/*
Copyright (C) 2009 Red Hat, Inc.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, see .
Author:
yhalperi@redhat.com
*/
#ifdef HAVE_CONFIG_H
#include
#endif
#include
#include
#include
#include
#include
#include
#include
#include
#include
#ifdef HAVE_LINUX_SOCKIOS_H
#include /* SIOCOUTQ */
#endif
#include "common/generated_server_marshallers.h"
#include "common/ring.h"
#include "red-channel.h"
#include "reds.h"
#include "reds-stream.h"
#include "main-dispatcher.h"
#include "utils.h"
typedef struct EmptyMsgPipeItem {
PipeItem base;
int msg;
} EmptyMsgPipeItem;
#define PING_TEST_TIMEOUT_MS (MSEC_PER_SEC * 15)
#define PING_TEST_IDLE_NET_TIMEOUT_MS (MSEC_PER_SEC / 10)
#define CHANNEL_BLOCKED_SLEEP_DURATION 10000 //micro
enum QosPingState {
PING_STATE_NONE,
PING_STATE_TIMER,
PING_STATE_WARMUP,
PING_STATE_LATENCY,
};
enum ConnectivityState {
CONNECTIVITY_STATE_CONNECTED,
CONNECTIVITY_STATE_BLOCKED,
CONNECTIVITY_STATE_WAIT_PONG,
CONNECTIVITY_STATE_DISCONNECTED,
};
static void red_channel_client_start_ping_timer(RedChannelClient *rcc, uint32_t timeout);
static void red_channel_client_cancel_ping_timer(RedChannelClient *rcc);
static void red_channel_client_restart_ping_timer(RedChannelClient *rcc);
static void red_channel_client_event(int fd, int event, void *data);
static void red_client_add_channel(RedClient *client, RedChannelClient *rcc);
static void red_client_remove_channel(RedChannelClient *rcc);
static RedChannelClient *red_client_get_channel(RedClient *client, int type, int id);
static void red_channel_client_restore_main_sender(RedChannelClient *rcc);
static inline int red_channel_client_waiting_for_ack(RedChannelClient *rcc);
/*
* Lifetime of RedChannel, RedChannelClient and RedClient:
* RedChannel is created and destroyed by the calls to
* red_channel_create.* and red_channel_destroy. The RedChannel resources
* are deallocated only after red_channel_destroy is called and no RedChannelClient
* refers to the channel.
* RedChannelClient is created and destroyed by the calls to red_channel_client_create
* and red_channel_client_destroy. RedChannelClient resources are deallocated only when
* its refs == 0. The reference count of RedChannelClient can be increased by routines
* that include calls that might destroy the red_channel_client. For example,
* red_peer_handle_incoming calls the handle_message proc of the channel, which
* might lead to destroying the client. However, after the call to handle_message,
* there is a call to the channel's release_msg_buf proc.
*
* Once red_channel_client_destroy is called, the RedChannelClient is disconnected and
* removed from the RedChannel clients list, but if rcc->refs != 0, it will still hold
* a reference to the Channel. The reason for this is that on the one hand RedChannel holds
* callbacks that may be still in use by RedChannel, and on the other hand,
* when an operation is performed on the list of clients that belongs to the channel,
* we don't want to execute it on the "to be destroyed" channel client.
*
* RedClient is created and destroyed by the calls to red_client_new and red_client_destroy.
* When it is destroyed, it also disconnects and destroys all the RedChannelClients that
* are associated with it. However, since part of these channel clients may still have
* other references, they will not be completely released, until they are dereferenced.
*
* Note: red_channel_client_destroy is not thread safe, and still it is called from
* red_client_destroy (from the client's thread). However, since before this call,
* red_client_destroy calls rcc->channel->client_cbs.disconnect(rcc), which is synchronous,
* we assume that if the channel is in another thread, it does no longer have references to
* this channel client.
* If a call to red_channel_client_destroy is made from another location, it must be called
* from the channel's thread.
*/
static void red_channel_ref(RedChannel *channel);
static void red_channel_unref(RedChannel *channel);
static uint32_t full_header_get_msg_size(SpiceDataHeaderOpaque *header)
{
return GUINT32_FROM_LE(((SpiceDataHeader *)header->data)->size);
}
static uint32_t mini_header_get_msg_size(SpiceDataHeaderOpaque *header)
{
return GUINT32_FROM_LE(((SpiceMiniDataHeader *)header->data)->size);
}
static uint16_t full_header_get_msg_type(SpiceDataHeaderOpaque *header)
{
return GUINT16_FROM_LE(((SpiceDataHeader *)header->data)->type);
}
static uint16_t mini_header_get_msg_type(SpiceDataHeaderOpaque *header)
{
return GUINT16_FROM_LE(((SpiceMiniDataHeader *)header->data)->type);
}
static void full_header_set_msg_type(SpiceDataHeaderOpaque *header, uint16_t type)
{
((SpiceDataHeader *)header->data)->type = GUINT16_TO_LE(type);
}
static void mini_header_set_msg_type(SpiceDataHeaderOpaque *header, uint16_t type)
{
((SpiceMiniDataHeader *)header->data)->type = GUINT16_TO_LE(type);
}
static void full_header_set_msg_size(SpiceDataHeaderOpaque *header, uint32_t size)
{
((SpiceDataHeader *)header->data)->size = GUINT32_TO_LE(size);
}
static void mini_header_set_msg_size(SpiceDataHeaderOpaque *header, uint32_t size)
{
((SpiceMiniDataHeader *)header->data)->size = GUINT32_TO_LE(size);
}
static void full_header_set_msg_serial(SpiceDataHeaderOpaque *header, uint64_t serial)
{
((SpiceDataHeader *)header->data)->serial = GUINT64_TO_LE(serial);
}
static void mini_header_set_msg_serial(SpiceDataHeaderOpaque *header, uint64_t serial)
{
spice_error("attempt to set header serial on mini header");
}
static void full_header_set_msg_sub_list(SpiceDataHeaderOpaque *header, uint32_t sub_list)
{
((SpiceDataHeader *)header->data)->sub_list = GUINT32_TO_LE(sub_list);
}
static void mini_header_set_msg_sub_list(SpiceDataHeaderOpaque *header, uint32_t sub_list)
{
spice_error("attempt to set header sub list on mini header");
}
static const SpiceDataHeaderOpaque full_header_wrapper = {NULL, sizeof(SpiceDataHeader),
full_header_set_msg_type,
full_header_set_msg_size,
full_header_set_msg_serial,
full_header_set_msg_sub_list,
full_header_get_msg_type,
full_header_get_msg_size};
static const SpiceDataHeaderOpaque mini_header_wrapper = {NULL, sizeof(SpiceMiniDataHeader),
mini_header_set_msg_type,
mini_header_set_msg_size,
mini_header_set_msg_serial,
mini_header_set_msg_sub_list,
mini_header_get_msg_type,
mini_header_get_msg_size};
/* return the number of bytes read. -1 in case of error */
static int red_peer_receive(RedsStream *stream, uint8_t *buf, uint32_t size)
{
uint8_t *pos = buf;
while (size) {
int now;
if (stream->shutdown) {
return -1;
}
now = reds_stream_read(stream, pos, size);
if (now <= 0) {
if (now == 0) {
return -1;
}
spice_assert(now == -1);
if (errno == EAGAIN) {
break;
} else if (errno == EINTR) {
continue;
} else if (errno == EPIPE) {
return -1;
} else {
spice_printerr("%s", strerror(errno));
return -1;
}
} else {
size -= now;
pos += now;
}
}
return pos - buf;
}
// TODO: this implementation, as opposed to the old implementation in red_worker,
// does many calls to red_peer_receive and through it cb_read, and thus avoids pointer
// arithmetic for the case where a single cb_read could return multiple messages. But
// this is suboptimal potentially. Profile and consider fixing.
static void red_peer_handle_incoming(RedsStream *stream, IncomingHandler *handler)
{
int bytes_read;
uint8_t *parsed;
size_t parsed_size;
message_destructor_t parsed_free;
uint16_t msg_type;
uint32_t msg_size;
/* XXX: This needs further investigation as to the underlying cause, it happened
* after spicec disconnect (but not with spice-gtk) repeatedly. */
if (!stream) {
return;
}
for (;;) {
int ret_handle;
if (handler->header_pos < handler->header.header_size) {
bytes_read = red_peer_receive(stream,
handler->header.data + handler->header_pos,
handler->header.header_size - handler->header_pos);
if (bytes_read == -1) {
handler->cb->on_error(handler->opaque);
return;
}
handler->cb->on_input(handler->opaque, bytes_read);
handler->header_pos += bytes_read;
if (handler->header_pos != handler->header.header_size) {
return;
}
}
msg_size = handler->header.get_msg_size(&handler->header);
msg_type = handler->header.get_msg_type(&handler->header);
if (handler->msg_pos < msg_size) {
if (!handler->msg) {
handler->msg = handler->cb->alloc_msg_buf(handler->opaque, msg_type, msg_size);
if (handler->msg == NULL) {
spice_printerr("ERROR: channel refused to allocate buffer.");
handler->cb->on_error(handler->opaque);
return;
}
}
bytes_read = red_peer_receive(stream,
handler->msg + handler->msg_pos,
msg_size - handler->msg_pos);
if (bytes_read == -1) {
handler->cb->release_msg_buf(handler->opaque, msg_type, msg_size, handler->msg);
handler->cb->on_error(handler->opaque);
return;
}
handler->cb->on_input(handler->opaque, bytes_read);
handler->msg_pos += bytes_read;
if (handler->msg_pos != msg_size) {
return;
}
}
if (handler->cb->parser) {
parsed = handler->cb->parser(handler->msg,
handler->msg + msg_size, msg_type,
SPICE_VERSION_MINOR, &parsed_size, &parsed_free);
if (parsed == NULL) {
spice_printerr("failed to parse message type %d", msg_type);
handler->cb->release_msg_buf(handler->opaque, msg_type, msg_size, handler->msg);
handler->cb->on_error(handler->opaque);
return;
}
ret_handle = handler->cb->handle_parsed(handler->opaque, parsed_size,
msg_type, parsed);
parsed_free(parsed);
} else {
ret_handle = handler->cb->handle_message(handler->opaque, msg_type, msg_size,
handler->msg);
}
handler->msg_pos = 0;
handler->cb->release_msg_buf(handler->opaque, msg_type, msg_size, handler->msg);
handler->msg = NULL;
handler->header_pos = 0;
if (!ret_handle) {
handler->cb->on_error(handler->opaque);
return;
}
}
}
void red_channel_client_receive(RedChannelClient *rcc)
{
red_channel_client_ref(rcc);
red_peer_handle_incoming(rcc->stream, &rcc->incoming);
red_channel_client_unref(rcc);
}
void red_channel_receive(RedChannel *channel)
{
RingItem *link;
RingItem *next;
RedChannelClient *rcc;
RING_FOREACH_SAFE(link, next, &channel->clients) {
rcc = SPICE_CONTAINEROF(link, RedChannelClient, channel_link);
red_channel_client_receive(rcc);
}
}
static void red_peer_handle_outgoing(RedsStream *stream, OutgoingHandler *handler)
{
ssize_t n;
if (!stream) {
return;
}
if (handler->size == 0) {
handler->vec = handler->vec_buf;
handler->size = handler->cb->get_msg_size(handler->opaque);
if (!handler->size) { // nothing to be sent
return;
}
}
for (;;) {
handler->cb->prepare(handler->opaque, handler->vec, &handler->vec_size, handler->pos);
n = reds_stream_writev(stream, handler->vec, handler->vec_size);
if (n == -1) {
switch (errno) {
case EAGAIN:
handler->cb->on_block(handler->opaque);
return;
case EINTR:
continue;
case EPIPE:
handler->cb->on_error(handler->opaque);
return;
default:
spice_printerr("%s", strerror(errno));
handler->cb->on_error(handler->opaque);
return;
}
} else {
handler->pos += n;
handler->cb->on_output(handler->opaque, n);
if (handler->pos == handler->size) { // finished writing data
/* reset handler before calling on_msg_done, since it
* can trigger another call to red_peer_handle_outgoing (when
* switching from the urgent marshaller to the main one */
handler->vec = handler->vec_buf;
handler->pos = 0;
handler->size = 0;
handler->cb->on_msg_done(handler->opaque);
return;
}
}
}
}
static void red_channel_client_on_output(void *opaque, int n)
{
RedChannelClient *rcc = opaque;
if (rcc->connectivity_monitor.timer) {
rcc->connectivity_monitor.out_bytes += n;
}
stat_inc_counter(reds, rcc->channel->out_bytes_counter, n);
}
static void red_channel_client_on_input(void *opaque, int n)
{
RedChannelClient *rcc = opaque;
if (rcc->connectivity_monitor.timer) {
rcc->connectivity_monitor.in_bytes += n;
}
}
static void red_channel_client_default_peer_on_error(RedChannelClient *rcc)
{
red_channel_client_disconnect(rcc);
}
static int red_channel_client_peer_get_out_msg_size(void *opaque)
{
RedChannelClient *rcc = (RedChannelClient *)opaque;
return rcc->send_data.size;
}
static void red_channel_client_peer_prepare_out_msg(
void *opaque, struct iovec *vec, int *vec_size, int pos)
{
RedChannelClient *rcc = (RedChannelClient *)opaque;
*vec_size = spice_marshaller_fill_iovec(rcc->send_data.marshaller,
vec, IOV_MAX, pos);
}
static void red_channel_client_peer_on_out_block(void *opaque)
{
RedChannelClient *rcc = (RedChannelClient *)opaque;
rcc->send_data.blocked = TRUE;
rcc->channel->core->watch_update_mask(rcc->stream->watch,
SPICE_WATCH_EVENT_READ |
SPICE_WATCH_EVENT_WRITE);
}
static inline int red_channel_client_urgent_marshaller_is_active(RedChannelClient *rcc)
{
return (rcc->send_data.marshaller == rcc->send_data.urgent.marshaller);
}
static void red_channel_client_reset_send_data(RedChannelClient *rcc)
{
spice_marshaller_reset(rcc->send_data.marshaller);
rcc->send_data.header.data = spice_marshaller_reserve_space(rcc->send_data.marshaller,
rcc->send_data.header.header_size);
spice_marshaller_set_base(rcc->send_data.marshaller, rcc->send_data.header.header_size);
rcc->send_data.header.set_msg_type(&rcc->send_data.header, 0);
rcc->send_data.header.set_msg_size(&rcc->send_data.header, 0);
/* Keeping the serial consecutive: resetting it if reset_send_data
* has been called before, but no message has been sent since then.
*/
if (rcc->send_data.last_sent_serial != rcc->send_data.serial) {
spice_assert(rcc->send_data.serial - rcc->send_data.last_sent_serial == 1);
/* When the urgent marshaller is active, the serial was incremented by
* the call to reset_send_data that was made for the main marshaller.
* The urgent msg receives this serial, and the main msg serial is
* the following one. Thus, (rcc->send_data.serial - rcc->send_data.last_sent_serial)
* should be 1 in this case*/
if (!red_channel_client_urgent_marshaller_is_active(rcc)) {
rcc->send_data.serial = rcc->send_data.last_sent_serial;
}
}
rcc->send_data.serial++;
if (!rcc->is_mini_header) {
spice_assert(rcc->send_data.marshaller != rcc->send_data.urgent.marshaller);
rcc->send_data.header.set_msg_sub_list(&rcc->send_data.header, 0);
rcc->send_data.header.set_msg_serial(&rcc->send_data.header, rcc->send_data.serial);
}
}
void red_channel_client_push_set_ack(RedChannelClient *rcc)
{
red_channel_client_pipe_add_type(rcc, PIPE_ITEM_TYPE_SET_ACK);
}
static void red_channel_client_send_set_ack(RedChannelClient *rcc)
{
SpiceMsgSetAck ack;
spice_assert(rcc);
red_channel_client_init_send_data(rcc, SPICE_MSG_SET_ACK, NULL);
ack.generation = ++rcc->ack_data.generation;
ack.window = rcc->ack_data.client_window;
rcc->ack_data.messages_window = 0;
spice_marshall_msg_set_ack(rcc->send_data.marshaller, &ack);
red_channel_client_begin_send_message(rcc);
}
static void red_channel_client_send_migrate(RedChannelClient *rcc)
{
SpiceMsgMigrate migrate;
red_channel_client_init_send_data(rcc, SPICE_MSG_MIGRATE, NULL);
migrate.flags = rcc->channel->migration_flags;
spice_marshall_msg_migrate(rcc->send_data.marshaller, &migrate);
if (rcc->channel->migration_flags & SPICE_MIGRATE_NEED_FLUSH) {
rcc->wait_migrate_flush_mark = TRUE;
}
red_channel_client_begin_send_message(rcc);
}
static void red_channel_client_send_empty_msg(RedChannelClient *rcc, PipeItem *base)
{
EmptyMsgPipeItem *msg_pipe_item = SPICE_CONTAINEROF(base, EmptyMsgPipeItem, base);
red_channel_client_init_send_data(rcc, msg_pipe_item->msg, NULL);
red_channel_client_begin_send_message(rcc);
}
static void red_channel_client_send_ping(RedChannelClient *rcc)
{
SpiceMsgPing ping;
if (!rcc->latency_monitor.warmup_was_sent) { // latency test start
int delay_val;
socklen_t opt_size = sizeof(delay_val);
rcc->latency_monitor.warmup_was_sent = TRUE;
/*
* When testing latency, TCP_NODELAY must be switched on, otherwise,
* sending the ping message is delayed by Nagle algorithm, and the
* roundtrip measurement is less accurate (bigger).
*/
rcc->latency_monitor.tcp_nodelay = 1;
if (getsockopt(rcc->stream->socket, IPPROTO_TCP, TCP_NODELAY, &delay_val,
&opt_size) == -1) {
spice_warning("getsockopt failed, %s", strerror(errno));
} else {
rcc->latency_monitor.tcp_nodelay = delay_val;
if (!delay_val) {
delay_val = 1;
if (setsockopt(rcc->stream->socket, IPPROTO_TCP, TCP_NODELAY, &delay_val,
sizeof(delay_val)) == -1) {
if (errno != ENOTSUP) {
spice_warning("setsockopt failed, %s", strerror(errno));
}
}
}
}
}
red_channel_client_init_send_data(rcc, SPICE_MSG_PING, NULL);
ping.id = rcc->latency_monitor.id;
ping.timestamp = spice_get_monotonic_time_ns();
spice_marshall_msg_ping(rcc->send_data.marshaller, &ping);
red_channel_client_begin_send_message(rcc);
}
static void red_channel_client_send_item(RedChannelClient *rcc, PipeItem *item)
{
spice_assert(red_channel_client_no_item_being_sent(rcc));
red_channel_client_reset_send_data(rcc);
switch (item->type) {
case PIPE_ITEM_TYPE_SET_ACK:
red_channel_client_send_set_ack(rcc);
break;
case PIPE_ITEM_TYPE_MIGRATE:
red_channel_client_send_migrate(rcc);
break;
case PIPE_ITEM_TYPE_EMPTY_MSG:
red_channel_client_send_empty_msg(rcc, item);
break;
case PIPE_ITEM_TYPE_PING:
red_channel_client_send_ping(rcc);
break;
default:
rcc->channel->channel_cbs.send_item(rcc, item);
return;
}
free(item);
}
static void red_channel_client_release_item(RedChannelClient *rcc, PipeItem *item, int item_pushed)
{
switch (item->type) {
case PIPE_ITEM_TYPE_SET_ACK:
case PIPE_ITEM_TYPE_EMPTY_MSG:
case PIPE_ITEM_TYPE_MIGRATE:
case PIPE_ITEM_TYPE_PING:
free(item);
break;
default:
rcc->channel->channel_cbs.release_item(rcc, item, item_pushed);
}
}
static inline void red_channel_client_release_sent_item(RedChannelClient *rcc)
{
if (rcc->send_data.item) {
red_channel_client_release_item(rcc,
rcc->send_data.item, TRUE);
rcc->send_data.item = NULL;
}
}
static void red_channel_peer_on_out_msg_done(void *opaque)
{
RedChannelClient *rcc = (RedChannelClient *)opaque;
int fd;
rcc->send_data.size = 0;
if (spice_marshaller_get_fd(rcc->send_data.marshaller, &fd)) {
if (reds_stream_send_msgfd(rcc->stream, fd) < 0) {
perror("sendfd");
red_channel_client_disconnect(rcc);
if (fd != -1)
close(fd);
return;
}
if (fd != -1)
close(fd);
}
red_channel_client_release_sent_item(rcc);
if (rcc->send_data.blocked) {
rcc->send_data.blocked = FALSE;
rcc->channel->core->watch_update_mask(rcc->stream->watch,
SPICE_WATCH_EVENT_READ);
}
if (red_channel_client_urgent_marshaller_is_active(rcc)) {
red_channel_client_restore_main_sender(rcc);
spice_assert(rcc->send_data.header.data != NULL);
red_channel_client_begin_send_message(rcc);
} else {
if (rcc->latency_monitor.timer && !rcc->send_data.blocked && rcc->pipe_size == 0) {
/* It is possible that the socket will become idle, so we may be able to test latency */
red_channel_client_restart_ping_timer(rcc);
}
}
}
static void red_channel_client_pipe_remove(RedChannelClient *rcc, PipeItem *item)
{
rcc->pipe_size--;
ring_remove(&item->link);
}
static void red_channel_add_client(RedChannel *channel, RedChannelClient *rcc)
{
spice_assert(rcc);
ring_add(&channel->clients, &rcc->channel_link);
channel->clients_num++;
}
static void red_channel_client_set_remote_caps(RedChannelClient* rcc,
int num_common_caps, uint32_t *common_caps,
int num_caps, uint32_t *caps)
{
rcc->remote_caps.num_common_caps = num_common_caps;
rcc->remote_caps.common_caps = spice_memdup(common_caps, num_common_caps * sizeof(uint32_t));
rcc->remote_caps.num_caps = num_caps;
rcc->remote_caps.caps = spice_memdup(caps, num_caps * sizeof(uint32_t));
}
static void red_channel_client_destroy_remote_caps(RedChannelClient* rcc)
{
rcc->remote_caps.num_common_caps = 0;
free(rcc->remote_caps.common_caps);
rcc->remote_caps.num_caps = 0;
free(rcc->remote_caps.caps);
}
int red_channel_client_test_remote_common_cap(RedChannelClient *rcc, uint32_t cap)
{
return test_capability(rcc->remote_caps.common_caps,
rcc->remote_caps.num_common_caps,
cap);
}
int red_channel_client_test_remote_cap(RedChannelClient *rcc, uint32_t cap)
{
return test_capability(rcc->remote_caps.caps,
rcc->remote_caps.num_caps,
cap);
}
int red_channel_test_remote_common_cap(RedChannel *channel, uint32_t cap)
{
RingItem *link;
RING_FOREACH(link, &channel->clients) {
RedChannelClient *rcc = SPICE_CONTAINEROF(link, RedChannelClient, channel_link);
if (!red_channel_client_test_remote_common_cap(rcc, cap)) {
return FALSE;
}
}
return TRUE;
}
int red_channel_test_remote_cap(RedChannel *channel, uint32_t cap)
{
RingItem *link;
RING_FOREACH(link, &channel->clients) {
RedChannelClient *rcc = SPICE_CONTAINEROF(link, RedChannelClient, channel_link);
if (!red_channel_client_test_remote_cap(rcc, cap)) {
return FALSE;
}
}
return TRUE;
}
static int red_channel_client_pre_create_validate(RedChannel *channel, RedClient *client)
{
if (red_client_get_channel(client, channel->type, channel->id)) {
spice_printerr("Error client %p: duplicate channel type %d id %d",
client, channel->type, channel->id);
return FALSE;
}
return TRUE;
}
static void red_channel_client_push_ping(RedChannelClient *rcc)
{
spice_assert(rcc->latency_monitor.state == PING_STATE_NONE);
rcc->latency_monitor.state = PING_STATE_WARMUP;
rcc->latency_monitor.warmup_was_sent = FALSE;
rcc->latency_monitor.id = rand();
red_channel_client_pipe_add_type(rcc, PIPE_ITEM_TYPE_PING);
red_channel_client_pipe_add_type(rcc, PIPE_ITEM_TYPE_PING);
}
static void red_channel_client_ping_timer(void *opaque)
{
RedChannelClient *rcc = opaque;
spice_assert(rcc->latency_monitor.state == PING_STATE_TIMER);
red_channel_client_cancel_ping_timer(rcc);
#ifdef HAVE_LINUX_SOCKIOS_H /* SIOCOUTQ is a Linux only ioctl on sockets. */
{
int so_unsent_size = 0;
/* retrieving the occupied size of the socket's tcp snd buffer (unacked + unsent) */
if (ioctl(rcc->stream->socket, SIOCOUTQ, &so_unsent_size) == -1) {
spice_printerr("ioctl(SIOCOUTQ) failed, %s", strerror(errno));
}
if (so_unsent_size > 0) {
/* tcp snd buffer is still occupied. rescheduling ping */
red_channel_client_start_ping_timer(rcc, PING_TEST_IDLE_NET_TIMEOUT_MS);
} else {
red_channel_client_push_ping(rcc);
}
}
#else /* ifdef HAVE_LINUX_SOCKIOS_H */
/* More portable alternative code path (less accurate but avoids bogus ioctls)*/
red_channel_client_push_ping(rcc);
#endif /* ifdef HAVE_LINUX_SOCKIOS_H */
}
/*
* When a connection is not alive (and we can't detect it via a socket error), we
* reach one of these 2 states:
* (1) Sending msgs is blocked: either writes return EAGAIN
* or we are missing MSGC_ACK from the client.
* (2) MSG_PING was sent without receiving a MSGC_PONG in reply.
*
* The connectivity_timer callback tests if the channel's state matches one of the above.
* In case it does, on the next time the timer is called, it checks if the connection has
* been idle during the time that passed since the previous timer call. If the connection
* has been idle, we consider the client as disconnected.
*/
static void red_channel_client_connectivity_timer(void *opaque)
{
RedChannelClient *rcc = opaque;
RedChannelClientConnectivityMonitor *monitor = &rcc->connectivity_monitor;
int is_alive = TRUE;
if (monitor->state == CONNECTIVITY_STATE_BLOCKED) {
if (monitor->in_bytes == 0 && monitor->out_bytes == 0) {
if (!rcc->send_data.blocked && !red_channel_client_waiting_for_ack(rcc)) {
spice_error("mismatch between rcc-state and connectivity-state");
}
spice_debug("rcc is blocked; connection is idle");
is_alive = FALSE;
}
} else if (monitor->state == CONNECTIVITY_STATE_WAIT_PONG) {
if (monitor->in_bytes == 0) {
if (rcc->latency_monitor.state != PING_STATE_WARMUP &&
rcc->latency_monitor.state != PING_STATE_LATENCY) {
spice_error("mismatch between rcc-state and connectivity-state");
}
spice_debug("rcc waits for pong; connection is idle");
is_alive = FALSE;
}
}
if (is_alive) {
monitor->in_bytes = 0;
monitor->out_bytes = 0;
if (rcc->send_data.blocked || red_channel_client_waiting_for_ack(rcc)) {
monitor->state = CONNECTIVITY_STATE_BLOCKED;
} else if (rcc->latency_monitor.state == PING_STATE_WARMUP ||
rcc->latency_monitor.state == PING_STATE_LATENCY) {
monitor->state = CONNECTIVITY_STATE_WAIT_PONG;
} else {
monitor->state = CONNECTIVITY_STATE_CONNECTED;
}
rcc->channel->core->timer_start(rcc->connectivity_monitor.timer,
rcc->connectivity_monitor.timeout);
} else {
monitor->state = CONNECTIVITY_STATE_DISCONNECTED;
spice_warning("rcc %p on channel %d:%d has been unresponsive for more than %u ms, disconnecting",
rcc, rcc->channel->type, rcc->channel->id, monitor->timeout);
red_channel_client_disconnect(rcc);
}
}
void red_channel_client_start_connectivity_monitoring(RedChannelClient *rcc, uint32_t timeout_ms)
{
if (!red_channel_client_is_connected(rcc)) {
return;
}
spice_debug(NULL);
spice_assert(timeout_ms > 0);
/*
* If latency_monitor is not active, we activate it in order to enable
* periodic ping messages so that we will be be able to identify a disconnected
* channel-client even if there are no ongoing channel specific messages
* on this channel.
*/
if (rcc->latency_monitor.timer == NULL) {
rcc->latency_monitor.timer = rcc->channel->core->timer_add(
rcc->channel->core, red_channel_client_ping_timer, rcc);
if (!rcc->client->during_target_migrate) {
red_channel_client_start_ping_timer(rcc, PING_TEST_IDLE_NET_TIMEOUT_MS);
}
rcc->latency_monitor.roundtrip = -1;
}
if (rcc->connectivity_monitor.timer == NULL) {
rcc->connectivity_monitor.state = CONNECTIVITY_STATE_CONNECTED;
rcc->connectivity_monitor.timer = rcc->channel->core->timer_add(
rcc->channel->core, red_channel_client_connectivity_timer, rcc);
rcc->connectivity_monitor.timeout = timeout_ms;
if (!rcc->client->during_target_migrate) {
rcc->channel->core->timer_start(rcc->connectivity_monitor.timer,
rcc->connectivity_monitor.timeout);
}
}
}
RedChannelClient *red_channel_client_create(int size, RedChannel *channel, RedClient *client,
RedsStream *stream,
int monitor_latency,
int num_common_caps, uint32_t *common_caps,
int num_caps, uint32_t *caps)
{
RedChannelClient *rcc = NULL;
pthread_mutex_lock(&client->lock);
if (!red_channel_client_pre_create_validate(channel, client)) {
goto error;
}
spice_assert(stream && channel && size >= sizeof(RedChannelClient));
rcc = spice_malloc0(size);
rcc->stream = stream;
rcc->channel = channel;
rcc->client = client;
rcc->refs = 1;
rcc->ack_data.messages_window = ~0; // blocks send message (maybe use send_data.blocked +
// block flags)
rcc->ack_data.client_generation = ~0;
rcc->ack_data.client_window = CLIENT_ACK_WINDOW;
rcc->send_data.main.marshaller = spice_marshaller_new();
rcc->send_data.urgent.marshaller = spice_marshaller_new();
rcc->send_data.marshaller = rcc->send_data.main.marshaller;
rcc->incoming.opaque = rcc;
rcc->incoming.cb = &channel->incoming_cb;
rcc->outgoing.opaque = rcc;
rcc->outgoing.cb = &channel->outgoing_cb;
rcc->outgoing.pos = 0;
rcc->outgoing.size = 0;
red_channel_client_set_remote_caps(rcc, num_common_caps, common_caps, num_caps, caps);
if (red_channel_client_test_remote_common_cap(rcc, SPICE_COMMON_CAP_MINI_HEADER)) {
rcc->incoming.header = mini_header_wrapper;
rcc->send_data.header = mini_header_wrapper;
rcc->is_mini_header = TRUE;
} else {
rcc->incoming.header = full_header_wrapper;
rcc->send_data.header = full_header_wrapper;
rcc->is_mini_header = FALSE;
}
rcc->incoming.header.data = rcc->incoming.header_buf;
rcc->incoming.serial = 1;
if (!channel->channel_cbs.config_socket(rcc)) {
goto error;
}
ring_init(&rcc->pipe);
rcc->pipe_size = 0;
stream->watch = channel->core->watch_add(channel->core,
stream->socket,
SPICE_WATCH_EVENT_READ,
red_channel_client_event, rcc);
rcc->id = channel->clients_num;
red_channel_add_client(channel, rcc);
red_client_add_channel(client, rcc);
red_channel_ref(channel);
pthread_mutex_unlock(&client->lock);
if (monitor_latency && reds_stream_get_family(stream) != AF_UNIX) {
rcc->latency_monitor.timer = channel->core->timer_add(
channel->core, red_channel_client_ping_timer, rcc);
if (!client->during_target_migrate) {
red_channel_client_start_ping_timer(rcc, PING_TEST_IDLE_NET_TIMEOUT_MS);
}
rcc->latency_monitor.roundtrip = -1;
}
return rcc;
error:
free(rcc);
reds_stream_free(stream);
pthread_mutex_unlock(&client->lock);
return NULL;
}
static void red_channel_client_seamless_migration_done(RedChannelClient *rcc)
{
RedsState *reds = red_channel_get_server(rcc->channel);
rcc->wait_migrate_data = FALSE;
pthread_mutex_lock(&rcc->client->lock);
rcc->client->num_migrated_channels--;
/* we assume we always have at least one channel who has migration data transfer,
* otherwise, this flag will never be set back to FALSE*/
if (!rcc->client->num_migrated_channels) {
rcc->client->during_target_migrate = FALSE;
rcc->client->seamless_migrate = FALSE;
/* migration completion might have been triggered from a different thread
* than the main thread */
main_dispatcher_seamless_migrate_dst_complete(reds_get_main_dispatcher(reds),
rcc->client);
if (rcc->latency_monitor.timer) {
red_channel_client_start_ping_timer(rcc, PING_TEST_IDLE_NET_TIMEOUT_MS);
}
if (rcc->connectivity_monitor.timer) {
rcc->channel->core->timer_start(rcc->connectivity_monitor.timer,
rcc->connectivity_monitor.timeout);
}
}
pthread_mutex_unlock(&rcc->client->lock);
}
int red_channel_client_is_waiting_for_migrate_data(RedChannelClient *rcc)
{
return rcc->wait_migrate_data;
}
int red_channel_is_waiting_for_migrate_data(RedChannel *channel)
{
RedChannelClient *rcc;
if (!red_channel_is_connected(channel)) {
return FALSE;
}
if (channel->clients_num > 1) {
return FALSE;
}
spice_assert(channel->clients_num == 1);
rcc = SPICE_CONTAINEROF(ring_get_head(&channel->clients), RedChannelClient, channel_link);
return red_channel_client_is_waiting_for_migrate_data(rcc);
}
static void red_channel_client_default_connect(RedChannel *channel, RedClient *client,
RedsStream *stream,
int migration,
int num_common_caps, uint32_t *common_caps,
int num_caps, uint32_t *caps)
{
spice_error("not implemented");
}
static void red_channel_client_default_disconnect(RedChannelClient *base)
{
red_channel_client_disconnect(base);
}
void red_channel_client_default_migrate(RedChannelClient *rcc)
{
if (rcc->latency_monitor.timer) {
red_channel_client_cancel_ping_timer(rcc);
rcc->channel->core->timer_remove(rcc->latency_monitor.timer);
rcc->latency_monitor.timer = NULL;
}
if (rcc->connectivity_monitor.timer) {
rcc->channel->core->timer_remove(rcc->connectivity_monitor.timer);
rcc->connectivity_monitor.timer = NULL;
}
red_channel_client_pipe_add_type(rcc, PIPE_ITEM_TYPE_MIGRATE);
}
RedChannel *red_channel_create(int size,
RedsState *reds,
const SpiceCoreInterfaceInternal *core,
uint32_t type, uint32_t id,
int handle_acks,
channel_handle_message_proc handle_message,
const ChannelCbs *channel_cbs,
uint32_t migration_flags)
{
RedChannel *channel;
ClientCbs client_cbs = { NULL, };
spice_assert(size >= sizeof(*channel));
spice_assert(channel_cbs->config_socket && channel_cbs->on_disconnect && handle_message &&
channel_cbs->alloc_recv_buf && channel_cbs->release_item);
spice_assert(channel_cbs->handle_migrate_data ||
!(migration_flags & SPICE_MIGRATE_NEED_DATA_TRANSFER));
channel = spice_malloc0(size);
channel->type = type;
channel->id = id;
channel->refs = 1;
channel->handle_acks = handle_acks;
channel->migration_flags = migration_flags;
memcpy(&channel->channel_cbs, channel_cbs, sizeof(ChannelCbs));
channel->reds = reds;
channel->core = core;
ring_init(&channel->clients);
// TODO: send incoming_cb as parameters instead of duplicating?
channel->incoming_cb.alloc_msg_buf = (alloc_msg_recv_buf_proc)channel_cbs->alloc_recv_buf;
channel->incoming_cb.release_msg_buf = (release_msg_recv_buf_proc)channel_cbs->release_recv_buf;
channel->incoming_cb.handle_message = (handle_message_proc)handle_message;
channel->incoming_cb.on_error =
(on_incoming_error_proc)red_channel_client_default_peer_on_error;
channel->incoming_cb.on_input = red_channel_client_on_input;
channel->outgoing_cb.get_msg_size = red_channel_client_peer_get_out_msg_size;
channel->outgoing_cb.prepare = red_channel_client_peer_prepare_out_msg;
channel->outgoing_cb.on_block = red_channel_client_peer_on_out_block;
channel->outgoing_cb.on_error =
(on_outgoing_error_proc)red_channel_client_default_peer_on_error;
channel->outgoing_cb.on_msg_done = red_channel_peer_on_out_msg_done;
channel->outgoing_cb.on_output = red_channel_client_on_output;
client_cbs.connect = red_channel_client_default_connect;
client_cbs.disconnect = red_channel_client_default_disconnect;
client_cbs.migrate = red_channel_client_default_migrate;
red_channel_register_client_cbs(channel, &client_cbs, NULL);
red_channel_set_common_cap(channel, SPICE_COMMON_CAP_MINI_HEADER);
channel->thread_id = pthread_self();
channel->out_bytes_counter = 0;
spice_debug("channel type %d id %d thread_id 0x%lx",
channel->type, channel->id, channel->thread_id);
return channel;
}
// TODO: red_worker can use this one
static void dummy_watch_update_mask(SpiceWatch *watch, int event_mask)
{
}
static SpiceWatch *dummy_watch_add(const SpiceCoreInterfaceInternal *iface,
int fd, int event_mask, SpiceWatchFunc func, void *opaque)
{
return NULL; // apparently allowed?
}
static void dummy_watch_remove(SpiceWatch *watch)
{
}
// TODO: actually, since I also use channel_client_dummy, no need for core. Can be NULL
static const SpiceCoreInterfaceInternal dummy_core = {
.watch_update_mask = dummy_watch_update_mask,
.watch_add = dummy_watch_add,
.watch_remove = dummy_watch_remove,
};
RedChannel *red_channel_create_dummy(int size, RedsState *reds, uint32_t type, uint32_t id)
{
RedChannel *channel;
ClientCbs client_cbs = { NULL, };
spice_assert(size >= sizeof(*channel));
channel = spice_malloc0(size);
channel->type = type;
channel->id = id;
channel->refs = 1;
channel->reds = reds;
channel->core = &dummy_core;
ring_init(&channel->clients);
client_cbs.connect = red_channel_client_default_connect;
client_cbs.disconnect = red_channel_client_default_disconnect;
client_cbs.migrate = red_channel_client_default_migrate;
red_channel_register_client_cbs(channel, &client_cbs, NULL);
red_channel_set_common_cap(channel, SPICE_COMMON_CAP_MINI_HEADER);
channel->thread_id = pthread_self();
spice_debug("channel type %d id %d thread_id 0x%lx",
channel->type, channel->id, channel->thread_id);
channel->out_bytes_counter = 0;
return channel;
}
static int do_nothing_handle_message(RedChannelClient *rcc,
uint16_t type,
uint32_t size,
uint8_t *msg)
{
return TRUE;
}
RedChannel *red_channel_create_parser(int size,
RedsState *reds,
const SpiceCoreInterfaceInternal *core,
uint32_t type, uint32_t id,
int handle_acks,
spice_parse_channel_func_t parser,
channel_handle_parsed_proc handle_parsed,
const ChannelCbs *channel_cbs,
uint32_t migration_flags)
{
RedChannel *channel = red_channel_create(size, reds, core, type, id,
handle_acks,
do_nothing_handle_message,
channel_cbs,
migration_flags);
if (channel == NULL) {
return NULL;
}
channel->incoming_cb.handle_parsed = (handle_parsed_proc)handle_parsed;
channel->incoming_cb.parser = parser;
return channel;
}
void red_channel_set_stat_node(RedChannel *channel, StatNodeRef stat)
{
spice_return_if_fail(channel != NULL);
spice_return_if_fail(channel->stat == 0);
#ifdef RED_STATISTICS
channel->stat = stat;
channel->out_bytes_counter = stat_add_counter(channel->reds, stat, "out_bytes", TRUE);
#endif
}
void red_channel_register_client_cbs(RedChannel *channel, const ClientCbs *client_cbs, gpointer cbs_data)
{
spice_assert(client_cbs->connect || channel->type == SPICE_CHANNEL_MAIN);
channel->client_cbs.connect = client_cbs->connect;
if (client_cbs->disconnect) {
channel->client_cbs.disconnect = client_cbs->disconnect;
}
if (client_cbs->migrate) {
channel->client_cbs.migrate = client_cbs->migrate;
}
channel->data = cbs_data;
}
int test_capability(const uint32_t *caps, int num_caps, uint32_t cap)
{
uint32_t index = cap / 32;
if (num_caps < index + 1) {
return FALSE;
}
return (caps[index] & (1 << (cap % 32))) != 0;
}
static void add_capability(uint32_t **caps, int *num_caps, uint32_t cap)
{
int nbefore, n;
nbefore = *num_caps;
n = cap / 32;
*num_caps = MAX(*num_caps, n + 1);
*caps = spice_renew(uint32_t, *caps, *num_caps);
memset(*caps + nbefore, 0, (*num_caps - nbefore) * sizeof(uint32_t));
(*caps)[n] |= (1 << (cap % 32));
}
void red_channel_set_common_cap(RedChannel *channel, uint32_t cap)
{
add_capability(&channel->local_caps.common_caps, &channel->local_caps.num_common_caps, cap);
}
void red_channel_set_cap(RedChannel *channel, uint32_t cap)
{
add_capability(&channel->local_caps.caps, &channel->local_caps.num_caps, cap);
}
static void red_channel_ref(RedChannel *channel)
{
channel->refs++;
}
static void red_channel_unref(RedChannel *channel)
{
if (!--channel->refs) {
if (channel->local_caps.num_common_caps) {
free(channel->local_caps.common_caps);
}
if (channel->local_caps.num_caps) {
free(channel->local_caps.caps);
}
free(channel);
}
}
void red_channel_client_ref(RedChannelClient *rcc)
{
rcc->refs++;
}
void red_channel_client_unref(RedChannelClient *rcc)
{
if (!--rcc->refs) {
spice_debug("destroy rcc=%p", rcc);
reds_stream_free(rcc->stream);
rcc->stream = NULL;
if (rcc->send_data.main.marshaller) {
spice_marshaller_destroy(rcc->send_data.main.marshaller);
}
if (rcc->send_data.urgent.marshaller) {
spice_marshaller_destroy(rcc->send_data.urgent.marshaller);
}
red_channel_client_destroy_remote_caps(rcc);
if (rcc->channel) {
red_channel_unref(rcc->channel);
}
free(rcc);
}
}
void red_channel_client_destroy(RedChannelClient *rcc)
{
rcc->destroying = 1;
red_channel_client_disconnect(rcc);
red_client_remove_channel(rcc);
red_channel_client_unref(rcc);
}
void red_channel_destroy(RedChannel *channel)
{
RingItem *link;
RingItem *next;
if (!channel) {
return;
}
RING_FOREACH_SAFE(link, next, &channel->clients) {
red_channel_client_destroy(
SPICE_CONTAINEROF(link, RedChannelClient, channel_link));
}
red_channel_unref(channel);
}
void red_channel_client_shutdown(RedChannelClient *rcc)
{
if (rcc->stream && !rcc->stream->shutdown) {
rcc->channel->core->watch_remove(rcc->stream->watch);
rcc->stream->watch = NULL;
shutdown(rcc->stream->socket, SHUT_RDWR);
rcc->stream->shutdown = TRUE;
}
}
void red_channel_client_send(RedChannelClient *rcc)
{
red_channel_client_ref(rcc);
red_peer_handle_outgoing(rcc->stream, &rcc->outgoing);
red_channel_client_unref(rcc);
}
void red_channel_send(RedChannel *channel)
{
RingItem *link;
RingItem *next;
RING_FOREACH_SAFE(link, next, &channel->clients) {
red_channel_client_send(SPICE_CONTAINEROF(link, RedChannelClient, channel_link));
}
}
static inline int red_channel_client_waiting_for_ack(RedChannelClient *rcc)
{
return (rcc->channel->handle_acks &&
(rcc->ack_data.messages_window > rcc->ack_data.client_window * 2));
}
static inline PipeItem *red_channel_client_pipe_item_get(RedChannelClient *rcc)
{
PipeItem *item;
if (!rcc || rcc->send_data.blocked
|| red_channel_client_waiting_for_ack(rcc)
|| !(item = (PipeItem *)ring_get_tail(&rcc->pipe))) {
return NULL;
}
red_channel_client_pipe_remove(rcc, item);
return item;
}
void red_channel_client_push(RedChannelClient *rcc)
{
PipeItem *pipe_item;
if (!rcc->during_send) {
rcc->during_send = TRUE;
} else {
return;
}
red_channel_client_ref(rcc);
if (rcc->send_data.blocked) {
red_channel_client_send(rcc);
}
if (!red_channel_client_no_item_being_sent(rcc) && !rcc->send_data.blocked) {
rcc->send_data.blocked = TRUE;
spice_printerr("ERROR: an item waiting to be sent and not blocked");
}
while ((pipe_item = red_channel_client_pipe_item_get(rcc))) {
red_channel_client_send_item(rcc, pipe_item);
}
if (red_channel_client_no_item_being_sent(rcc) && ring_is_empty(&rcc->pipe)
&& rcc->stream->watch) {
rcc->channel->core->watch_update_mask(rcc->stream->watch,
SPICE_WATCH_EVENT_READ);
}
rcc->during_send = FALSE;
red_channel_client_unref(rcc);
}
void red_channel_push(RedChannel *channel)
{
RingItem *link;
RingItem *next;
RedChannelClient *rcc;
if (!channel) {
return;
}
RING_FOREACH_SAFE(link, next, &channel->clients) {
rcc = SPICE_CONTAINEROF(link, RedChannelClient, channel_link);
red_channel_client_push(rcc);
}
}
int red_channel_client_get_roundtrip_ms(RedChannelClient *rcc)
{
if (rcc->latency_monitor.roundtrip < 0) {
return rcc->latency_monitor.roundtrip;
}
return rcc->latency_monitor.roundtrip / NSEC_PER_MILLISEC;
}
static void red_channel_client_init_outgoing_messages_window(RedChannelClient *rcc)
{
rcc->ack_data.messages_window = 0;
red_channel_client_push(rcc);
}
// TODO: this function doesn't make sense because the window should be client (WAN/LAN)
// specific
void red_channel_init_outgoing_messages_window(RedChannel *channel)
{
RingItem *link;
RingItem *next;
RING_FOREACH_SAFE(link, next, &channel->clients) {
red_channel_client_init_outgoing_messages_window(
SPICE_CONTAINEROF(link, RedChannelClient, channel_link));
}
}
static void red_channel_handle_migrate_flush_mark(RedChannelClient *rcc)
{
if (rcc->channel->channel_cbs.handle_migrate_flush_mark) {
rcc->channel->channel_cbs.handle_migrate_flush_mark(rcc);
}
}
// TODO: the whole migration is broken with multiple clients. What do we want to do?
// basically just
// 1) source send mark to all
// 2) source gets at various times the data (waits for all)
// 3) source migrates to target
// 4) target sends data to all
// So need to make all the handlers work with per channel/client data (what data exactly?)
static void red_channel_handle_migrate_data(RedChannelClient *rcc, uint32_t size, void *message)
{
spice_debug("channel type %d id %d rcc %p size %u",
rcc->channel->type, rcc->channel->id, rcc, size);
if (!rcc->channel->channel_cbs.handle_migrate_data) {
return;
}
if (!red_channel_client_is_waiting_for_migrate_data(rcc)) {
spice_channel_client_error(rcc, "unexpected");
return;
}
if (rcc->channel->channel_cbs.handle_migrate_data_get_serial) {
red_channel_client_set_message_serial(rcc,
rcc->channel->channel_cbs.handle_migrate_data_get_serial(rcc, size, message));
}
if (!rcc->channel->channel_cbs.handle_migrate_data(rcc, size, message)) {
spice_channel_client_error(rcc, "handle_migrate_data failed");
return;
}
red_channel_client_seamless_migration_done(rcc);
}
static void red_channel_client_restart_ping_timer(RedChannelClient *rcc)
{
uint64_t passed, timeout;
passed = (spice_get_monotonic_time_ns() - rcc->latency_monitor.last_pong_time) / NSEC_PER_MILLISEC;
timeout = PING_TEST_IDLE_NET_TIMEOUT_MS;
if (passed < PING_TEST_TIMEOUT_MS) {
timeout += PING_TEST_TIMEOUT_MS - passed;
}
red_channel_client_start_ping_timer(rcc, timeout);
}
static void red_channel_client_start_ping_timer(RedChannelClient *rcc, uint32_t timeout)
{
if (!rcc->latency_monitor.timer) {
return;
}
if (rcc->latency_monitor.state != PING_STATE_NONE) {
return;
}
rcc->latency_monitor.state = PING_STATE_TIMER;
rcc->channel->core->timer_start(rcc->latency_monitor.timer, timeout);
}
static void red_channel_client_cancel_ping_timer(RedChannelClient *rcc)
{
if (!rcc->latency_monitor.timer) {
return;
}
if (rcc->latency_monitor.state != PING_STATE_TIMER) {
return;
}
rcc->channel->core->timer_cancel(rcc->latency_monitor.timer);
rcc->latency_monitor.state = PING_STATE_NONE;
}
static void red_channel_client_handle_pong(RedChannelClient *rcc, SpiceMsgPing *ping)
{
uint64_t now;
/* ignoring unexpected pongs, or post-migration pongs for pings that
* started just before migration */
if (ping->id != rcc->latency_monitor.id) {
spice_warning("ping-id (%u)!= pong-id %u",
rcc->latency_monitor.id, ping->id);
return;
}
now = spice_get_monotonic_time_ns();
if (rcc->latency_monitor.state == PING_STATE_WARMUP) {
rcc->latency_monitor.state = PING_STATE_LATENCY;
return;
} else if (rcc->latency_monitor.state != PING_STATE_LATENCY) {
spice_warning("unexpected");
return;
}
/* set TCP_NODELAY=0, in case we reverted it for the test*/
if (!rcc->latency_monitor.tcp_nodelay) {
int delay_val = 0;
if (setsockopt(rcc->stream->socket, IPPROTO_TCP, TCP_NODELAY, &delay_val,
sizeof(delay_val)) == -1) {
if (errno != ENOTSUP) {
spice_warning("setsockopt failed, %s", strerror(errno));
}
}
}
/*
* The real network latency shouldn't change during the connection. However,
* the measurements can be bigger than the real roundtrip due to other
* threads or processes that are utilizing the network. We update the roundtrip
* measurement with the minimal value we encountered till now.
*/
if (rcc->latency_monitor.roundtrip < 0 ||
now - ping->timestamp < rcc->latency_monitor.roundtrip) {
rcc->latency_monitor.roundtrip = now - ping->timestamp;
spice_debug("update roundtrip %.2f(ms)", ((double)rcc->latency_monitor.roundtrip)/NSEC_PER_MILLISEC);
}
rcc->latency_monitor.last_pong_time = now;
rcc->latency_monitor.state = PING_STATE_NONE;
red_channel_client_start_ping_timer(rcc, PING_TEST_TIMEOUT_MS);
}
int red_channel_client_handle_message(RedChannelClient *rcc, uint32_t size,
uint16_t type, void *message)
{
switch (type) {
case SPICE_MSGC_ACK_SYNC:
if (size != sizeof(uint32_t)) {
spice_printerr("bad message size");
return FALSE;
}
rcc->ack_data.client_generation = *(uint32_t *)(message);
break;
case SPICE_MSGC_ACK:
if (rcc->ack_data.client_generation == rcc->ack_data.generation) {
rcc->ack_data.messages_window -= rcc->ack_data.client_window;
red_channel_client_push(rcc);
}
break;
case SPICE_MSGC_DISCONNECTING:
break;
case SPICE_MSGC_MIGRATE_FLUSH_MARK:
if (!rcc->wait_migrate_flush_mark) {
spice_error("unexpected flush mark");
return FALSE;
}
red_channel_handle_migrate_flush_mark(rcc);
rcc->wait_migrate_flush_mark = FALSE;
break;
case SPICE_MSGC_MIGRATE_DATA:
red_channel_handle_migrate_data(rcc, size, message);
break;
case SPICE_MSGC_PONG:
red_channel_client_handle_pong(rcc, message);
break;
default:
spice_printerr("invalid message type %u", type);
return FALSE;
}
return TRUE;
}
static void red_channel_client_event(int fd, int event, void *data)
{
RedChannelClient *rcc = (RedChannelClient *)data;
red_channel_client_ref(rcc);
if (event & SPICE_WATCH_EVENT_READ) {
red_channel_client_receive(rcc);
}
if (event & SPICE_WATCH_EVENT_WRITE) {
red_channel_client_push(rcc);
}
red_channel_client_unref(rcc);
}
void red_channel_client_init_send_data(RedChannelClient *rcc, uint16_t msg_type, PipeItem *item)
{
spice_assert(red_channel_client_no_item_being_sent(rcc));
spice_assert(msg_type != 0);
rcc->send_data.header.set_msg_type(&rcc->send_data.header, msg_type);
rcc->send_data.item = item;
if (item) {
rcc->channel->channel_cbs.hold_item(rcc, item);
}
}
void red_channel_client_begin_send_message(RedChannelClient *rcc)
{
SpiceMarshaller *m = rcc->send_data.marshaller;
// TODO - better check: type in channel_allowed_types. Better: type in channel_allowed_types(channel_state)
if (rcc->send_data.header.get_msg_type(&rcc->send_data.header) == 0) {
spice_printerr("BUG: header->type == 0");
return;
}
/* canceling the latency test timer till the nework is idle */
red_channel_client_cancel_ping_timer(rcc);
spice_marshaller_flush(m);
rcc->send_data.size = spice_marshaller_get_total_size(m);
rcc->send_data.header.set_msg_size(&rcc->send_data.header,
rcc->send_data.size - rcc->send_data.header.header_size);
rcc->ack_data.messages_window++;
rcc->send_data.last_sent_serial = rcc->send_data.serial;
rcc->send_data.header.data = NULL; /* avoid writing to this until we have a new message */
red_channel_client_send(rcc);
}
SpiceMarshaller *red_channel_client_switch_to_urgent_sender(RedChannelClient *rcc)
{
spice_assert(red_channel_client_no_item_being_sent(rcc));
spice_assert(rcc->send_data.header.data != NULL);
rcc->send_data.main.header_data = rcc->send_data.header.data;
rcc->send_data.main.item = rcc->send_data.item;
rcc->send_data.marshaller = rcc->send_data.urgent.marshaller;
rcc->send_data.item = NULL;
red_channel_client_reset_send_data(rcc);
return rcc->send_data.marshaller;
}
static void red_channel_client_restore_main_sender(RedChannelClient *rcc)
{
spice_marshaller_reset(rcc->send_data.urgent.marshaller);
rcc->send_data.marshaller = rcc->send_data.main.marshaller;
rcc->send_data.header.data = rcc->send_data.main.header_data;
if (!rcc->is_mini_header) {
rcc->send_data.header.set_msg_serial(&rcc->send_data.header, rcc->send_data.serial);
}
rcc->send_data.item = rcc->send_data.main.item;
}
uint64_t red_channel_client_get_message_serial(RedChannelClient *rcc)
{
return rcc->send_data.serial;
}
void red_channel_client_set_message_serial(RedChannelClient *rcc, uint64_t serial)
{
rcc->send_data.last_sent_serial = serial;
rcc->send_data.serial = serial;
}
void pipe_item_init(PipeItem *item, int type)
{
ring_item_init(&item->link);
item->type = type;
}
static inline gboolean client_pipe_add(RedChannelClient *rcc, PipeItem *item, RingItem *pos)
{
spice_assert(rcc && item);
if (SPICE_UNLIKELY(!red_channel_client_is_connected(rcc))) {
spice_debug("rcc is disconnected %p", rcc);
red_channel_client_release_item(rcc, item, FALSE);
return FALSE;
}
if (ring_is_empty(&rcc->pipe) && rcc->stream->watch) {
rcc->channel->core->watch_update_mask(rcc->stream->watch,
SPICE_WATCH_EVENT_READ |
SPICE_WATCH_EVENT_WRITE);
}
rcc->pipe_size++;
ring_add(pos, &item->link);
return TRUE;
}
void red_channel_client_pipe_add(RedChannelClient *rcc, PipeItem *item)
{
client_pipe_add(rcc, item, &rcc->pipe);
}
void red_channel_client_pipe_add_push(RedChannelClient *rcc, PipeItem *item)
{
red_channel_client_pipe_add(rcc, item);
red_channel_client_push(rcc);
}
void red_channel_client_pipe_add_after(RedChannelClient *rcc,
PipeItem *item, PipeItem *pos)
{
spice_assert(pos);
client_pipe_add(rcc, item, &pos->link);
}
int red_channel_client_pipe_item_is_linked(RedChannelClient *rcc,
PipeItem *item)
{
return ring_item_is_linked(&item->link);
}
void red_channel_client_pipe_add_tail(RedChannelClient *rcc,
PipeItem *item)
{
client_pipe_add(rcc, item, rcc->pipe.prev);
}
void red_channel_client_pipe_add_tail_and_push(RedChannelClient *rcc, PipeItem *item)
{
if (client_pipe_add(rcc, item, rcc->pipe.prev)) {
red_channel_client_push(rcc);
}
}
void red_channel_client_pipe_add_type(RedChannelClient *rcc, int pipe_item_type)
{
PipeItem *item = spice_new(PipeItem, 1);
pipe_item_init(item, pipe_item_type);
red_channel_client_pipe_add(rcc, item);
red_channel_client_push(rcc);
}
void red_channel_pipes_add_type(RedChannel *channel, int pipe_item_type)
{
RingItem *link, *next;
RING_FOREACH_SAFE(link, next, &channel->clients) {
red_channel_client_pipe_add_type(
SPICE_CONTAINEROF(link, RedChannelClient, channel_link),
pipe_item_type);
}
}
void red_channel_client_pipe_add_empty_msg(RedChannelClient *rcc, int msg_type)
{
EmptyMsgPipeItem *item = spice_new(EmptyMsgPipeItem, 1);
pipe_item_init(&item->base, PIPE_ITEM_TYPE_EMPTY_MSG);
item->msg = msg_type;
red_channel_client_pipe_add(rcc, &item->base);
red_channel_client_push(rcc);
}
void red_channel_pipes_add_empty_msg(RedChannel *channel, int msg_type)
{
RingItem *link, *next;
RING_FOREACH_SAFE(link, next, &channel->clients) {
red_channel_client_pipe_add_empty_msg(
SPICE_CONTAINEROF(link, RedChannelClient, channel_link),
msg_type);
}
}
int red_channel_client_is_connected(RedChannelClient *rcc)
{
if (!rcc->dummy) {
return ring_item_is_linked(&rcc->channel_link);
} else {
return rcc->dummy_connected;
}
}
int red_channel_is_connected(RedChannel *channel)
{
return channel && (channel->clients_num > 0);
}
void red_channel_client_clear_sent_item(RedChannelClient *rcc)
{
if (rcc->send_data.item) {
red_channel_client_release_item(rcc, rcc->send_data.item, TRUE);
rcc->send_data.item = NULL;
}
rcc->send_data.blocked = FALSE;
rcc->send_data.size = 0;
}
void red_channel_client_pipe_clear(RedChannelClient *rcc)
{
PipeItem *item;
if (rcc) {
red_channel_client_clear_sent_item(rcc);
}
while ((item = (PipeItem *)ring_get_head(&rcc->pipe))) {
ring_remove(&item->link);
red_channel_client_release_item(rcc, item, FALSE);
}
rcc->pipe_size = 0;
}
void red_channel_client_ack_zero_messages_window(RedChannelClient *rcc)
{
rcc->ack_data.messages_window = 0;
}
void red_channel_client_ack_set_client_window(RedChannelClient *rcc, int client_window)
{
rcc->ack_data.client_window = client_window;
}
static void red_channel_remove_client(RedChannelClient *rcc)
{
if (!pthread_equal(pthread_self(), rcc->channel->thread_id)) {
spice_warning("channel type %d id %d - "
"channel->thread_id (0x%lx) != pthread_self (0x%lx)."
"If one of the threads is != io-thread && != vcpu-thread, "
"this might be a BUG",
rcc->channel->type, rcc->channel->id,
rcc->channel->thread_id, pthread_self());
}
spice_return_if_fail(ring_item_is_linked(&rcc->channel_link));
ring_remove(&rcc->channel_link);
spice_assert(rcc->channel->clients_num > 0);
rcc->channel->clients_num--;
// TODO: should we set rcc->channel to NULL???
}
static void red_client_remove_channel(RedChannelClient *rcc)
{
pthread_mutex_lock(&rcc->client->lock);
ring_remove(&rcc->client_link);
rcc->client->channels_num--;
pthread_mutex_unlock(&rcc->client->lock);
}
static void red_channel_client_disconnect_dummy(RedChannelClient *rcc)
{
spice_assert(rcc->dummy);
if (ring_item_is_linked(&rcc->channel_link)) {
spice_printerr("rcc=%p (channel=%p type=%d id=%d)", rcc, rcc->channel,
rcc->channel->type, rcc->channel->id);
red_channel_remove_client(rcc);
}
rcc->dummy_connected = FALSE;
}
void red_channel_client_disconnect(RedChannelClient *rcc)
{
if (rcc->dummy) {
red_channel_client_disconnect_dummy(rcc);
return;
}
if (!red_channel_client_is_connected(rcc)) {
return;
}
spice_printerr("rcc=%p (channel=%p type=%d id=%d)", rcc, rcc->channel,
rcc->channel->type, rcc->channel->id);
red_channel_client_pipe_clear(rcc);
if (rcc->stream->watch) {
rcc->channel->core->watch_remove(rcc->stream->watch);
rcc->stream->watch = NULL;
}
if (rcc->latency_monitor.timer) {
rcc->channel->core->timer_remove(rcc->latency_monitor.timer);
rcc->latency_monitor.timer = NULL;
}
if (rcc->connectivity_monitor.timer) {
rcc->channel->core->timer_remove(rcc->connectivity_monitor.timer);
rcc->connectivity_monitor.timer = NULL;
}
red_channel_remove_client(rcc);
rcc->channel->channel_cbs.on_disconnect(rcc);
}
void red_channel_disconnect(RedChannel *channel)
{
RingItem *link;
RingItem *next;
RING_FOREACH_SAFE(link, next, &channel->clients) {
red_channel_client_disconnect(
SPICE_CONTAINEROF(link, RedChannelClient, channel_link));
}
}
RedChannelClient *red_channel_client_create_dummy(int size,
RedChannel *channel,
RedClient *client,
int num_common_caps, uint32_t *common_caps,
int num_caps, uint32_t *caps)
{
RedChannelClient *rcc = NULL;
spice_assert(size >= sizeof(RedChannelClient));
pthread_mutex_lock(&client->lock);
if (!red_channel_client_pre_create_validate(channel, client)) {
goto error;
}
rcc = spice_malloc0(size);
rcc->refs = 1;
rcc->client = client;
rcc->channel = channel;
red_channel_ref(channel);
red_channel_client_set_remote_caps(rcc, num_common_caps, common_caps, num_caps, caps);
if (red_channel_client_test_remote_common_cap(rcc, SPICE_COMMON_CAP_MINI_HEADER)) {
rcc->incoming.header = mini_header_wrapper;
rcc->send_data.header = mini_header_wrapper;
rcc->is_mini_header = TRUE;
} else {
rcc->incoming.header = full_header_wrapper;
rcc->send_data.header = full_header_wrapper;
rcc->is_mini_header = FALSE;
}
rcc->incoming.header.data = rcc->incoming.header_buf;
rcc->incoming.serial = 1;
ring_init(&rcc->pipe);
rcc->dummy = TRUE;
rcc->dummy_connected = TRUE;
red_channel_add_client(channel, rcc);
red_client_add_channel(client, rcc);
pthread_mutex_unlock(&client->lock);
return rcc;
error:
pthread_mutex_unlock(&client->lock);
return NULL;
}
void red_channel_apply_clients(RedChannel *channel, channel_client_callback cb)
{
RingItem *link;
RingItem *next;
RedChannelClient *rcc;
RING_FOREACH_SAFE(link, next, &channel->clients) {
rcc = SPICE_CONTAINEROF(link, RedChannelClient, channel_link);
cb(rcc);
}
}
int red_channel_all_blocked(RedChannel *channel)
{
RingItem *link;
RedChannelClient *rcc;
if (!channel || channel->clients_num == 0) {
return FALSE;
}
RING_FOREACH(link, &channel->clients) {
rcc = SPICE_CONTAINEROF(link, RedChannelClient, channel_link);
if (!rcc->send_data.blocked) {
return FALSE;
}
}
return TRUE;
}
int red_channel_any_blocked(RedChannel *channel)
{
RingItem *link;
RedChannelClient *rcc;
RING_FOREACH(link, &channel->clients) {
rcc = SPICE_CONTAINEROF(link, RedChannelClient, channel_link);
if (rcc->send_data.blocked) {
return TRUE;
}
}
return FALSE;
}
int red_channel_client_blocked(RedChannelClient *rcc)
{
return rcc && rcc->send_data.blocked;
}
int red_channel_client_send_message_pending(RedChannelClient *rcc)
{
return rcc->send_data.header.get_msg_type(&rcc->send_data.header) != 0;
}
/* accessors for RedChannelClient */
SpiceMarshaller *red_channel_client_get_marshaller(RedChannelClient *rcc)
{
return rcc->send_data.marshaller;
}
RedsStream *red_channel_client_get_stream(RedChannelClient *rcc)
{
return rcc->stream;
}
RedClient *red_channel_client_get_client(RedChannelClient *rcc)
{
return rcc->client;
}
void red_channel_client_set_header_sub_list(RedChannelClient *rcc, uint32_t sub_list)
{
rcc->send_data.header.set_msg_sub_list(&rcc->send_data.header, sub_list);
}
/* end of accessors */
int red_channel_get_first_socket(RedChannel *channel)
{
if (!channel || channel->clients_num == 0) {
return -1;
}
return SPICE_CONTAINEROF(ring_get_head(&channel->clients),
RedChannelClient, channel_link)->stream->socket;
}
int red_channel_no_item_being_sent(RedChannel *channel)
{
RingItem *link;
RedChannelClient *rcc;
RING_FOREACH(link, &channel->clients) {
rcc = SPICE_CONTAINEROF(link, RedChannelClient, channel_link);
if (!red_channel_client_no_item_being_sent(rcc)) {
return FALSE;
}
}
return TRUE;
}
int red_channel_client_no_item_being_sent(RedChannelClient *rcc)
{
return !rcc || (rcc->send_data.size == 0);
}
void red_channel_client_pipe_remove_and_release(RedChannelClient *rcc,
PipeItem *item)
{
red_channel_client_pipe_remove(rcc, item);
red_channel_client_release_item(rcc, item, FALSE);
}
/*
* RedClient implementation - kept in red-channel.c because they are
* pretty tied together.
*/
RedClient *red_client_new(RedsState *reds, int migrated)
{
RedClient *client;
client = spice_malloc0(sizeof(RedClient));
client->reds = reds;
ring_init(&client->channels);
pthread_mutex_init(&client->lock, NULL);
client->thread_id = pthread_self();
client->during_target_migrate = migrated;
client->refs = 1;
return client;
}
RedClient *red_client_ref(RedClient *client)
{
spice_assert(client);
g_atomic_int_inc(&client->refs);
return client;
}
RedClient *red_client_unref(RedClient *client)
{
if (g_atomic_int_dec_and_test(&client->refs)) {
spice_debug("release client=%p", client);
pthread_mutex_destroy(&client->lock);
free(client);
return NULL;
}
return client;
}
/* client mutex should be locked before this call */
static void red_channel_client_set_migration_seamless(RedChannelClient *rcc)
{
spice_assert(rcc->client->during_target_migrate && rcc->client->seamless_migrate);
if (rcc->channel->migration_flags & SPICE_MIGRATE_NEED_DATA_TRANSFER) {
rcc->wait_migrate_data = TRUE;
rcc->client->num_migrated_channels++;
}
spice_debug("channel type %d id %d rcc %p wait data %d", rcc->channel->type, rcc->channel->id, rcc,
rcc->wait_migrate_data);
}
void red_client_set_migration_seamless(RedClient *client) // dest
{
RingItem *link;
pthread_mutex_lock(&client->lock);
client->seamless_migrate = TRUE;
/* update channel clients that got connected before the migration
* type was set. red_client_add_channel will handle newer channel clients */
RING_FOREACH(link, &client->channels) {
RedChannelClient *rcc = SPICE_CONTAINEROF(link, RedChannelClient, client_link);
red_channel_client_set_migration_seamless(rcc);
}
pthread_mutex_unlock(&client->lock);
}
void red_client_migrate(RedClient *client)
{
RingItem *link, *next;
RedChannelClient *rcc;
spice_printerr("migrate client with #channels %d", client->channels_num);
if (!pthread_equal(pthread_self(), client->thread_id)) {
spice_warning("client->thread_id (0x%lx) != pthread_self (0x%lx)."
"If one of the threads is != io-thread && != vcpu-thread,"
" this might be a BUG",
client->thread_id, pthread_self());
}
RING_FOREACH_SAFE(link, next, &client->channels) {
rcc = SPICE_CONTAINEROF(link, RedChannelClient, client_link);
if (red_channel_client_is_connected(rcc)) {
rcc->channel->client_cbs.migrate(rcc);
}
}
}
void red_client_destroy(RedClient *client)
{
RingItem *link, *next;
RedChannelClient *rcc;
spice_printerr("destroy client %p with #channels=%d", client, client->channels_num);
if (!pthread_equal(pthread_self(), client->thread_id)) {
spice_warning("client->thread_id (0x%lx) != pthread_self (0x%lx)."
"If one of the threads is != io-thread && != vcpu-thread,"
" this might be a BUG",
client->thread_id,
pthread_self());
}
RING_FOREACH_SAFE(link, next, &client->channels) {
// some channels may be in other threads, so disconnection
// is not synchronous.
rcc = SPICE_CONTAINEROF(link, RedChannelClient, client_link);
rcc->destroying = 1;
// some channels may be in other threads. However we currently
// assume disconnect is synchronous (we changed the dispatcher
// to wait for disconnection)
// TODO: should we go back to async. For this we need to use
// ref count for channel clients.
rcc->channel->client_cbs.disconnect(rcc);
spice_assert(ring_is_empty(&rcc->pipe));
spice_assert(rcc->pipe_size == 0);
spice_assert(rcc->send_data.size == 0);
red_channel_client_destroy(rcc);
}
red_client_unref(client);
}
/* client->lock should be locked */
static RedChannelClient *red_client_get_channel(RedClient *client, int type, int id)
{
RingItem *link;
RedChannelClient *rcc;
RedChannelClient *ret = NULL;
RING_FOREACH(link, &client->channels) {
rcc = SPICE_CONTAINEROF(link, RedChannelClient, client_link);
if (rcc->channel->type == type && rcc->channel->id == id) {
ret = rcc;
break;
}
}
return ret;
}
/* client->lock should be locked */
static void red_client_add_channel(RedClient *client, RedChannelClient *rcc)
{
spice_assert(rcc && client);
ring_add(&client->channels, &rcc->client_link);
if (client->during_target_migrate && client->seamless_migrate) {
red_channel_client_set_migration_seamless(rcc);
}
client->channels_num++;
}
MainChannelClient *red_client_get_main(RedClient *client) {
return client->mcc;
}
void red_client_set_main(RedClient *client, MainChannelClient *mcc) {
client->mcc = mcc;
}
void red_client_semi_seamless_migrate_complete(RedClient *client)
{
RingItem *link, *next;
pthread_mutex_lock(&client->lock);
if (!client->during_target_migrate || client->seamless_migrate) {
spice_error("unexpected");
pthread_mutex_unlock(&client->lock);
return;
}
client->during_target_migrate = FALSE;
RING_FOREACH_SAFE(link, next, &client->channels) {
RedChannelClient *rcc = SPICE_CONTAINEROF(link, RedChannelClient, client_link);
if (rcc->latency_monitor.timer) {
red_channel_client_start_ping_timer(rcc, PING_TEST_IDLE_NET_TIMEOUT_MS);
}
}
pthread_mutex_unlock(&client->lock);
reds_on_client_semi_seamless_migrate_complete(client->reds, client);
}
/* should be called only from the main thread */
int red_client_during_migrate_at_target(RedClient *client)
{
int ret;
pthread_mutex_lock(&client->lock);
ret = client->during_target_migrate;
pthread_mutex_unlock(&client->lock);
return ret;
}
/*
* Functions to push the same item to multiple pipes.
*/
/*
* TODO: after convinced of correctness, add paths for single client
* that avoid the whole loop. perhaps even have a function pointer table
* later.
* TODO - inline? macro? right now this is the simplest from code amount
*/
typedef void (*rcc_item_t)(RedChannelClient *rcc, PipeItem *item);
typedef int (*rcc_item_cond_t)(RedChannelClient *rcc, PipeItem *item);
/**
* red_channel_pipes_create_batch:
* @channel: a channel
* @creator: a callback to create pipe item (not null)
* @data: the data to pass to the creator
* @pipe_add: a callback to add non-null pipe items (not null)
*
* Returns: the number of added items
**/
static int red_channel_pipes_create_batch(RedChannel *channel,
new_pipe_item_t creator, void *data,
rcc_item_t pipe_add)
{
RingItem *link, *next;
RedChannelClient *rcc;
PipeItem *item;
int num = 0, n = 0;
spice_assert(creator != NULL);
spice_assert(pipe_add != NULL);
RING_FOREACH_SAFE(link, next, &channel->clients) {
rcc = SPICE_CONTAINEROF(link, RedChannelClient, channel_link);
item = (*creator)(rcc, data, num++);
if (item) {
(*pipe_add)(rcc, item);
n++;
}
}
return n;
}
int red_channel_pipes_new_add_push(RedChannel *channel,
new_pipe_item_t creator, void *data)
{
int n = red_channel_pipes_create_batch(channel, creator, data,
red_channel_client_pipe_add);
red_channel_push(channel);
return n;
}
void red_channel_pipes_new_add(RedChannel *channel, new_pipe_item_t creator, void *data)
{
red_channel_pipes_create_batch(channel, creator, data,
red_channel_client_pipe_add);
}
void red_channel_pipes_new_add_tail(RedChannel *channel, new_pipe_item_t creator, void *data)
{
red_channel_pipes_create_batch(channel, creator, data,
red_channel_client_pipe_add_tail);
}
uint32_t red_channel_max_pipe_size(RedChannel *channel)
{
RingItem *link;
RedChannelClient *rcc;
uint32_t pipe_size = 0;
RING_FOREACH(link, &channel->clients) {
rcc = SPICE_CONTAINEROF(link, RedChannelClient, channel_link);
pipe_size = MAX(pipe_size, rcc->pipe_size);
}
return pipe_size;
}
uint32_t red_channel_min_pipe_size(RedChannel *channel)
{
RingItem *link;
RedChannelClient *rcc;
uint32_t pipe_size = ~0;
RING_FOREACH(link, &channel->clients) {
rcc = SPICE_CONTAINEROF(link, RedChannelClient, channel_link);
pipe_size = MIN(pipe_size, rcc->pipe_size);
}
return pipe_size == ~0 ? 0 : pipe_size;
}
uint32_t red_channel_sum_pipes_size(RedChannel *channel)
{
RingItem *link;
RedChannelClient *rcc;
uint32_t sum = 0;
RING_FOREACH(link, &channel->clients) {
rcc = SPICE_CONTAINEROF(link, RedChannelClient, channel_link);
sum += rcc->pipe_size;
}
return sum;
}
int red_channel_client_wait_outgoing_item(RedChannelClient *rcc,
int64_t timeout)
{
uint64_t end_time;
int blocked;
if (!red_channel_client_blocked(rcc)) {
return TRUE;
}
if (timeout != -1) {
end_time = spice_get_monotonic_time_ns() + timeout;
} else {
end_time = UINT64_MAX;
}
spice_info("blocked");
do {
usleep(CHANNEL_BLOCKED_SLEEP_DURATION);
red_channel_client_receive(rcc);
red_channel_client_send(rcc);
} while ((blocked = red_channel_client_blocked(rcc)) &&
(timeout == -1 || spice_get_monotonic_time_ns() < end_time));
if (blocked) {
spice_warning("timeout");
return FALSE;
} else {
spice_assert(red_channel_client_no_item_being_sent(rcc));
return TRUE;
}
}
/* TODO: more evil sync stuff. anything with the word wait in it's name. */
int red_channel_client_wait_pipe_item_sent(RedChannelClient *rcc,
PipeItem *item,
int64_t timeout)
{
uint64_t end_time;
int item_in_pipe;
spice_info(NULL);
if (timeout != -1) {
end_time = spice_get_monotonic_time_ns() + timeout;
} else {
end_time = UINT64_MAX;
}
rcc->channel->channel_cbs.hold_item(rcc, item);
if (red_channel_client_blocked(rcc)) {
red_channel_client_receive(rcc);
red_channel_client_send(rcc);
}
red_channel_client_push(rcc);
while((item_in_pipe = ring_item_is_linked(&item->link)) &&
(timeout == -1 || spice_get_monotonic_time_ns() < end_time)) {
usleep(CHANNEL_BLOCKED_SLEEP_DURATION);
red_channel_client_receive(rcc);
red_channel_client_send(rcc);
red_channel_client_push(rcc);
}
red_channel_client_release_item(rcc, item, TRUE);
if (item_in_pipe) {
spice_warning("timeout");
return FALSE;
} else {
return red_channel_client_wait_outgoing_item(rcc,
timeout == -1 ? -1 : end_time - spice_get_monotonic_time_ns());
}
}
int red_channel_wait_all_sent(RedChannel *channel,
int64_t timeout)
{
uint64_t end_time;
uint32_t max_pipe_size;
int blocked = FALSE;
if (timeout != -1) {
end_time = spice_get_monotonic_time_ns() + timeout;
} else {
end_time = UINT64_MAX;
}
red_channel_push(channel);
while (((max_pipe_size = red_channel_max_pipe_size(channel)) ||
(blocked = red_channel_any_blocked(channel))) &&
(timeout == -1 || spice_get_monotonic_time_ns() < end_time)) {
spice_debug("pipe-size %u blocked %d", max_pipe_size, blocked);
usleep(CHANNEL_BLOCKED_SLEEP_DURATION);
red_channel_receive(channel);
red_channel_send(channel);
red_channel_push(channel);
}
if (max_pipe_size || blocked) {
spice_warning("timeout: pending out messages exist (pipe-size %u, blocked %d)",
max_pipe_size, blocked);
return FALSE;
} else {
spice_assert(red_channel_no_item_being_sent(channel));
return TRUE;
}
}
void red_channel_client_disconnect_if_pending_send(RedChannelClient *rcc)
{
if (red_channel_client_blocked(rcc) || rcc->pipe_size > 0) {
red_channel_client_disconnect(rcc);
} else {
spice_assert(red_channel_client_no_item_being_sent(rcc));
}
}
RedsState* red_channel_get_server(RedChannel *channel)
{
return channel->reds;
}