/* * Copyright 2010 Marek Olšák * Copyright 2016 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * on the rights to use, copy, modify, merge, publish, distribute, sub * license, and/or sell copies of the Software, and to permit persons to whom * the Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include "slab.h" #include "macros.h" #include "u_atomic.h" #include #include #include #define ALIGN(value, align) (((value) + (align) - 1) & ~((align) - 1)) #define SLAB_MAGIC_ALLOCATED 0xcafe4321 #define SLAB_MAGIC_FREE 0x7ee01234 #ifdef DEBUG #define SET_MAGIC(element, value) (element)->magic = (value) #define CHECK_MAGIC(element, value) assert((element)->magic == (value)) #else #define SET_MAGIC(element, value) #define CHECK_MAGIC(element, value) #endif /* One array element within a big buffer. */ struct slab_element_header { /* The next element in the free or migrated list. */ struct slab_element_header *next; /* This is either * - a pointer to the child pool to which this element belongs, or * - a pointer to the orphaned page of the element, with the least * significant bit set to 1. */ intptr_t owner; #ifdef DEBUG intptr_t magic; #endif }; /* The page is an array of allocations in one block. */ struct slab_page_header { union { /* Next page in the same child pool. */ struct slab_page_header *next; /* Number of remaining, non-freed elements (for orphaned pages). */ unsigned num_remaining; } u; /* Memory after the last member is dedicated to the page itself. * The allocated size is always larger than this structure. */ }; static struct slab_element_header * slab_get_element(struct slab_parent_pool *parent, struct slab_page_header *page, unsigned index) { return (struct slab_element_header*) ((uint8_t*)&page[1] + (parent->element_size * index)); } /* The given object/element belongs to an orphaned page (i.e. the owning child * pool has been destroyed). Mark the element as freed and free the whole page * when no elements are left in it. */ static void slab_free_orphaned(struct slab_element_header *elt) { struct slab_page_header *page; assert(elt->owner & 1); page = (struct slab_page_header *)(elt->owner & ~(intptr_t)1); if (!p_atomic_dec_return(&page->u.num_remaining)) free(page); } /** * Create a parent pool for the allocation of same-sized objects. * * \param item_size Size of one object. * \param num_items Number of objects to allocate at once. */ void slab_create_parent(struct slab_parent_pool *parent, unsigned item_size, unsigned num_items) { mtx_init(&parent->mutex, mtx_plain); parent->element_size = ALIGN(sizeof(struct slab_element_header) + item_size, sizeof(intptr_t)); parent->num_elements = num_items; } void slab_destroy_parent(struct slab_parent_pool *parent) { mtx_destroy(&parent->mutex); } /** * Create a child pool linked to the given parent. */ void slab_create_child(struct slab_child_pool *pool, struct slab_parent_pool *parent) { pool->parent = parent; pool->pages = NULL; pool->free = NULL; pool->migrated = NULL; } /** * Destroy the child pool. * * Pages associated to the pool will be orphaned. They are eventually freed * when all objects in them are freed. */ void slab_destroy_child(struct slab_child_pool *pool) { mtx_lock(&pool->parent->mutex); while (pool->pages) { struct slab_page_header *page = pool->pages; pool->pages = page->u.next; p_atomic_set(&page->u.num_remaining, pool->parent->num_elements); for (unsigned i = 0; i < pool->parent->num_elements; ++i) { struct slab_element_header *elt = slab_get_element(pool->parent, page, i); p_atomic_set(&elt->owner, (intptr_t)page | 1); } } while (pool->migrated) { struct slab_element_header *elt = pool->migrated; pool->migrated = elt->next; slab_free_orphaned(elt); } mtx_unlock(&pool->parent->mutex); while (pool->free) { struct slab_element_header *elt = pool->free; pool->free = elt->next; slab_free_orphaned(elt); } /* Guard against use-after-free. */ pool->parent = NULL; } static bool slab_add_new_page(struct slab_child_pool *pool) { struct slab_page_header *page; unsigned i; page = malloc(sizeof(struct slab_page_header) + pool->parent->num_elements * pool->parent->element_size); if (!page) return false; for (unsigned i = 0; i < pool->parent->num_elements; ++i) { struct slab_element_header *elt = slab_get_element(pool->parent, page, i); elt->owner = (intptr_t)pool; assert(!(elt->owner & 1)); elt->next = pool->free; pool->free = elt; SET_MAGIC(elt, SLAB_MAGIC_FREE); } page->u.next = pool->pages; pool->pages = page; return true; } /** * Allocate an object from the child pool. Single-threaded (i.e. the caller * must ensure that no operation happens on the same child pool in another * thread). */ void * slab_alloc(struct slab_child_pool *pool) { struct slab_element_header *elt; if (!pool->free) { /* First, collect elements that belong to us but were freed from a * different child pool. */ mtx_lock(&pool->parent->mutex); pool->free = pool->migrated; pool->migrated = NULL; mtx_unlock(&pool->parent->mutex); /* Now allocate a new page. */ if (!pool->free && !slab_add_new_page(pool)) return NULL; } elt = pool->free; pool->free = elt->next; CHECK_MAGIC(elt, SLAB_MAGIC_FREE); SET_MAGIC(elt, SLAB_MAGIC_ALLOCATED); return &elt[1]; } /** * Free an object allocated from the slab. Single-threaded (i.e. the caller * must ensure that no operation happens on the same child pool in another * thread). * * Freeing an object in a different child pool from the one where it was * allocated is allowed, as long the pool belong to the same parent. No * additional locking is required in this case. */ void slab_free(struct slab_child_pool *pool, void *ptr) { struct slab_element_header *elt = ((struct slab_element_header*)ptr - 1); intptr_t owner_int; CHECK_MAGIC(elt, SLAB_MAGIC_ALLOCATED); SET_MAGIC(elt, SLAB_MAGIC_FREE); if (p_atomic_read(&elt->owner) == (intptr_t)pool) { /* This is the simple case: The caller guarantees that we can safely * access the free list. */ elt->next = pool->free; pool->free = elt; return; } /* The slow case: migration or an orphaned page. */ mtx_lock(&pool->parent->mutex); /* Note: we _must_ re-read elt->owner here because the owning child pool * may have been destroyed by another thread in the meantime. */ owner_int = p_atomic_read(&elt->owner); if (!(owner_int & 1)) { struct slab_child_pool *owner = (struct slab_child_pool *)owner_int; elt->next = owner->migrated; owner->migrated = elt; mtx_unlock(&pool->parent->mutex); } else { mtx_unlock(&pool->parent->mutex); slab_free_orphaned(elt); } } /** * Allocate an object from the slab. Single-threaded (no mutex). */ void * slab_alloc_st(struct slab_mempool *pool) { return slab_alloc(&pool->child); } /** * Free an object allocated from the slab. Single-threaded (no mutex). */ void slab_free_st(struct slab_mempool *pool, void *ptr) { slab_free(&pool->child, ptr); } void slab_destroy(struct slab_mempool *pool) { slab_destroy_child(&pool->child); slab_destroy_parent(&pool->parent); } /** * Create an allocator for same-sized objects. * * \param item_size Size of one object. * \param num_items Number of objects to allocate at once. */ void slab_create(struct slab_mempool *pool, unsigned item_size, unsigned num_items) { slab_create_parent(&pool->parent, item_size, num_items); slab_create_child(&pool->child, &pool->parent); }