1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
|
/*
* Copyright © 2010 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include <limits.h>
#include "main/compiler.h"
#include "compiler/glsl_types.h"
#include "loop_analysis.h"
#include "ir_hierarchical_visitor.h"
/**
* Find an initializer of a variable outside a loop
*
* Works backwards from the loop to find the pre-loop value of the variable.
* This is used, for example, to find the initial value of loop induction
* variables.
*
* \param loop Loop where \c var is an induction variable
* \param var Variable whose initializer is to be found
*
* \return
* The \c ir_rvalue assigned to the variable outside the loop. May return
* \c NULL if no initializer can be found.
*/
ir_rvalue *
find_initial_value(ir_loop *loop, ir_variable *var)
{
for (exec_node *node = loop->prev;
!node->is_head_sentinel();
node = node->prev) {
ir_instruction *ir = (ir_instruction *) node;
switch (ir->ir_type) {
case ir_type_call:
case ir_type_loop:
case ir_type_loop_jump:
case ir_type_return:
case ir_type_if:
return NULL;
case ir_type_function:
case ir_type_function_signature:
assert(!"Should not get here.");
return NULL;
case ir_type_assignment: {
ir_assignment *assign = ir->as_assignment();
ir_variable *assignee = assign->lhs->whole_variable_referenced();
if (assignee == var)
return (assign->condition != NULL) ? NULL : assign->rhs;
break;
}
default:
break;
}
}
return NULL;
}
int
calculate_iterations(ir_rvalue *from, ir_rvalue *to, ir_rvalue *increment,
enum ir_expression_operation op)
{
if (from == NULL || to == NULL || increment == NULL)
return -1;
void *mem_ctx = ralloc_context(NULL);
ir_expression *const sub =
new(mem_ctx) ir_expression(ir_binop_sub, from->type, to, from);
ir_expression *const div =
new(mem_ctx) ir_expression(ir_binop_div, sub->type, sub, increment);
ir_constant *iter = div->constant_expression_value();
if (iter == NULL)
return -1;
if (!iter->type->is_integer()) {
const ir_expression_operation op = iter->type->is_double()
? ir_unop_d2i : ir_unop_f2i;
ir_rvalue *cast =
new(mem_ctx) ir_expression(op, glsl_type::int_type, iter, NULL);
iter = cast->constant_expression_value();
}
int iter_value = iter->get_int_component(0);
/* Make sure that the calculated number of iterations satisfies the exit
* condition. This is needed to catch off-by-one errors and some types of
* ill-formed loops. For example, we need to detect that the following
* loop does not have a maximum iteration count.
*
* for (float x = 0.0; x != 0.9; x += 0.2)
* ;
*/
const int bias[] = { -1, 0, 1 };
bool valid_loop = false;
for (unsigned i = 0; i < ARRAY_SIZE(bias); i++) {
/* Increment may be of type int, uint or float. */
switch (increment->type->base_type) {
case GLSL_TYPE_INT:
iter = new(mem_ctx) ir_constant(iter_value + bias[i]);
break;
case GLSL_TYPE_UINT:
iter = new(mem_ctx) ir_constant(unsigned(iter_value + bias[i]));
break;
case GLSL_TYPE_FLOAT:
iter = new(mem_ctx) ir_constant(float(iter_value + bias[i]));
break;
case GLSL_TYPE_DOUBLE:
iter = new(mem_ctx) ir_constant(double(iter_value + bias[i]));
break;
default:
unreachable("Unsupported type for loop iterator.");
}
ir_expression *const mul =
new(mem_ctx) ir_expression(ir_binop_mul, increment->type, iter,
increment);
ir_expression *const add =
new(mem_ctx) ir_expression(ir_binop_add, mul->type, mul, from);
ir_expression *const cmp =
new(mem_ctx) ir_expression(op, glsl_type::bool_type, add, to);
ir_constant *const cmp_result = cmp->constant_expression_value();
assert(cmp_result != NULL);
if (cmp_result->get_bool_component(0)) {
iter_value += bias[i];
valid_loop = true;
break;
}
}
ralloc_free(mem_ctx);
return (valid_loop) ? iter_value : -1;
}
namespace {
class loop_control_visitor : public ir_hierarchical_visitor {
public:
loop_control_visitor(loop_state *state)
{
this->state = state;
this->progress = false;
}
virtual ir_visitor_status visit_leave(ir_loop *ir);
loop_state *state;
bool progress;
};
} /* anonymous namespace */
ir_visitor_status
loop_control_visitor::visit_leave(ir_loop *ir)
{
loop_variable_state *const ls = this->state->get(ir);
/* If we've entered a loop that hasn't been analyzed, something really,
* really bad has happened.
*/
if (ls == NULL) {
assert(ls != NULL);
return visit_continue;
}
if (ls->limiting_terminator != NULL) {
/* If the limiting terminator has an iteration count of zero, then we've
* proven that the loop cannot run, so delete it.
*/
int iterations = ls->limiting_terminator->iterations;
if (iterations == 0) {
ir->remove();
this->progress = true;
return visit_continue;
}
}
/* Remove the conditional break statements associated with all terminators
* that are associated with a fixed iteration count, except for the one
* associated with the limiting terminator--that one needs to stay, since
* it terminates the loop. Exception: if the loop still has a normative
* bound, then that terminates the loop, so we don't even need the limiting
* terminator.
*/
foreach_in_list(loop_terminator, t, &ls->terminators) {
if (t->iterations < 0)
continue;
if (t != ls->limiting_terminator) {
t->ir->remove();
assert(ls->num_loop_jumps > 0);
ls->num_loop_jumps--;
this->progress = true;
}
}
return visit_continue;
}
bool
set_loop_controls(exec_list *instructions, loop_state *ls)
{
loop_control_visitor v(ls);
v.run(instructions);
return v.progress;
}
|