >= WARN_QUEUE) skb_dequeue(&data->pending); } skb = genlmsg_new(NLMSG_GOODSIZE, GFP_ATOMIC); if (skb == NULL) goto nla_put_failure; msg_head = genlmsg_put(skb, 0, 0, &hwsim_genl_family, 0, HWSIM_CMD_FRAME); if (msg_head == NULL) { printk(KERN_DEBUG "mac80211_hwsim: problem with msg_head\n"); goto nla_put_failure; } NLA_PUT(skb, HWSIM_ATTR_ADDR_TRANSMITTER, sizeof(struct mac_address), data->addresses[1].addr); /* We get the skb->data */ NLA_PUT(skb, HWSIM_ATTR_FRAME, my_skb->len, my_skb->data); /* We get the flags for this transmission, and we translate them to wmediumd flags */ if (info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS) hwsim_flags |= HWSIM_TX_CTL_REQ_TX_STATUS; if (info->flags & IEEE80211_TX_CTL_NO_ACK) hwsim_flags |= HWSIM_TX_CTL_NO_ACK; NLA_PUT_U32(skb, HWSIM_ATTR_FLAGS, hwsim_flags); /* We get the tx control (rate and retries) info*/ for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) { tx_attempts[i].idx = info->status.rates[i].idx; tx_attempts[i].count = info->status.rates[i].count; } NLA_PUT(skb, HWSIM_ATTR_TX_INFO, sizeof(struct hwsim_tx_rate)*IEEE80211_TX_MAX_RATES, tx_attempts); /* We create a cookie to identify this skb */ NLA_PUT_U64(skb, HWSIM_ATTR_COOKIE, (unsigned long) my_skb); genlmsg_end(skb, msg_head); genlmsg_unicast(&init_net, skb, dst_pid); /* Enqueue the packet */ skb_queue_tail(&data->pending, my_skb); return; nla_put_failure: printk(KERN_DEBUG "mac80211_hwsim: error occurred in %s\n", __func__); } static bool mac80211_hwsim_tx_frame_no_nl(struct ieee80211_hw *hw, struct sk_buff *skb) { struct mac80211_hwsim_data *data = hw->priv, *data2; bool ack = false; struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_rx_status rx_status; struct ieee80211_rate *txrate = ieee80211_get_tx_rate(hw, info); if (data->idle) { wiphy_debug(hw->wiphy, "Trying to TX when idle - reject\n"); return false; } memset(&rx_status, 0, sizeof(rx_status)); rx_status.flag |= RX_FLAG_MACTIME_MPDU; rx_status.freq = data->channel->center_freq; rx_status.band = data->channel->band; rx_status.rate_idx = info->control.rates[0].idx; if (info->control.rates[0].flags & IEEE80211_TX_RC_MCS) rx_status.flag |= RX_FLAG_HT; if (info->control.rates[0].flags & IEEE80211_TX_RC_40_MHZ_WIDTH) rx_status.flag |= RX_FLAG_40MHZ; if (info->control.rates[0].flags & IEEE80211_TX_RC_SHORT_GI) rx_status.flag |= RX_FLAG_SHORT_GI; /* TODO: simulate real signal strength (and optional packet loss) */ rx_status.signal = data->power_level - 50; if (data->ps != PS_DISABLED) hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PM); /* release the skb's source info */ skb_orphan(skb); skb_dst_drop(skb); skb->mark = 0; secpath_reset(skb); nf_reset(skb); /* Copy skb to all enabled radios that are on the current frequency */ spin_lock(&hwsim_radio_lock); list_for_each_entry(data2, &hwsim_radios, list) { struct sk_buff *nskb; struct ieee80211_mgmt *mgmt; if (data == data2) continue; if (data2->idle || !data2->started || !hwsim_ps_rx_ok(data2, skb) || !data->channel || !data2->channel || data->channel->center_freq != data2->channel->center_freq || !(data->group & data2->group)) continue; nskb = skb_copy(skb, GFP_ATOMIC); if (nskb == NULL) continue; if (mac80211_hwsim_addr_match(data2, hdr->addr1)) ack = true; /* set bcn timestamp relative to receiver mactime */ rx_status.mactime = le64_to_cpu(__mac80211_hwsim_get_tsf(data2)); mgmt = (struct ieee80211_mgmt *) nskb->data; if (ieee80211_is_beacon(mgmt->frame_control) || ieee80211_is_probe_resp(mgmt->frame_control)) mgmt->u.beacon.timestamp = cpu_to_le64( rx_status.mactime + 24 * 8 * 10 / txrate->bitrate); memcpy(IEEE80211_SKB_RXCB(nskb), &rx_status, sizeof(rx_status)); ieee80211_rx_irqsafe(data2->hw, nskb); } spin_unlock(&hwsim_radio_lock); return ack; } static void mac80211_hwsim_tx(struct ieee80211_hw *hw, struct sk_buff *skb) { bool ack; struct ieee80211_tx_info *txi; u32 _pid; mac80211_hwsim_monitor_rx(hw, skb); if (skb->len < 10) { /* Should not happen; just a sanity check for addr1 use */ dev_kfree_skb(skb); return; } /* wmediumd mode check */ _pid = ACCESS_ONCE(wmediumd_pid); if (_pid) return mac80211_hwsim_tx_frame_nl(hw, skb, _pid); /* NO wmediumd detected, perfect medium simulation */ ack = mac80211_hwsim_tx_frame_no_nl(hw, skb); if (ack && skb->len >= 16) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; mac80211_hwsim_monitor_ack(hw, hdr->addr2); } txi = IEEE80211_SKB_CB(skb); if (txi->control.vif) hwsim_check_magic(txi->control.vif); if (txi->control.sta) hwsim_check_sta_magic(txi->control.sta); ieee80211_tx_info_clear_status(txi); if (!(txi->flags & IEEE80211_TX_CTL_NO_ACK) && ack) txi->flags |= IEEE80211_TX_STAT_ACK; ieee80211_tx_status_irqsafe(hw, skb); } static int mac80211_hwsim_start(struct ieee80211_hw *hw) { struct mac80211_hwsim_data *data = hw->priv; wiphy_debug(hw->wiphy, "%s\n", __func__); data->started = true; return 0; } static void mac80211_hwsim_stop(struct ieee80211_hw *hw) { struct mac80211_hwsim_data *data = hw->priv; data->started = false; del_timer(&data->beacon_timer); wiphy_debug(hw->wiphy, "%s\n", __func__); } static int mac80211_hwsim_add_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { wiphy_debug(hw->wiphy, "%s (type=%d mac_addr=%pM)\n", __func__, ieee80211_vif_type_p2p(vif), vif->addr); hwsim_set_magic(vif); return 0; } static int mac80211_hwsim_change_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif, enum nl80211_iftype newtype, bool newp2p) { newtype = ieee80211_iftype_p2p(newtype, newp2p); wiphy_debug(hw->wiphy, "%s (old type=%d, new type=%d, mac_addr=%pM)\n", __func__, ieee80211_vif_type_p2p(vif), newtype, vif->addr); hwsim_check_magic(vif); return 0; } static void mac80211_hwsim_remove_interface( struct ieee80211_hw *hw, struct ieee80211_vif *vif) { wiphy_debug(hw->wiphy, "%s (type=%d mac_addr=%pM)\n", __func__, ieee80211_vif_type_p2p(vif), vif->addr); hwsim_check_magic(vif); hwsim_clear_magic(vif); } static void mac80211_hwsim_beacon_tx(void *arg, u8 *mac, struct ieee80211_vif *vif) { struct ieee80211_hw *hw = arg; struct sk_buff *skb; struct ieee80211_tx_info *info; u32 _pid; hwsim_check_magic(vif); if (vif->type != NL80211_IFTYPE_AP && vif->type != NL80211_IFTYPE_MESH_POINT && vif->type != NL80211_IFTYPE_ADHOC) return; skb = ieee80211_beacon_get(hw, vif); if (skb == NULL) return; info = IEEE80211_SKB_CB(skb); mac80211_hwsim_monitor_rx(hw, skb); /* wmediumd mode check */ _pid = ACCESS_ONCE(wmediumd_pid); if (_pid) return mac80211_hwsim_tx_frame_nl(hw, skb, _pid); mac80211_hwsim_tx_frame_no_nl(hw, skb); dev_kfree_skb(skb); } static void mac80211_hwsim_beacon(unsigned long arg) { struct ieee80211_hw *hw = (struct ieee80211_hw *) arg; struct mac80211_hwsim_data *data = hw->priv; if (!data->started) return; ieee80211_iterate_active_interfaces_atomic( hw, mac80211_hwsim_beacon_tx, hw); data->beacon_timer.expires = jiffies + data->beacon_int; add_timer(&data->beacon_timer); } static const char *hwsim_chantypes[] = { [NL80211_CHAN_NO_HT] = "noht", [NL80211_CHAN_HT20] = "ht20", [NL80211_CHAN_HT40MINUS] = "ht40-", [NL80211_CHAN_HT40PLUS] = "ht40+", }; static int mac80211_hwsim_config(struct ieee80211_hw *hw, u32 changed) { struct mac80211_hwsim_data *data = hw->priv; struct ieee80211_conf *conf = &hw->conf; static const char *smps_modes[IEEE80211_SMPS_NUM_MODES] = { [IEEE80211_SMPS_AUTOMATIC] = "auto", [IEEE80211_SMPS_OFF] = "off", [IEEE80211_SMPS_STATIC] = "static", [IEEE80211_SMPS_DYNAMIC] = "dynamic", }; wiphy_debug(hw->wiphy, "%s (freq=%d/%s idle=%d ps=%d smps=%s)\n", __func__, conf->channel->center_freq, hwsim_chantypes[conf->channel_type], !!(conf->flags & IEEE80211_CONF_IDLE), !!(conf->flags & IEEE80211_CONF_PS), smps_modes[conf->smps_mode]); data->idle = !!(conf->flags & IEEE80211_CONF_IDLE); data->channel = conf->channel; data->power_level = conf->power_level; if (!data->started || !data->beacon_int) del_timer(&data->beacon_timer); else mod_timer(&data->beacon_timer, jiffies + data->beacon_int); return 0; } static void mac80211_hwsim_configure_filter(struct ieee80211_hw *hw, unsigned int changed_flags, unsigned int *total_flags,u64 multicast) { struct mac80211_hwsim_data *data = hw->priv; wiphy_debug(hw->wiphy, "%s\n", __func__); data->rx_filter = 0; if (*total_flags & FIF_PROMISC_IN_BSS) data->rx_filter |= FIF_PROMISC_IN_BSS; if (*total_flags & FIF_ALLMULTI) data->rx_filter |= FIF_ALLMULTI; *total_flags = data->rx_filter; } static void mac80211_hwsim_bss_info_changed(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_bss_conf *info, u32 changed) { struct hwsim_vif_priv *vp = (void *)vif->drv_priv; struct mac80211_hwsim_data *data = hw->priv; hwsim_check_magic(vif); wiphy_debug(hw->wiphy, "%s(changed=0x%x)\n", __func__, changed); if (changed & BSS_CHANGED_BSSID) { wiphy_debug(hw->wiphy, "%s: BSSID changed: %pM\n", __func__, info->bssid); memcpy(vp->bssid, info->bssid, ETH_ALEN); } if (changed & BSS_CHANGED_ASSOC) { wiphy_debug(hw->wiphy, " ASSOC: assoc=%d aid=%d\n", info->assoc, info->aid); vp->assoc = info->assoc; vp->aid = info->aid; } if (changed & BSS_CHANGED_BEACON_INT) { wiphy_debug(hw->wiphy, " BCNINT: %d\n", info->beacon_int); data->beacon_int = 1024 * info->beacon_int / 1000 * HZ / 1000; if (WARN_ON(!data->beacon_int)) data->beacon_int = 1; if (data->started) mod_timer(&data->beacon_timer, jiffies + data->beacon_int); } if (changed & BSS_CHANGED_ERP_CTS_PROT) { wiphy_debug(hw->wiphy, " ERP_CTS_PROT: %d\n", info->use_cts_prot); } if (changed & BSS_CHANGED_ERP_PREAMBLE) { wiphy_debug(hw->wiphy, " ERP_PREAMBLE: %d\n", info->use_short_preamble); } if (changed & BSS_CHANGED_ERP_SLOT) { wiphy_debug(hw->wiphy, " ERP_SLOT: %d\n", info->use_short_slot); } if (changed & BSS_CHANGED_HT) { wiphy_debug(hw->wiphy, " HT: op_mode=0x%x, chantype=%s\n", info->ht_operation_mode, hwsim_chantypes[info->channel_type]); } if (changed & BSS_CHANGED_BASIC_RATES) { wiphy_debug(hw->wiphy, " BASIC_RATES: 0x%llx\n", (unsigned long long) info->basic_rates); } } static int mac80211_hwsim_sta_add(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta) { hwsim_check_magic(vif); hwsim_set_sta_magic(sta); return 0; } static int mac80211_hwsim_sta_remove(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta) { hwsim_check_magic(vif); hwsim_clear_sta_magic(sta); return 0; } static void mac80211_hwsim_sta_notify(struct ieee80211_hw *hw, struct ieee80211_vif *vif, enum sta_notify_cmd cmd, struct ieee80211_sta *sta) { hwsim_check_magic(vif); switch (cmd) { case STA_NOTIFY_SLEEP: case STA_NOTIFY_AWAKE: /* TODO: make good use of these flags */ break; default: WARN(1, "Invalid sta notify: %d\n", cmd); break; } } static int mac80211_hwsim_set_tim(struct ieee80211_hw *hw, struct ieee80211_sta *sta, bool set) { hwsim_check_sta_magic(sta); return 0; } static int mac80211_hwsim_conf_tx( struct ieee80211_hw *hw, struct ieee80211_vif *vif, u16 queue, const struct ieee80211_tx_queue_params *params) { wiphy_debug(hw->wiphy, "%s (queue=%d txop=%d cw_min=%d cw_max=%d aifs=%d)\n", __func__, queue, params->txop, params->cw_min, params->cw_max, params->aifs); return 0; } static int mac80211_hwsim_get_survey( struct ieee80211_hw *hw, int idx, struct survey_info *survey) { struct ieee80211_conf *conf = &hw->conf; wiphy_debug(hw->wiphy, "%s (idx=%d)\n", __func__, idx); if (idx != 0) return -ENOENT; /* Current channel */ survey->channel = conf->channel; /* * Magically conjured noise level --- this is only ok for simulated hardware. * * A real driver which cannot determine the real channel noise MUST NOT * report any noise, especially not a magically conjured one :-) */ survey->filled = SURVEY_INFO_NOISE_DBM; survey->noise = -92; return 0; } #ifdef CONFIG_NL80211_TESTMODE /* * This section contains example code for using netlink * attributes with the testmode command in nl80211. */ /* These enums need to be kept in sync with userspace */ enum hwsim_testmode_attr { __HWSIM_TM_ATTR_INVALID = 0, HWSIM_TM_ATTR_CMD = 1, HWSIM_TM_ATTR_PS = 2, /* keep last */ __HWSIM_TM_ATTR_AFTER_LAST, HWSIM_TM_ATTR_MAX = __HWSIM_TM_ATTR_AFTER_LAST - 1 }; enum hwsim_testmode_cmd { HWSIM_TM_CMD_SET_PS = 0, HWSIM_TM_CMD_GET_PS = 1, }; static const struct nla_policy hwsim_testmode_policy[HWSIM_TM_ATTR_MAX + 1] = { [HWSIM_TM_ATTR_CMD] = { .type = NLA_U32 }, [HWSIM_TM_ATTR_PS] = { .type = NLA_U32 }, }; static int hwsim_fops_ps_write(void *dat, u64 val); static int mac80211_hwsim_testmode_cmd(struct ieee80211_hw *hw, void *data, int len) { struct mac80211_hwsim_data *hwsim = hw->priv; struct nlattr *tb[HWSIM_TM_ATTR_MAX + 1]; struct sk_buff *skb; int err, ps; err = nla_parse(tb, HWSIM_TM_ATTR_MAX, data, len, hwsim_testmode_policy); if (err) return err; if (!tb[HWSIM_TM_ATTR_CMD]) return -EINVAL; switch (nla_get_u32(tb[HWSIM_TM_ATTR_CMD])) { case HWSIM_TM_CMD_SET_PS: if (!tb[HWSIM_TM_ATTR_PS]) return -EINVAL; ps = nla_get_u32(tb[HWSIM_TM_ATTR_PS]); return hwsim_fops_ps_write(hwsim, ps); case HWSIM_TM_CMD_GET_PS: skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32))); if (!skb) return -ENOMEM; NLA_PUT_U32(skb, HWSIM_TM_ATTR_PS, hwsim->ps); return cfg80211_testmode_reply(skb); default: return -EOPNOTSUPP; } nla_put_failure: kfree_skb(skb); return -ENOBUFS; } #endif static int mac80211_hwsim_ampdu_action(struct ieee80211_hw *hw, struct ieee80211_vif *vif, enum ieee80211_ampdu_mlme_action action, struct ieee80211_sta *sta, u16 tid, u16 *ssn, u8 buf_size) { switch (action) { case IEEE80211_AMPDU_TX_START: ieee80211_start_tx_ba_cb_irqsafe(vif, sta->addr, tid); break; case IEEE80211_AMPDU_TX_STOP: ieee80211_stop_tx_ba_cb_irqsafe(vif, sta->addr, tid); break; case IEEE80211_AMPDU_TX_OPERATIONAL: break; case IEEE80211_AMPDU_RX_START: case IEEE80211_AMPDU_RX_STOP: break; default: return -EOPNOTSUPP; } return 0; } static void mac80211_hwsim_flush(struct ieee80211_hw *hw, bool drop) { /* Not implemented, queues only on kernel side */ } struct hw_scan_done { struct delayed_work w; struct ieee80211_hw *hw; }; static void hw_scan_done(struct work_struct *work) { struct hw_scan_done *hsd = container_of(work, struct hw_scan_done, w.work); ieee80211_scan_completed(hsd->hw, false); kfree(hsd); } static int mac80211_hwsim_hw_scan(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct cfg80211_scan_request *req) { struct hw_scan_done *hsd = kzalloc(sizeof(*hsd), GFP_KERNEL); int i; if (!hsd) return -ENOMEM; hsd->hw = hw; INIT_DELAYED_WORK(&hsd->w, hw_scan_done); printk(KERN_DEBUG "hwsim hw_scan request\n"); for (i = 0; i < req->n_channels; i++) printk(KERN_DEBUG "hwsim hw_scan freq %d\n", req->channels[i]->center_freq); print_hex_dump(KERN_DEBUG, "scan IEs: ", DUMP_PREFIX_OFFSET, 16, 1, req->ie, req->ie_len, 1); ieee80211_queue_delayed_work(hw, &hsd->w, 2 * HZ); return 0; } static void mac80211_hwsim_sw_scan(struct ieee80211_hw *hw) { struct mac80211_hwsim_data *hwsim = hw->priv; mutex_lock(&hwsim->mutex); if (hwsim->scanning) { printk(KERN_DEBUG "two hwsim sw_scans detected!\n"); goto out; } printk(KERN_DEBUG "hwsim sw_scan request, prepping stuff\n"); hwsim->scanning = true; out: mutex_unlock(&hwsim->mutex); } static void mac80211_hwsim_sw_scan_complete(struct ieee80211_hw *hw) { struct mac80211_hwsim_data *hwsim = hw->priv; mutex_lock(&hwsim->mutex); printk(KERN_DEBUG "hwsim sw_scan_complete\n"); hwsim->scanning = false; mutex_unlock(&hwsim->mutex); } static struct ieee80211_ops mac80211_hwsim_ops = { .tx = mac80211_hwsim_tx, .start = mac80211_hwsim_start, .stop = mac80211_hwsim_stop, .add_interface = mac80211_hwsim_add_interface, .change_interface = mac80211_hwsim_change_interface, .remove_interface = mac80211_hwsim_remove_interface, .config = mac80211_hwsim_config, .configure_filter = mac80211_hwsim_configure_filter, .bss_info_changed = mac80211_hwsim_bss_info_changed, .sta_add = mac80211_hwsim_sta_add, .sta_remove = mac80211_hwsim_sta_remove, .sta_notify = mac80211_hwsim_sta_notify, .set_tim = mac80211_hwsim_set_tim, .conf_tx = mac80211_hwsim_conf_tx, .get_survey = mac80211_hwsim_get_survey, CFG80211_TESTMODE_CMD(mac80211_hwsim_testmode_cmd) .ampdu_action = mac80211_hwsim_ampdu_action, .sw_scan_start = mac80211_hwsim_sw_scan, .sw_scan_complete = mac80211_hwsim_sw_scan_complete, .flush = mac80211_hwsim_flush, .get_tsf = mac80211_hwsim_get_tsf, .set_tsf = mac80211_hwsim_set_tsf, }; static void mac80211_hwsim_free(void) { struct list_head tmplist, *i, *tmp; struct mac80211_hwsim_data *data, *tmpdata; INIT_LIST_HEAD(&tmplist); spin_lock_bh(&hwsim_radio_lock); list_for_each_safe(i, tmp, &hwsim_radios) list_move(i, &tmplist); spin_unlock_bh(&hwsim_radio_lock); list_for_each_entry_safe(data, tmpdata, &tmplist, list) { debugfs_remove(data->debugfs_group); debugfs_remove(data->debugfs_ps); debugfs_remove(data->debugfs); ieee80211_unregister_hw(data->hw); device_unregister(data->dev); ieee80211_free_hw(data->hw); } class_destroy(hwsim_class); } static struct device_driver mac80211_hwsim_driver = { .name = "mac80211_hwsim" }; static const struct net_device_ops hwsim_netdev_ops = { .ndo_start_xmit = hwsim_mon_xmit, .ndo_change_mtu = eth_change_mtu, .ndo_set_mac_address = eth_mac_addr, .ndo_validate_addr = eth_validate_addr, }; static void hwsim_mon_setup(struct net_device *dev) { dev->netdev_ops = &hwsim_netdev_ops; dev->destructor = free_netdev; ether_setup(dev); dev->tx_queue_len = 0; dev->type = ARPHRD_IEEE80211_RADIOTAP; memset(dev->dev_addr, 0, ETH_ALEN); dev->dev_addr[0] = 0x12; } static void hwsim_send_ps_poll(void *dat, u8 *mac, struct ieee80211_vif *vif) { struct mac80211_hwsim_data *data = dat; struct hwsim_vif_priv *vp = (void *)vif->drv_priv; struct sk_buff *skb; struct ieee80211_pspoll *pspoll; u32 _pid; if (!vp->assoc) return; wiphy_debug(data->hw->wiphy, "%s: send PS-Poll to %pM for aid %d\n", __func__, vp->bssid, vp->aid); skb = dev_alloc_skb(sizeof(*pspoll)); if (!skb) return; pspoll = (void *) skb_put(skb, sizeof(*pspoll)); pspoll->frame_control = cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_PSPOLL | IEEE80211_FCTL_PM); pspoll->aid = cpu_to_le16(0xc000 | vp->aid); memcpy(pspoll->bssid, vp->bssid, ETH_ALEN); memcpy(pspoll->ta, mac, ETH_ALEN); /* wmediumd mode check */ _pid = ACCESS_ONCE(wmediumd_pid); if (_pid) return mac80211_hwsim_tx_frame_nl(data->hw, skb, _pid); if (!mac80211_hwsim_tx_frame_no_nl(data->hw, skb)) printk(KERN_DEBUG "%s: PS-poll frame not ack'ed\n", __func__); dev_kfree_skb(skb); } static void hwsim_send_nullfunc(struct mac80211_hwsim_data *data, u8 *mac, struct ieee80211_vif *vif, int ps) { struct hwsim_vif_priv *vp = (void *)vif->drv_priv; struct sk_buff *skb; struct ieee80211_hdr *hdr; u32 _pid; if (!vp->assoc) return; wiphy_debug(data->hw->wiphy, "%s: send data::nullfunc to %pM ps=%d\n", __func__, vp->bssid, ps); skb = dev_alloc_skb(sizeof(*hdr)); if (!skb) return; hdr = (void *) skb_put(skb, sizeof(*hdr) - ETH_ALEN); hdr->frame_control = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_NULLFUNC | (ps ? IEEE80211_FCTL_PM : 0)); hdr->duration_id = cpu_to_le16(0); memcpy(hdr->addr1, vp->bssid, ETH_ALEN); memcpy(hdr->addr2, mac, ETH_ALEN); memcpy(hdr->addr3, vp->bssid, ETH_ALEN); /* wmediumd mode check */ _pid = ACCESS_ONCE(wmediumd_pid); if (_pid) return mac80211_hwsim_tx_frame_nl(data->hw, skb, _pid); if (!mac80211_hwsim_tx_frame_no_nl(data->hw, skb)) printk(KERN_DEBUG "%s: nullfunc frame not ack'ed\n", __func__); dev_kfree_skb(skb); } static void hwsim_send_nullfunc_ps(void *dat, u8 *mac, struct ieee80211_vif *vif) { struct mac80211_hwsim_data *data = dat; hwsim_send_nullfunc(data, mac, vif, 1); } static void hwsim_send_nullfunc_no_ps(void *dat, u8 *mac, struct ieee80211_vif *vif) { struct mac80211_hwsim_data *data = dat; hwsim_send_nullfunc(data, mac, vif, 0); } static int hwsim_fops_ps_read(void *dat, u64 *val) { struct mac80211_hwsim_data *data = dat; *val = data->ps; return 0; } static int hwsim_fops_ps_write(void *dat, u64 val) { struct mac80211_hwsim_data *data = dat; enum ps_mode old_ps; if (val != PS_DISABLED && val != PS_ENABLED && val != PS_AUTO_POLL && val != PS_MANUAL_POLL) return -EINVAL; old_ps = data->ps; data->ps = val; if (val == PS_MANUAL_POLL) { ieee80211_iterate_active_interfaces(data->hw, hwsim_send_ps_poll, data); data->ps_poll_pending = true; } else if (old_ps == PS_DISABLED && val != PS_DISABLED) { ieee80211_iterate_active_interfaces(data->hw, hwsim_send_nullfunc_ps, data); } else if (old_ps != PS_DISABLED && val == PS_DISABLED) { ieee80211_iterate_active_interfaces(data->hw, hwsim_send_nullfunc_no_ps, data); } return 0; } DEFINE_SIMPLE_ATTRIBUTE(hwsim_fops_ps, hwsim_fops_ps_read, hwsim_fops_ps_write, "%llu\n"); static int hwsim_fops_group_read(void *dat, u64 *val) { struct mac80211_hwsim_data *data = dat; *val = data->group; return 0; } static int hwsim_fops_group_write(void *dat, u64 val) { struct mac80211_hwsim_data *data = dat; data->group = val; return 0; } DEFINE_SIMPLE_ATTRIBUTE(hwsim_fops_group, hwsim_fops_group_read, hwsim_fops_group_write, "%llx\n"); static struct mac80211_hwsim_data *get_hwsim_data_ref_from_addr( struct mac_address *addr) { struct mac80211_hwsim_data *data; bool _found = false; spin_lock_bh(&hwsim_radio_lock); list_for_each_entry(data, &hwsim_radios, list) { if (memcmp(data->addresses[1].addr, addr, sizeof(struct mac_address)) == 0) { _found = true; break; } } spin_unlock_bh(&hwsim_radio_lock); if (!_found) return NULL; return data; } static int hwsim_tx_info_frame_received_nl(struct sk_buff *skb_2, struct genl_info *info) { struct ieee80211_hdr *hdr; struct mac80211_hwsim_data *data2; struct ieee80211_tx_info *txi; struct hwsim_tx_rate *tx_attempts; struct sk_buff __user *ret_skb; struct sk_buff *skb, *tmp; struct mac_address *src; unsigned int hwsim_flags; int i; bool found = false; if (!info->attrs[HWSIM_ATTR_ADDR_TRANSMITTER] || !info->attrs[HWSIM_ATTR_FLAGS] || !info->attrs[HWSIM_ATTR_COOKIE] || !info->attrs[HWSIM_ATTR_TX_INFO]) goto out; src = (struct mac_address *)nla_data( info->attrs[HWSIM_ATTR_ADDR_TRANSMITTER]); hwsim_flags = nla_get_u32(info->attrs[HWSIM_ATTR_FLAGS]); ret_skb = (struct sk_buff __user *) (unsigned long) nla_get_u64(info->attrs[HWSIM_ATTR_COOKIE]); data2 = get_hwsim_data_ref_from_addr(src); if (data2 == NULL) goto out; /* look for the skb matching the cookie passed back from user */ skb_queue_walk_safe(&data2->pending, skb, tmp) { if (skb == ret_skb) { skb_unlink(skb, &data2->pending); found = true; break; } } /* not found */ if (!found) goto out; /* Tx info received because the frame was broadcasted on user space, so we get all the necessary info: tx attempts and skb control buff */ tx_attempts = (struct hwsim_tx_rate *)nla_data( info->attrs[HWSIM_ATTR_TX_INFO]); /* now send back TX status */ txi = IEEE80211_SKB_CB(skb); if (txi->control.vif) hwsim_check_magic(txi->control.vif); if (txi->control.sta) hwsim_check_sta_magic(txi->control.sta); ieee80211_tx_info_clear_status(txi); for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) { txi->status.rates[i].idx = tx_attempts[i].idx; txi->status.rates[i].count = tx_attempts[i].count; /*txi->status.rates[i].flags = 0;*/ } txi->status.ack_signal = nla_get_u32(info->attrs[HWSIM_ATTR_SIGNAL]); if (!(hwsim_flags & HWSIM_TX_CTL_NO_ACK) && (hwsim_flags & HWSIM_TX_STAT_ACK)) { if (skb->len >= 16) { hdr = (struct ieee80211_hdr *) skb->data; mac80211_hwsim_monitor_ack(data2->hw, hdr->addr2); } } ieee80211_tx_status_irqsafe(data2->hw, skb); return 0; out: return -EINVAL; } static int hwsim_cloned_frame_received_nl(struct sk_buff *skb_2, struct genl_info *info) { struct mac80211_hwsim_data *data2; struct ieee80211_rx_status rx_status; struct mac_address *dst; int frame_data_len; char *frame_data; struct sk_buff *skb = NULL; if (!info->attrs[HWSIM_ATTR_ADDR_RECEIVER] || !info->attrs[HWSIM_ATTR_FRAME] || !info->attrs[HWSIM_ATTR_RX_RATE] || !info->attrs[HWSIM_ATTR_SIGNAL]) goto out; dst = (struct mac_address *)nla_data( info->attrs[HWSIM_ATTR_ADDR_RECEIVER]); frame_data_len = nla_len(info->attrs[HWSIM_ATTR_FRAME]); frame_data = (char *)nla_data(info->attrs[HWSIM_ATTR_FRAME]); /* Allocate new skb here */ skb = alloc_skb(frame_data_len, GFP_KERNEL); if (skb == NULL) goto err; if (frame_data_len <= IEEE80211_MAX_DATA_LEN) { /* Copy the data */ memcpy(skb_put(skb, frame_data_len), frame_data, frame_data_len); } else goto err; data2 = get_hwsim_data_ref_from_addr(dst); if (data2 == NULL) goto out; /* check if radio is configured properly */ if (data2->idle || !data2->started || !data2->channel) goto out; /*A frame is received from user space*/ memset(&rx_status, 0, sizeof(rx_status)); rx_status.freq = data2->channel->center_freq; rx_status.band = data2->channel->band; rx_status.rate_idx = nla_get_u32(info->attrs[HWSIM_ATTR_RX_RATE]); rx_status.signal = nla_get_u32(info->attrs[HWSIM_ATTR_SIGNAL]); memcpy(IEEE80211_SKB_RXCB(skb), &rx_status, sizeof(rx_status)); ieee80211_rx_irqsafe(data2->hw, skb); return 0; err: printk(KERN_DEBUG "mac80211_hwsim: error occurred in %s\n", __func__); goto out; out: dev_kfree_skb(skb); return -EINVAL; } static int hwsim_register_received_nl(struct sk_buff *skb_2, struct genl_info *info) { if (info == NULL) goto out; wmediumd_pid = info->snd_pid; printk(KERN_DEBUG "mac80211_hwsim: received a REGISTER, " "switching to wmediumd mode with pid %d\n", info->snd_pid); return 0; out: printk(KERN_DEBUG "mac80211_hwsim: error occurred in %s\n", __func__); return -EINVAL; } /* Generic Netlink operations array */ static struct genl_ops hwsim_ops[] = { { .cmd = HWSIM_CMD_REGISTER, .policy = hwsim_genl_policy, .doit = hwsim_register_received_nl, .flags = GENL_ADMIN_PERM, }, { .cmd = HWSIM_CMD_FRAME, .policy = hwsim_genl_policy, .doit = hwsim_cloned_frame_received_nl, }, { .cmd = HWSIM_CMD_TX_INFO_FRAME, .policy = hwsim_genl_policy, .doit = hwsim_tx_info_frame_received_nl, }, }; static int mac80211_hwsim_netlink_notify(struct notifier_block *nb, unsigned long state, void *_notify) { struct netlink_notify *notify = _notify; if (state != NETLINK_URELEASE) return NOTIFY_DONE; if (notify->pid == wmediumd_pid) { printk(KERN_INFO "mac80211_hwsim: wmediumd released netlink" " socket, switching to perfect channel medium\n"); wmediumd_pid = 0; } return NOTIFY_DONE; } static struct notifier_block hwsim_netlink_notifier = { .notifier_call = mac80211_hwsim_netlink_notify, }; static int hwsim_init_netlink(void) { int rc; printk(KERN_INFO "mac80211_hwsim: initializing netlink\n"); rc = genl_register_family_with_ops(&hwsim_genl_family, hwsim_ops, ARRAY_SIZE(hwsim_ops)); if (rc) goto failure; rc = netlink_register_notifier(&hwsim_netlink_notifier); if (rc) goto failure; return 0; failure: printk(KERN_DEBUG "mac80211_hwsim: error occurred in %s\n", __func__); return -EINVAL; } static void hwsim_exit_netlink(void) { int ret; printk(KERN_INFO "mac80211_hwsim: closing netlink\n"); /* unregister the notifier */ netlink_unregister_notifier(&hwsim_netlink_notifier); /* unregister the family */ ret = genl_unregister_family(&hwsim_genl_family); if (ret) printk(KERN_DEBUG "mac80211_hwsim: " "unregister family %i\n", ret); } static int __init init_mac80211_hwsim(void) { int i, err = 0; u8 addr[ETH_ALEN]; struct mac80211_hwsim_data *data; struct ieee80211_hw *hw; enum ieee80211_band band; if (radios < 1 || radios > 100) return -EINVAL; if (fake_hw_scan) { mac80211_hwsim_ops.hw_scan = mac80211_hwsim_hw_scan; mac80211_hwsim_ops.sw_scan_start = NULL; mac80211_hwsim_ops.sw_scan_complete = NULL; } spin_lock_init(&hwsim_radio_lock); INIT_LIST_HEAD(&hwsim_radios); hwsim_class = class_create(THIS_MODULE, "mac80211_hwsim"); if (IS_ERR(hwsim_class)) return PTR_ERR(hwsim_class); memset(addr, 0, ETH_ALEN); addr[0] = 0x02; for (i = 0; i < radios; i++) { printk(KERN_DEBUG "mac80211_hwsim: Initializing radio %d\n", i); hw = ieee80211_alloc_hw(sizeof(*data), &mac80211_hwsim_ops); if (!hw) { printk(KERN_DEBUG "mac80211_hwsim: ieee80211_alloc_hw " "failed\n"); err = -ENOMEM; goto failed; } data = hw->priv; data->hw = hw; data->dev = device_create(hwsim_class, NULL, 0, hw, "hwsim%d", i); if (IS_ERR(data->dev)) { printk(KERN_DEBUG "mac80211_hwsim: device_create " "failed (%ld)\n", PTR_ERR(data->dev)); err = -ENOMEM; goto failed_drvdata; } data->dev->driver = &mac80211_hwsim_driver; skb_queue_head_init(&data->pending); SET_IEEE80211_DEV(hw, data->dev); addr[3] = i >> 8; addr[4] = i; memcpy(data->addresses[0].addr, addr, ETH_ALEN); memcpy(data->addresses[1].addr, addr, ETH_ALEN); data->addresses[1].addr[0] |= 0x40; hw->wiphy->n_addresses = 2; hw->wiphy->addresses = data->addresses; if (fake_hw_scan) { hw->wiphy->max_scan_ssids = 255; hw->wiphy->max_scan_ie_len = IEEE80211_MAX_DATA_LEN; } hw->channel_change_time = 1; hw->queues = 4; hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) | BIT(NL80211_IFTYPE_AP) | BIT(NL80211_IFTYPE_P2P_CLIENT) | BIT(NL80211_IFTYPE_P2P_GO) | BIT(NL80211_IFTYPE_ADHOC) | BIT(NL80211_IFTYPE_MESH_POINT); hw->flags = IEEE80211_HW_MFP_CAPABLE | IEEE80211_HW_SIGNAL_DBM | IEEE80211_HW_SUPPORTS_STATIC_SMPS | IEEE80211_HW_SUPPORTS_DYNAMIC_SMPS | IEEE80211_HW_AMPDU_AGGREGATION; hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_TDLS | WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL; /* ask mac80211 to reserve space for magic */ hw->vif_data_size = sizeof(struct hwsim_vif_priv); hw->sta_data_size = sizeof(struct hwsim_sta_priv); memcpy(data->channels_2ghz, hwsim_channels_2ghz, sizeof(hwsim_channels_2ghz)); memcpy(data->channels_5ghz, hwsim_channels_5ghz, sizeof(hwsim_channels_5ghz)); memcpy(data->rates, hwsim_rates, sizeof(hwsim_rates)); for (band = IEEE80211_BAND_2GHZ; band < IEEE80211_NUM_BANDS; band++) { struct ieee80211_supported_band *sband = &data->bands[band]; switch (band) { case IEEE80211_BAND_2GHZ: sband->channels = data->channels_2ghz; sband->n_channels = ARRAY_SIZE(hwsim_channels_2ghz); sband->bitrates = data->rates; sband->n_bitrates = ARRAY_SIZE(hwsim_rates); break; case IEEE80211_BAND_5GHZ: sband->channels = data->channels_5ghz; sband->n_channels = ARRAY_SIZE(hwsim_channels_5ghz); sband->bitrates = data->rates + 4; sband->n_bitrates = ARRAY_SIZE(hwsim_rates) - 4; break; default: break; } sband->ht_cap.ht_supported = true; sband->ht_cap.cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 | IEEE80211_HT_CAP_GRN_FLD | IEEE80211_HT_CAP_SGI_40 | IEEE80211_HT_CAP_DSSSCCK40; sband->ht_cap.ampdu_factor = 0x3; sband->ht_cap.ampdu_density = 0x6; memset(&sband->ht_cap.mcs, 0, sizeof(sband->ht_cap.mcs)); sband->ht_cap.mcs.rx_mask[0] = 0xff; sband->ht_cap.mcs.rx_mask[1] = 0xff; sband->ht_cap.mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED; hw->wiphy->bands[band] = sband; } /* By default all radios are belonging to the first group */ data->group = 1; mutex_init(&data->mutex); /* Enable frame retransmissions for lossy channels */ hw->max_rates = 4; hw->max_rate_tries = 11; /* Work to be done prior to ieee80211_register_hw() */ switch (regtest) { case HWSIM_REGTEST_DISABLED: case HWSIM_REGTEST_DRIVER_REG_FOLLOW: case HWSIM_REGTEST_DRIVER_REG_ALL: case HWSIM_REGTEST_DIFF_COUNTRY: /* * Nothing to be done for driver regulatory domain * hints prior to ieee80211_register_hw() */ break; case HWSIM_REGTEST_WORLD_ROAM: if (i == 0) { hw->wiphy->flags |= WIPHY_FLAG_CUSTOM_REGULATORY; wiphy_apply_custom_regulatory(hw->wiphy, &hwsim_world_regdom_custom_01); } break; case HWSIM_REGTEST_CUSTOM_WORLD: hw->wiphy->flags |= WIPHY_FLAG_CUSTOM_REGULATORY; wiphy_apply_custom_regulatory(hw->wiphy, &hwsim_world_regdom_custom_01); break; case HWSIM_REGTEST_CUSTOM_WORLD_2: if (i == 0) { hw->wiphy->flags |= WIPHY_FLAG_CUSTOM_REGULATORY; wiphy_apply_custom_regulatory(hw->wiphy, &hwsim_world_regdom_custom_01); } else if (i == 1) { hw->wiphy->flags |= WIPHY_FLAG_CUSTOM_REGULATORY; wiphy_apply_custom_regulatory(hw->wiphy, &hwsim_world_regdom_custom_02); } break; case HWSIM_REGTEST_STRICT_ALL: hw->wiphy->flags |= WIPHY_FLAG_STRICT_REGULATORY; break; case HWSIM_REGTEST_STRICT_FOLLOW: case HWSIM_REGTEST_STRICT_AND_DRIVER_REG: if (i == 0) hw->wiphy->flags |= WIPHY_FLAG_STRICT_REGULATORY; break; case HWSIM_REGTEST_ALL: if (i == 0) { hw->wiphy->flags |= WIPHY_FLAG_CUSTOM_REGULATORY; wiphy_apply_custom_regulatory(hw->wiphy, &hwsim_world_regdom_custom_01); } else if (i == 1) { hw->wiphy->flags |= WIPHY_FLAG_CUSTOM_REGULATORY; wiphy_apply_custom_regulatory(hw->wiphy, &hwsim_world_regdom_custom_02); } else if (i == 4) hw->wiphy->flags |= WIPHY_FLAG_STRICT_REGULATORY; break; default: break; } /* give the regulatory workqueue a chance to run */ if (regtest) schedule_timeout_interruptible(1); err = ieee80211_register_hw(hw); if (err < 0) { printk(KERN_DEBUG "mac80211_hwsim: " "ieee80211_register_hw failed (%d)\n", err); goto failed_hw; } /* Work to be done after to ieee80211_register_hw() */ switch (regtest) { case HWSIM_REGTEST_WORLD_ROAM: case HWSIM_REGTEST_DISABLED: break; case HWSIM_REGTEST_DRIVER_REG_FOLLOW: if (!i) regulatory_hint(hw->wiphy, hwsim_alpha2s[0]); break; case HWSIM_REGTEST_DRIVER_REG_ALL: case HWSIM_REGTEST_STRICT_ALL: regulatory_hint(hw->wiphy, hwsim_alpha2s[0]); break; case HWSIM_REGTEST_DIFF_COUNTRY: if (i < ARRAY_SIZE(hwsim_alpha2s)) regulatory_hint(hw->wiphy, hwsim_alpha2s[i]); break; case HWSIM_REGTEST_CUSTOM_WORLD: case HWSIM_REGTEST_CUSTOM_WORLD_2: /* * Nothing to be done for custom world regulatory * domains after to ieee80211_register_hw */ break; case HWSIM_REGTEST_STRICT_FOLLOW: if (i == 0) regulatory_hint(hw->wiphy, hwsim_alpha2s[0]); break; case HWSIM_REGTEST_STRICT_AND_DRIVER_REG: if (i == 0) regulatory_hint(hw->wiphy, hwsim_alpha2s[0]); else if (i == 1) regulatory_hint(hw->wiphy, hwsim_alpha2s[1]); break; case HWSIM_REGTEST_ALL: if (i == 2) regulatory_hint(hw->wiphy, hwsim_alpha2s[0]); else if (i == 3) regulatory_hint(hw->wiphy, hwsim_alpha2s[1]); else if (i == 4) regulatory_hint(hw->wiphy, hwsim_alpha2s[2]); break; default: break; } wiphy_debug(hw->wiphy, "hwaddr %pm registered\n", hw->wiphy->perm_addr); data->debugfs = debugfs_create_dir("hwsim", hw->wiphy->debugfsdir); data->debugfs_ps = debugfs_create_file("ps", 0666, data->debugfs, data, &hwsim_fops_ps); data->debugfs_group = debugfs_create_file("group", 0666, data->debugfs, data, &hwsim_fops_group); setup_timer(&data->beacon_timer, mac80211_hwsim_beacon, (unsigned long) hw); list_add_tail(&data->list, &hwsim_radios); } hwsim_mon = alloc_netdev(0, "hwsim%d", hwsim_mon_setup); if (hwsim_mon == NULL) goto failed; rtnl_lock(); err = dev_alloc_name(hwsim_mon, hwsim_mon->name); if (err < 0) goto failed_mon; err = register_netdevice(hwsim_mon); if (err < 0) goto failed_mon; rtnl_unlock(); err = hwsim_init_netlink(); if (err < 0) goto failed_nl; return 0; failed_nl: printk(KERN_DEBUG "mac_80211_hwsim: failed initializing netlink\n"); return err; failed_mon: rtnl_unlock(); free_netdev(hwsim_mon); mac80211_hwsim_free(); return err; failed_hw: device_unregister(data->dev); failed_drvdata: ieee80211_free_hw(hw); failed: mac80211_hwsim_free(); return err; } static void __exit exit_mac80211_hwsim(void) { printk(KERN_DEBUG "mac80211_hwsim: unregister radios\n"); hwsim_exit_netlink(); mac80211_hwsim_free(); unregister_netdev(hwsim_mon); } module_init(init_mac80211_hwsim); module_exit(exit_mac80211_hwsim);