1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
|
/*
* Copyright © 2002 University of Southern California
*
* Permission to use, copy, modify, distribute, and sell this software
* and its documentation for any purpose is hereby granted without
* fee, provided that the above copyright notice appear in all copies
* and that both that copyright notice and this permission notice
* appear in supporting documentation, and that the name of the
* University of Southern California not be used in advertising or
* publicity pertaining to distribution of the software without
* specific, written prior permission. The University of Southern
* California makes no representations about the suitability of this
* software for any purpose. It is provided "as is" without express
* or implied warranty.
*
* THE UNIVERSITY OF SOUTHERN CALIFORNIA DISCLAIMS ALL WARRANTIES WITH
* REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL THE UNIVERSITY OF
* SOUTHERN CALIFORNIA BE LIABLE FOR ANY SPECIAL, INDIRECT OR
* CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
* OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
* NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
* Author: Carl D. Worth <cworth@isi.edu>
*/
#include "cairoint.h"
static int
_cairo_pen_vertices_needed (double radius, double tolerance, double expansion);
static void
_cairo_pen_compute_slopes (cairo_pen_t *pen);
static cairo_status_t
_cairo_pen_stroke_spline_half (cairo_pen_t *pen, cairo_spline_t *spline, cairo_direction_t dir, cairo_polygon_t *polygon);
cairo_status_t
_cairo_pen_init_empty (cairo_pen_t *pen)
{
pen->radius = 0;
pen->tolerance = 0;
pen->vertices = NULL;
pen->num_vertices = 0;
return CAIRO_STATUS_SUCCESS;
}
cairo_status_t
_cairo_pen_init (cairo_pen_t *pen, double radius, cairo_gstate_t *gstate)
{
int i;
int reflect;
double det, expansion;
if (pen->num_vertices) {
/* XXX: It would be nice to notice that the pen is already properly constructed.
However, this test would also have to account for possible changes in the transformation
matrix.
if (pen->radius == radius && pen->tolerance == tolerance)
return CAIRO_STATUS_SUCCESS;
*/
_cairo_pen_fini (pen);
}
pen->radius = radius;
pen->tolerance = gstate->tolerance;
/* The determinant represents the area expansion factor of the
transform. In the worst case, this is entirely in one
dimension, which is what we assume here. */
_cairo_matrix_compute_determinant (&gstate->ctm, &det);
if (det >= 0) {
reflect = 0;
expansion = det;
} else {
reflect = 1;
expansion = -det;
}
pen->num_vertices = _cairo_pen_vertices_needed (radius, gstate->tolerance, expansion);
/* number of vertices must be even */
if (pen->num_vertices % 2)
pen->num_vertices++;
pen->vertices = malloc (pen->num_vertices * sizeof (cairo_pen_vertex_t));
if (pen->vertices == NULL) {
return CAIRO_STATUS_NO_MEMORY;
}
/*
* Compute pen coordinates. To generate the right ellipse, compute points around
* a circle in user space and transform them to device space. To get a consistent
* orientation in device space, flip the pen if the transformation matrix
* is reflecting
*/
for (i=0; i < pen->num_vertices; i++) {
double theta = 2 * M_PI * i / (double) pen->num_vertices;
double dx = radius * cos (reflect ? -theta : theta);
double dy = radius * sin (reflect ? -theta : theta);
cairo_pen_vertex_t *v = &pen->vertices[i];
cairo_matrix_transform_distance (&gstate->ctm, &dx, &dy);
v->point.x = _cairo_fixed_from_double (dx);
v->point.y = _cairo_fixed_from_double (dy);
}
_cairo_pen_compute_slopes (pen);
return CAIRO_STATUS_SUCCESS;
}
void
_cairo_pen_fini (cairo_pen_t *pen)
{
free (pen->vertices);
pen->vertices = NULL;
_cairo_pen_init_empty (pen);
}
cairo_status_t
_cairo_pen_init_copy (cairo_pen_t *pen, cairo_pen_t *other)
{
*pen = *other;
if (pen->num_vertices) {
pen->vertices = malloc (pen->num_vertices * sizeof (cairo_pen_vertex_t));
if (pen->vertices == NULL) {
return CAIRO_STATUS_NO_MEMORY;
}
memcpy (pen->vertices, other->vertices, pen->num_vertices * sizeof (cairo_pen_vertex_t));
}
return CAIRO_STATUS_SUCCESS;
}
cairo_status_t
_cairo_pen_add_points (cairo_pen_t *pen, cairo_point_t *point, int num_points)
{
cairo_pen_vertex_t *vertices;
int num_vertices;
int i;
num_vertices = pen->num_vertices + num_points;
vertices = realloc (pen->vertices, num_vertices * sizeof (cairo_pen_vertex_t));
if (vertices == NULL)
return CAIRO_STATUS_NO_MEMORY;
pen->vertices = vertices;
pen->num_vertices = num_vertices;
/* initialize new vertices */
for (i=0; i < num_points; i++)
pen->vertices[pen->num_vertices-num_points+i].point = point[i];
_cairo_hull_compute (pen->vertices, &pen->num_vertices);
_cairo_pen_compute_slopes (pen);
return CAIRO_STATUS_SUCCESS;
}
static int
_cairo_pen_vertices_needed (double radius, double tolerance, double expansion)
{
double theta;
if (tolerance > expansion*radius) {
return 4;
}
theta = acos (1 - tolerance/(expansion * radius));
return ceil (M_PI / theta);
}
static void
_cairo_pen_compute_slopes (cairo_pen_t *pen)
{
int i, i_prev;
cairo_pen_vertex_t *prev, *v, *next;
for (i=0, i_prev = pen->num_vertices - 1;
i < pen->num_vertices;
i_prev = i++) {
prev = &pen->vertices[i_prev];
v = &pen->vertices[i];
next = &pen->vertices[(i + 1) % pen->num_vertices];
_cairo_slope_init (&v->slope_cw, &prev->point, &v->point);
_cairo_slope_init (&v->slope_ccw, &v->point, &next->point);
}
}
/* Find active pen vertex for clockwise edge of stroke at the given slope.
*
* NOTE: The behavior of this function is sensitive to the sense of
* the inequality within _cairo_slope_clockwise/_cairo_slope_counter_clockwise.
*
* The issue is that the slope_ccw member of one pen vertex will be
* equivalent to the slope_cw member of the next pen vertex in a
* counterclockwise order. However, for this function, we care
* strongly about which vertex is returned.
*/
cairo_status_t
_cairo_pen_find_active_cw_vertex_index (cairo_pen_t *pen,
cairo_slope_t *slope,
int *active)
{
int i;
for (i=0; i < pen->num_vertices; i++) {
if (_cairo_slope_clockwise (slope, &pen->vertices[i].slope_ccw)
&& _cairo_slope_counter_clockwise (slope, &pen->vertices[i].slope_cw))
break;
}
*active = i;
return CAIRO_STATUS_SUCCESS;
}
/* Find active pen vertex for counterclockwise edge of stroke at the given slope.
*
* NOTE: The behavior of this function is sensitive to the sense of
* the inequality within _cairo_slope_clockwise/_cairo_slope_counter_clockwise.
*/
cairo_status_t
_cairo_pen_find_active_ccw_vertex_index (cairo_pen_t *pen,
cairo_slope_t *slope,
int *active)
{
int i;
cairo_slope_t slope_reverse;
slope_reverse = *slope;
slope_reverse.dx = -slope_reverse.dx;
slope_reverse.dy = -slope_reverse.dy;
for (i=pen->num_vertices-1; i >= 0; i--) {
if (_cairo_slope_counter_clockwise (&pen->vertices[i].slope_ccw, &slope_reverse)
&& _cairo_slope_clockwise (&pen->vertices[i].slope_cw, &slope_reverse))
break;
}
*active = i;
return CAIRO_STATUS_SUCCESS;
}
static cairo_status_t
_cairo_pen_stroke_spline_half (cairo_pen_t *pen,
cairo_spline_t *spline,
cairo_direction_t dir,
cairo_polygon_t *polygon)
{
int i;
cairo_status_t status;
int start, stop, step;
int active = 0;
cairo_point_t hull_point;
cairo_slope_t slope, initial_slope, final_slope;
cairo_point_t *point = spline->points;
int num_points = spline->num_points;
if (dir == CAIRO_DIRECTION_FORWARD) {
start = 0;
stop = num_points;
step = 1;
initial_slope = spline->initial_slope;
final_slope = spline->final_slope;
} else {
start = num_points - 1;
stop = -1;
step = -1;
initial_slope = spline->final_slope;
initial_slope.dx = -initial_slope.dx;
initial_slope.dy = -initial_slope.dy;
final_slope = spline->initial_slope;
final_slope.dx = -final_slope.dx;
final_slope.dy = -final_slope.dy;
}
_cairo_pen_find_active_cw_vertex_index (pen, &initial_slope, &active);
i = start;
while (i != stop) {
hull_point.x = point[i].x + pen->vertices[active].point.x;
hull_point.y = point[i].y + pen->vertices[active].point.y;
status = _cairo_polygon_line_to (polygon, &hull_point);
if (status)
return status;
if (i + step == stop)
slope = final_slope;
else
_cairo_slope_init (&slope, &point[i], &point[i+step]);
if (_cairo_slope_counter_clockwise (&slope, &pen->vertices[active].slope_ccw)) {
if (++active == pen->num_vertices)
active = 0;
} else if (_cairo_slope_clockwise (&slope, &pen->vertices[active].slope_cw)) {
if (--active == -1)
active = pen->num_vertices - 1;
} else {
i += step;
}
}
return CAIRO_STATUS_SUCCESS;
}
/* Compute outline of a given spline using the pen.
The trapezoids needed to fill that outline will be added to traps
*/
cairo_status_t
_cairo_pen_stroke_spline (cairo_pen_t *pen,
cairo_spline_t *spline,
double tolerance,
cairo_traps_t *traps)
{
cairo_status_t status;
cairo_polygon_t polygon;
/* If the line width is so small that the pen is reduced to a
single point, then we have nothing to do. */
if (pen->num_vertices <= 1)
return CAIRO_STATUS_SUCCESS;
_cairo_polygon_init (&polygon);
status = _cairo_spline_decompose (spline, tolerance);
if (status)
return status;
status = _cairo_pen_stroke_spline_half (pen, spline, CAIRO_DIRECTION_FORWARD, &polygon);
if (status)
return status;
status = _cairo_pen_stroke_spline_half (pen, spline, CAIRO_DIRECTION_REVERSE, &polygon);
if (status)
return status;
_cairo_polygon_close (&polygon);
_cairo_traps_tessellate_polygon (traps, &polygon, CAIRO_FILL_RULE_WINDING);
_cairo_polygon_fini (&polygon);
return CAIRO_STATUS_SUCCESS;
}
|