summaryrefslogtreecommitdiff
path: root/src/cairo-traps.c
blob: 63df3ea4527c1cf9d39bcd8f7640d4e6fb0cd1aa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
/*
 * Copyright © 2002 Keith Packard
 *
 * Permission to use, copy, modify, distribute, and sell this software and its
 * documentation for any purpose is hereby granted without fee, provided that
 * the above copyright notice appear in all copies and that both that
 * copyright notice and this permission notice appear in supporting
 * documentation, and that the name of Keith Packard not be used in
 * advertising or publicity pertaining to distribution of the software without
 * specific, written prior permission.  Keith Packard makes no
 * representations about the suitability of this software for any purpose.  It
 * is provided "as is" without express or implied warranty.
 *
 * KEITH PACKARD DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
 * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
 * EVENT SHALL KEITH PACKARD BE LIABLE FOR ANY SPECIAL, INDIRECT OR
 * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
 * DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
 * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
 * PERFORMANCE OF THIS SOFTWARE.
 *
 * 2002-07-15: Converted from XRenderCompositeDoublePoly to cairo_trap. Carl D. Worth
 */

#include "cairoint.h"

#define CAIRO_TRAPS_GROWTH_INC 10

/* private functions */

static cairo_status_t
_cairo_traps_grow_by (cairo_traps_t *traps, int additional);

static cairo_status_t
_cairo_traps_add_trap (cairo_traps_t *traps, cairo_fixed_t top, cairo_fixed_t bottom,
		       cairo_line_t *left, cairo_line_t *right);

static cairo_status_t
_cairo_traps_add_trap_from_points (cairo_traps_t *traps, cairo_fixed_t top, cairo_fixed_t bottom,
				   cairo_point_t left_p1, cairo_point_t left_p2,
				   cairo_point_t right_p1, cairo_point_t right_p2);

static int
_compare_point_fixed_by_y (const void *av, const void *bv);

static int
_compare_cairo_edge_by_top (const void *av, const void *bv);

static int
_compare_cairo_edge_by_slope (const void *av, const void *bv);

static cairo_fixed_16_16_t
_compute_x (cairo_line_t *line, cairo_fixed_t y);

static double
_compute_inverse_slope (cairo_line_t *l);

static double
_compute_x_intercept (cairo_line_t *l, double inverse_slope);

static cairo_fixed_t
_line_segs_intersect_ceil (cairo_line_t *left, cairo_line_t *right, cairo_fixed_t *y_ret);

void
_cairo_traps_init (cairo_traps_t *traps)
{
    traps->num_traps = 0;

    traps->traps_size = 0;
    traps->traps = NULL;
}

void
_cairo_traps_fini (cairo_traps_t *traps)
{
    if (traps->traps_size) {
	free (traps->traps);
	traps->traps = NULL;
	traps->traps_size = 0;
	traps->num_traps = 0;
    }
}

static cairo_status_t
_cairo_traps_add_trap (cairo_traps_t *traps, cairo_fixed_t top, cairo_fixed_t bottom,
		       cairo_line_t *left, cairo_line_t *right)
{
    cairo_status_t status;
    cairo_trapezoid_t *trap;

    if (top == bottom) {
	return CAIRO_STATUS_SUCCESS;
    }

    if (traps->num_traps >= traps->traps_size) {
	status = _cairo_traps_grow_by (traps, CAIRO_TRAPS_GROWTH_INC);
	if (status)
	    return status;
    }

    trap = &traps->traps[traps->num_traps];
    trap->top = top;
    trap->bottom = bottom;
    trap->left = *left;
    trap->right = *right;

    traps->num_traps++;

    return CAIRO_STATUS_SUCCESS;
}

static cairo_status_t
_cairo_traps_add_trap_from_points (cairo_traps_t *traps, cairo_fixed_t top, cairo_fixed_t bottom,
				   cairo_point_t left_p1, cairo_point_t left_p2,
				   cairo_point_t right_p1, cairo_point_t right_p2)
{
    cairo_line_t left;
    cairo_line_t right;

    left.p1 = left_p1;
    left.p2 = left_p2;

    right.p1 = right_p1;
    right.p2 = right_p2;

    return _cairo_traps_add_trap (traps, top, bottom, &left, &right);
}

static cairo_status_t
_cairo_traps_grow_by (cairo_traps_t *traps, int additional)
{
    cairo_trapezoid_t *new_traps;
    int old_size = traps->traps_size;
    int new_size = traps->num_traps + additional;

    if (new_size <= traps->traps_size) {
	return CAIRO_STATUS_SUCCESS;
    }

    traps->traps_size = new_size;
    new_traps = realloc (traps->traps, traps->traps_size * sizeof (cairo_trapezoid_t));

    if (new_traps == NULL) {
	traps->traps_size = old_size;
	return CAIRO_STATUS_NO_MEMORY;
    }

    traps->traps = new_traps;

    return CAIRO_STATUS_SUCCESS;
}

static int
_compare_point_fixed_by_y (const void *av, const void *bv)
{
    const cairo_point_t	*a = av, *b = bv;

    int ret = a->y - b->y;
    if (ret == 0) {
	ret = a->x - b->x;
    }
    return ret;
}

cairo_status_t
_cairo_traps_tessellate_triangle (cairo_traps_t *traps, cairo_point_t t[3])
{
    cairo_status_t status;
    cairo_line_t line;
    cairo_fixed_16_16_t intersect;
    cairo_point_t tsort[3];

    memcpy (tsort, t, 3 * sizeof (cairo_point_t));
    qsort (tsort, 3, sizeof (cairo_point_t), _compare_point_fixed_by_y);

    /* horizontal top edge requires special handling */
    if (tsort[0].y == tsort[1].y) {
	if (tsort[0].x < tsort[1].x)
	    status = _cairo_traps_add_trap_from_points (traps,
							tsort[1].y, tsort[2].y,
							tsort[0], tsort[2],
							tsort[1], tsort[2]);
	else
	    status = _cairo_traps_add_trap_from_points (traps,
							tsort[1].y, tsort[2].y,
							tsort[1], tsort[2],
							tsort[0], tsort[2]);
	return status;
    }

    line.p1 = tsort[0];
    line.p2 = tsort[1];

    intersect = _compute_x (&line, tsort[2].y);

    if (intersect < tsort[2].x) {
	status = _cairo_traps_add_trap_from_points (traps,
						    tsort[0].y, tsort[1].y,
						    tsort[0], tsort[1],
						    tsort[0], tsort[2]);
	if (status)
	    return status;
	status = _cairo_traps_add_trap_from_points (traps,
						    tsort[1].y, tsort[2].y,
						    tsort[1], tsort[2],
						    tsort[0], tsort[2]);
	if (status)
	    return status;
    } else {
	status = _cairo_traps_add_trap_from_points (traps,
						    tsort[0].y, tsort[1].y,
						    tsort[0], tsort[2],
						    tsort[0], tsort[1]);
	if (status)
	    return status;
	status = _cairo_traps_add_trap_from_points (traps,
						    tsort[1].y, tsort[2].y,
						    tsort[0], tsort[2],
						    tsort[1], tsort[2]);
	if (status)
	    return status;
    }

    return CAIRO_STATUS_SUCCESS;
}

/* Warning: This function reorders the elements of the array provided. */
cairo_status_t
_cairo_traps_tessellate_rectangle (cairo_traps_t *traps, cairo_point_t q[4])
{
    cairo_status_t status;

    qsort (q, 4, sizeof (cairo_point_t), _compare_point_fixed_by_y);

    if (q[1].x > q[2].x) {
	status = _cairo_traps_add_trap_from_points (traps,
						    q[0].y, q[1].y, q[0], q[2], q[0], q[1]);
	if (status)
	    return status;
	status = _cairo_traps_add_trap_from_points (traps,
						    q[1].y, q[2].y, q[0], q[2], q[1], q[3]);
	if (status)
	    return status;
	status = _cairo_traps_add_trap_from_points (traps,
						    q[2].y, q[3].y, q[2], q[3], q[1], q[3]);
	if (status)
	    return status;
    } else {
	status = _cairo_traps_add_trap_from_points (traps,
						    q[0].y, q[1].y, q[0], q[1], q[0], q[2]);
	if (status)
	    return status;
	status = _cairo_traps_add_trap_from_points (traps,
						    q[1].y, q[2].y, q[1], q[3], q[0], q[2]);
	if (status)
	    return status;
	status = _cairo_traps_add_trap_from_points (traps,
						    q[2].y, q[3].y, q[1], q[3], q[2], q[3]);
	if (status)
	    return status;
    }

    return CAIRO_STATUS_SUCCESS;
}

static int
_compare_cairo_edge_by_top (const void *av, const void *bv)
{
    const cairo_edge_t *a = av, *b = bv;

    return a->edge.p1.y - b->edge.p1.y;
}

/* Return value is:
   > 0 if a is "clockwise" from b, (in a mathematical, not a graphical sense)
   == 0 if slope (a) == slope (b)
   < 0 if a is "counter-clockwise" from b
*/
static int
_compare_cairo_edge_by_slope (const void *av, const void *bv)
{
    const cairo_edge_t *a = av, *b = bv;
    cairo_fixed_32_32_t d;

    cairo_fixed_48_16_t a_dx = a->edge.p2.x - a->edge.p1.x;
    cairo_fixed_48_16_t a_dy = a->edge.p2.y - a->edge.p1.y;
    cairo_fixed_48_16_t b_dx = b->edge.p2.x - b->edge.p1.x;
    cairo_fixed_48_16_t b_dy = b->edge.p2.y - b->edge.p1.y;

    d = b_dy * a_dx - a_dy * b_dx;

    if (d > 0)
	return 1;
    else if (d == 0)
	return 0;
    else
	return -1;
}

static int
_compare_cairo_edge_by_current_x_slope (const void *av, const void *bv)
{
    const cairo_edge_t *a = av, *b = bv;
    int ret;

    ret = a->current_x - b->current_x;
    if (ret == 0)
	ret = _compare_cairo_edge_by_slope (a, b);
    return ret;
}

/* XXX: Both _compute_x and _compute_inverse_slope will divide by zero
   for horizontal lines. Now, we "know" that when we are tessellating
   polygons that the polygon data structure discards all horizontal
   edges, but there's nothing here to guarantee that. I suggest the
   following:

   A) Move all of the polygon tessellation code out of xrtraps.c and
      into xrpoly.c, (in order to be in the same module as the code
      discarding horizontal lines).

   OR

   B) Re-implement the line intersection in a way that avoids all
      division by zero. Here's one approach. The only disadvantage
      might be that that there are not meaningful names for all of the
      sub-computations -- just a bunch of determinants. I haven't
      looked at complexity, (both are probably similar and it probably
      doesn't matter much anyway).

static double
_det (double a, double b, double c, double d)
{
    return a * d - b * c;
}

static int
_lines_intersect (cairo_line_t *l1, cairo_line_t *l2, cairo_fixed_t *y_intersection)
{
    double dx1 = cairo_fixed_to_double (l1->p1.x - l1->p2.x);
    double dy1 = cairo_fixed_to_double (l1->p1.y - l1->p2.y);

    double dx2 = cairo_fixed_to_double (l2->p1.x - l2->p2.x);
    double dy2 = cairo_fixed_to_double (l2->p1.y - l2->p2.y);

    double l1_det, l2_det;

    double den_det = _det (dx1, dy1, dx2, dy2);

    if (den_det == 0)
	return 0;

    l1_det = _det (l1->p1.x, l1->p1.y,
		  l1->p2.x, l1->p2.y);
    l2_det = _det (l2->p1.x, l2->p1.y,
		  l2->p2.x, l2->p2.y);

    *y_intersection = _det (l1_det, dy1,
			   l2_det, dy2) / den_det;

    return 1;
}
*/
static cairo_fixed_16_16_t
_compute_x (cairo_line_t *line, cairo_fixed_t y)
{
    cairo_fixed_16_16_t dx = line->p2.x - line->p1.x;
    cairo_fixed_32_32_t ex = (cairo_fixed_48_16_t) (y - line->p1.y) * (cairo_fixed_48_16_t) dx;
    cairo_fixed_16_16_t dy = line->p2.y - line->p1.y;

    return line->p1.x + (ex / dy);
}

static double
_compute_inverse_slope (cairo_line_t *l)
{
    return (_cairo_fixed_to_double (l->p2.x - l->p1.x) / 
	    _cairo_fixed_to_double (l->p2.y - l->p1.y));
}

static double
_compute_x_intercept (cairo_line_t *l, double inverse_slope)
{
    return _cairo_fixed_to_double (l->p1.x) - inverse_slope * _cairo_fixed_to_double (l->p1.y);
}

static int
_line_segs_intersect_ceil (cairo_line_t *l1, cairo_line_t *l2, cairo_fixed_t *y_ret)
{
    /*
     * x = m1y + b1
     * x = m2y + b2
     * m1y + b1 = m2y + b2
     * y * (m1 - m2) = b2 - b1
     * y = (b2 - b1) / (m1 - m2)
     */
    cairo_fixed_16_16_t y_intersect;
    double  m1 = _compute_inverse_slope (l1);
    double  b1 = _compute_x_intercept (l1, m1);
    double  m2 = _compute_inverse_slope (l2);
    double  b2 = _compute_x_intercept (l2, m2);

    if (m1 == m2)
	return 0;

    y_intersect = _cairo_fixed_from_double ((b2 - b1) / (m1 - m2));

    if (m1 < m2) {
	cairo_line_t *t;
	t = l1;
	l1 = l2;
	l2 = t;
    }

    /* Assuming 56 bits of floating point precision, the intersection
       is accurate within one sub-pixel coordinate. We must ensure
       that we return a value that is at or after the intersection. At
       most, we must increment once. */
    if (_compute_x (l2, y_intersect) > _compute_x (l1, y_intersect))
	y_intersect++;
    /* XXX: Hmm... Keith's error calculations said we'd at most be off
       by one sub-pixel. But, I found that the paint-fill-BE-01.svg
       test from the W3C SVG conformance suite definitely requires two
       increments.

       It could be that we need one to overcome the error, and another
       to round up.

       It would be nice to be sure this code is correct, (but we can't
       do the while loop as it will work for way to long on
       exceedingly distant intersections with large errors that we
       really don't care about anyway as they will be ignored by the
       calling function.
    */
    if (_compute_x (l2, y_intersect) > _compute_x (l1, y_intersect))
	y_intersect++;
    /* XXX: hmm... now I found "intersection_killer" inside xrspline.c
       that requires 3 increments. Clearly, we haven't characterized
       this completely yet. */
    if (_compute_x (l2, y_intersect) > _compute_x (l1, y_intersect))
	y_intersect++;
    /* I think I've found the answer to our problems. The insight is
       that everytime we round we are changing the slopes of the
       relevant lines, so we may be introducing new intersections that
       we miss, so everything breaks apart. John Hobby wrote a paper
       on how to fix this:

       [Hobby93c] John D. Hobby, Practical Segment Intersection with
       Finite Precision Output, Computation Geometry Theory and
       Applications, 13(4), 1999.

       Available online (2003-08017):

       http://cm.bell-labs.com/cm/cs/doc/93/2-27.ps.gz

       Now we just need to go off and implement that.
    */

    *y_ret = y_intersect;

    return 1;
}

/* The algorithm here is pretty simple:

   inactive = [edges]
   y = min_p1_y (inactive)

   while (num_active || num_inactive) {
   	active = all edges containing y

	next_y = min ( min_p2_y (active), min_p1_y (inactive), min_intersection (active) )

	fill_traps (active, y, next_y, fill_rule)

	y = next_y
   }

   The invariants that hold during fill_traps are:

   	All edges in active contain both y and next_y
	No edges in active intersect within y and next_y

   These invariants mean that fill_traps is as simple as sorting the
   active edges, forming a trapezoid between each adjacent pair. Then,
   either the even-odd or winding rule is used to determine whether to
   emit each of these trapezoids.

   Warning: This function obliterates the edges of the polygon provided.
*/
cairo_status_t
_cairo_traps_tessellate_polygon (cairo_traps_t		*traps,
				 cairo_polygon_t		*poly,
				 cairo_fill_rule_t	fill_rule)
{
    cairo_status_t	status;
    int 		i, active, inactive;
    cairo_fixed_t	y, y_next, intersect;
    int			in_out, num_edges = poly->num_edges;
    cairo_edge_t	*edges = poly->edges;

    if (num_edges == 0)
	return CAIRO_STATUS_SUCCESS;

    qsort (edges, num_edges, sizeof (cairo_edge_t), _compare_cairo_edge_by_top);
    
    y = edges[0].edge.p1.y;
    active = 0;
    inactive = 0;
    while (active < num_edges) {
	while (inactive < num_edges && edges[inactive].edge.p1.y <= y)
	    inactive++;

	for (i = active; i < inactive; i++)
	    edges[i].current_x = _compute_x (&edges[i].edge, y);

	qsort (&edges[active], inactive - active,
	       sizeof (cairo_edge_t), _compare_cairo_edge_by_current_x_slope);

	/* find next inflection point */
	y_next = edges[active].edge.p2.y;

	for (i = active; i < inactive; i++) {
	    if (edges[i].edge.p2.y < y_next)
		y_next = edges[i].edge.p2.y;
	    /* check intersect */
	    if (i != inactive - 1 && edges[i].current_x != edges[i+1].current_x)
		if (_line_segs_intersect_ceil (&edges[i].edge, &edges[i+1].edge,
					       &intersect))
		    if (intersect > y && intersect < y_next)
			y_next = intersect;
	}
	/* check next inactive point */
	if (inactive < num_edges && edges[inactive].edge.p1.y < y_next)
	    y_next = edges[inactive].edge.p1.y;

	/* walk the active edges generating trapezoids */
	in_out = 0;
	for (i = active; i < inactive - 1; i++) {
	    if (fill_rule == CAIRO_FILL_RULE_WINDING) {
		if (edges[i].clockWise)
		    in_out++;
		else
		    in_out--;
		if (in_out == 0)
		    continue;
	    } else {
		in_out++;
		if ((in_out & 1) == 0)
		    continue;
	    }
	    status = _cairo_traps_add_trap (traps, y, y_next, &edges[i].edge, &edges[i+1].edge);
	    if (status)
		return status;
	}

	/* delete inactive edges */
	for (i = active; i < inactive; i++) {
	    if (edges[i].edge.p2.y <= y_next) {
		memmove (&edges[active+1], &edges[active], (i - active) * sizeof (cairo_edge_t));
		active++;
	    }
	}

	y = y_next;
    }
    return CAIRO_STATUS_SUCCESS;
}

static int
_cairo_trap_contains (cairo_trapezoid_t *t, cairo_point_t *pt)
{
    cairo_slope_t slope_left, slope_pt, slope_right;
    
    if (t->top > pt->y)
	return 0;
    if (t->bottom < pt->y)
	return 0;
    
    _cairo_slope_init (&slope_left, &t->left.p1, &t->left.p2);
    _cairo_slope_init (&slope_pt, &t->left.p1, pt);

    if (_cairo_slope_compare (&slope_left, &slope_pt) < 0)
	return 0;

    _cairo_slope_init (&slope_right, &t->right.p1, &t->right.p2);
    _cairo_slope_init (&slope_pt, &t->right.p1, pt);

    if (_cairo_slope_compare (&slope_pt, &slope_right) < 0)
	return 0;

    return 1;
}

int
_cairo_traps_contain (cairo_traps_t *traps, double x, double y)
{
    int i;
    cairo_point_t point;

    point.x = _cairo_fixed_from_double (x);
    point.y = _cairo_fixed_from_double (y);

    for (i = 0; i < traps->num_traps; i++) {
	if (_cairo_trap_contains (&traps->traps[i], &point))
	    return 1;
    }

    return 0;
}