/* cairo - a vector graphics library with display and print output * * Copyright © 2003 University of Southern California * * This library is free software; you can redistribute it and/or * modify it either under the terms of the GNU Lesser General Public * License version 2.1 as published by the Free Software Foundation * (the "LGPL") or, at your option, under the terms of the Mozilla * Public License Version 1.1 (the "MPL"). If you do not alter this * notice, a recipient may use your version of this file under either * the MPL or the LGPL. * * You should have received a copy of the LGPL along with this library * in the file COPYING-LGPL-2.1; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * You should have received a copy of the MPL along with this library * in the file COPYING-MPL-1.1 * * The contents of this file are subject to the Mozilla Public License * Version 1.1 (the "License"); you may not use this file except in * compliance with the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY * OF ANY KIND, either express or implied. See the LGPL or the MPL for * the specific language governing rights and limitations. * * The Original Code is the cairo graphics library. * * The Initial Developer of the Original Code is University of Southern * California. * * Contributor(s): * Carl D. Worth */ #include "cairoint.h" typedef struct cairo_path_bounder { cairo_point_t current_point; cairo_bool_t has_initial_point; cairo_bool_t has_point; cairo_box_t extents; } cairo_path_bounder_t; static void _cairo_path_bounder_init (cairo_path_bounder_t *bounder) { bounder->has_initial_point = FALSE; bounder->has_point = FALSE; } static void _cairo_path_bounder_add_point (cairo_path_bounder_t *bounder, const cairo_point_t *point) { if (bounder->has_point) { if (point->x < bounder->extents.p1.x) bounder->extents.p1.x = point->x; if (point->y < bounder->extents.p1.y) bounder->extents.p1.y = point->y; if (point->x > bounder->extents.p2.x) bounder->extents.p2.x = point->x; if (point->y > bounder->extents.p2.y) bounder->extents.p2.y = point->y; } else { bounder->extents.p1.x = point->x; bounder->extents.p1.y = point->y; bounder->extents.p2.x = point->x; bounder->extents.p2.y = point->y; bounder->has_point = TRUE; } } static cairo_status_t _cairo_path_bounder_move_to (void *closure, const cairo_point_t *point) { cairo_path_bounder_t *bounder = closure; bounder->current_point = *point; bounder->has_initial_point = TRUE; return CAIRO_STATUS_SUCCESS; } static cairo_status_t _cairo_path_bounder_line_to (void *closure, const cairo_point_t *point) { cairo_path_bounder_t *bounder = closure; if (bounder->has_initial_point) { _cairo_path_bounder_add_point (bounder, &bounder->current_point); bounder->has_initial_point = FALSE; } _cairo_path_bounder_add_point (bounder, point); bounder->current_point = *point; return CAIRO_STATUS_SUCCESS; } static cairo_status_t _cairo_path_bounder_curve_to (void *closure, const cairo_point_t *b, const cairo_point_t *c, const cairo_point_t *d) { cairo_path_bounder_t *bounder = closure; /* If the bbox of the control points is entirely inside, then we * do not need to further evaluate the spline. */ if (! bounder->has_point || b->x < bounder->extents.p1.x || b->x > bounder->extents.p2.x || b->y < bounder->extents.p1.y || b->y > bounder->extents.p2.y || c->x < bounder->extents.p1.x || c->x > bounder->extents.p2.x || c->y < bounder->extents.p1.y || c->y > bounder->extents.p2.y || d->x < bounder->extents.p1.x || d->x > bounder->extents.p2.x || d->y < bounder->extents.p1.y || d->y > bounder->extents.p2.y) { return _cairo_spline_bound (_cairo_path_bounder_line_to, bounder, &bounder->current_point, b, c, d); } else { /* All control points are within the current extents. */ return CAIRO_STATUS_SUCCESS; } } static cairo_status_t _cairo_path_bounder_curve_to_cp (void *closure, const cairo_point_t *b, const cairo_point_t *c, const cairo_point_t *d) { cairo_path_bounder_t *bounder = closure; if (bounder->has_initial_point) { _cairo_path_bounder_add_point (bounder, &bounder->current_point); bounder->has_initial_point = FALSE; } _cairo_path_bounder_add_point (bounder, b); _cairo_path_bounder_add_point (bounder, c); _cairo_path_bounder_add_point (bounder, d); return CAIRO_STATUS_SUCCESS; } static cairo_status_t _cairo_path_bounder_close_path (void *closure) { return CAIRO_STATUS_SUCCESS; } /* This computes the extents of all the points in the path, not those of * the damage area (i.e it does not consider winding and it only inspects * the control points of the curves, not the flattened path). */ void _cairo_path_fixed_approximate_clip_extents (const cairo_path_fixed_t *path, cairo_rectangle_int_t *extents) { cairo_path_bounder_t bounder; cairo_status_t status; _cairo_path_bounder_init (&bounder); status = _cairo_path_fixed_interpret (path, CAIRO_DIRECTION_FORWARD, _cairo_path_bounder_move_to, _cairo_path_bounder_line_to, _cairo_path_bounder_curve_to_cp, _cairo_path_bounder_close_path, &bounder); assert (status == CAIRO_STATUS_SUCCESS); if (bounder.has_point) { _cairo_box_round_to_rectangle (&bounder.extents, extents); } else { extents->x = extents->y = 0; extents->width = extents->height = 0; } } /* A slightly better approximation than above - we actually decompose the * Bezier, but we continue to ignore winding. */ void _cairo_path_fixed_approximate_fill_extents (const cairo_path_fixed_t *path, cairo_rectangle_int_t *extents) { cairo_path_bounder_t bounder; cairo_status_t status; _cairo_path_bounder_init (&bounder); status = _cairo_path_fixed_interpret (path, CAIRO_DIRECTION_FORWARD, _cairo_path_bounder_move_to, _cairo_path_bounder_line_to, _cairo_path_bounder_curve_to, _cairo_path_bounder_close_path, &bounder); assert (status == CAIRO_STATUS_SUCCESS); if (bounder.has_point) { _cairo_box_round_to_rectangle (&bounder.extents, extents); } else { extents->x = extents->y = 0; extents->width = extents->height = 0; } } void _cairo_path_fixed_fill_extents (const cairo_path_fixed_t *path, cairo_fill_rule_t fill_rule, double tolerance, cairo_rectangle_int_t *extents) { cairo_path_bounder_t bounder; cairo_status_t status; _cairo_path_bounder_init (&bounder); status = _cairo_path_fixed_interpret_flat (path, CAIRO_DIRECTION_FORWARD, _cairo_path_bounder_move_to, _cairo_path_bounder_line_to, _cairo_path_bounder_close_path, &bounder, tolerance); assert (status == CAIRO_STATUS_SUCCESS); if (bounder.has_point) { _cairo_box_round_to_rectangle (&bounder.extents, extents); } else { extents->x = extents->y = 0; extents->width = extents->height = 0; } } /* Adjusts the fill extents (above) by the device-space pen. */ void _cairo_path_fixed_approximate_stroke_extents (const cairo_path_fixed_t *path, cairo_stroke_style_t *style, const cairo_matrix_t *ctm, cairo_rectangle_int_t *extents) { cairo_path_bounder_t bounder; cairo_status_t status; _cairo_path_bounder_init (&bounder); status = _cairo_path_fixed_interpret (path, CAIRO_DIRECTION_FORWARD, _cairo_path_bounder_move_to, _cairo_path_bounder_line_to, _cairo_path_bounder_curve_to, _cairo_path_bounder_close_path, &bounder); assert (status == CAIRO_STATUS_SUCCESS); if (bounder.has_point) { double dx, dy; _cairo_stroke_style_max_distance_from_path (style, ctm, &dx, &dy); bounder.extents.p1.x -= _cairo_fixed_from_double (dx); bounder.extents.p2.x += _cairo_fixed_from_double (dx); bounder.extents.p1.y -= _cairo_fixed_from_double (dy); bounder.extents.p2.y += _cairo_fixed_from_double (dy); _cairo_box_round_to_rectangle (&bounder.extents, extents); } else if (bounder.has_initial_point) { double dx, dy; /* accommodate capping of degenerate paths */ _cairo_stroke_style_max_distance_from_path (style, ctm, &dx, &dy); bounder.extents.p1.x = bounder.current_point.x - _cairo_fixed_from_double (dx); bounder.extents.p2.x = bounder.current_point.x + _cairo_fixed_from_double (dx); bounder.extents.p1.y = bounder.current_point.y - _cairo_fixed_from_double (dy); bounder.extents.p2.y = bounder.current_point.y + _cairo_fixed_from_double (dy); _cairo_box_round_to_rectangle (&bounder.extents, extents); } else { extents->x = extents->y = 0; extents->width = extents->height = 0; } } cairo_status_t _cairo_path_fixed_stroke_extents (const cairo_path_fixed_t *path, cairo_stroke_style_t *stroke_style, const cairo_matrix_t *ctm, const cairo_matrix_t *ctm_inverse, double tolerance, cairo_rectangle_int_t *extents) { cairo_traps_t traps; cairo_box_t bbox; cairo_status_t status; _cairo_traps_init (&traps); status = _cairo_path_fixed_stroke_to_traps (path, stroke_style, ctm, ctm_inverse, tolerance, &traps); _cairo_traps_extents (&traps, &bbox); _cairo_traps_fini (&traps); _cairo_box_round_to_rectangle (&bbox, extents); return status; } void _cairo_path_fixed_bounds (const cairo_path_fixed_t *path, double *x1, double *y1, double *x2, double *y2) { cairo_path_bounder_t bounder; cairo_status_t status; _cairo_path_bounder_init (&bounder); status = _cairo_path_fixed_interpret (path, CAIRO_DIRECTION_FORWARD, _cairo_path_bounder_move_to, _cairo_path_bounder_line_to, _cairo_path_bounder_curve_to, _cairo_path_bounder_close_path, &bounder); assert (status == CAIRO_STATUS_SUCCESS); if (bounder.has_point) { *x1 = _cairo_fixed_to_double (bounder.extents.p1.x); *y1 = _cairo_fixed_to_double (bounder.extents.p1.y); *x2 = _cairo_fixed_to_double (bounder.extents.p2.x); *y2 = _cairo_fixed_to_double (bounder.extents.p2.y); } else { *x1 = 0.0; *y1 = 0.0; *x2 = 0.0; *y2 = 0.0; } }