/* * Copyright © 2016 Dave Airlie * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include #include #include "radv_meta.h" #include "radv_private.h" #include "nir/nir_builder.h" #include "sid.h" #include "vk_format.h" static nir_ssa_def *radv_meta_build_resolve_srgb_conversion(nir_builder *b, nir_ssa_def *input) { nir_const_value v; unsigned i; v.u32[0] = 0x3b4d2e1c; // 0.00313080009 nir_ssa_def *cmp[3]; for (i = 0; i < 3; i++) cmp[i] = nir_flt(b, nir_channel(b, input, i), nir_build_imm(b, 1, 32, v)); nir_ssa_def *ltvals[3]; v.f32[0] = 12.92; for (i = 0; i < 3; i++) ltvals[i] = nir_fmul(b, nir_channel(b, input, i), nir_build_imm(b, 1, 32, v)); nir_ssa_def *gtvals[3]; for (i = 0; i < 3; i++) { v.f32[0] = 1.0/2.4; gtvals[i] = nir_fpow(b, nir_channel(b, input, i), nir_build_imm(b, 1, 32, v)); v.f32[0] = 1.055; gtvals[i] = nir_fmul(b, gtvals[i], nir_build_imm(b, 1, 32, v)); v.f32[0] = 0.055; gtvals[i] = nir_fsub(b, gtvals[i], nir_build_imm(b, 1, 32, v)); } nir_ssa_def *comp[4]; for (i = 0; i < 3; i++) comp[i] = nir_bcsel(b, cmp[i], ltvals[i], gtvals[i]); comp[3] = nir_channels(b, input, 1 << 3); return nir_vec(b, comp, 4); } static nir_shader * build_resolve_compute_shader(struct radv_device *dev, bool is_integer, bool is_srgb, int samples) { nir_builder b; char name[64]; const struct glsl_type *sampler_type = glsl_sampler_type(GLSL_SAMPLER_DIM_MS, false, false, GLSL_TYPE_FLOAT); const struct glsl_type *img_type = glsl_sampler_type(GLSL_SAMPLER_DIM_2D, false, false, GLSL_TYPE_FLOAT); snprintf(name, 64, "meta_resolve_cs-%d-%s", samples, is_integer ? "int" : (is_srgb ? "srgb" : "float")); nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_COMPUTE, NULL); b.shader->info.name = ralloc_strdup(b.shader, name); b.shader->info.cs.local_size[0] = 16; b.shader->info.cs.local_size[1] = 16; b.shader->info.cs.local_size[2] = 1; nir_variable *input_img = nir_variable_create(b.shader, nir_var_uniform, sampler_type, "s_tex"); input_img->data.descriptor_set = 0; input_img->data.binding = 0; nir_variable *output_img = nir_variable_create(b.shader, nir_var_uniform, img_type, "out_img"); output_img->data.descriptor_set = 0; output_img->data.binding = 1; nir_ssa_def *invoc_id = nir_load_system_value(&b, nir_intrinsic_load_local_invocation_id, 0); nir_ssa_def *wg_id = nir_load_system_value(&b, nir_intrinsic_load_work_group_id, 0); nir_ssa_def *block_size = nir_imm_ivec4(&b, b.shader->info.cs.local_size[0], b.shader->info.cs.local_size[1], b.shader->info.cs.local_size[2], 0); nir_ssa_def *global_id = nir_iadd(&b, nir_imul(&b, wg_id, block_size), invoc_id); nir_intrinsic_instr *src_offset = nir_intrinsic_instr_create(b.shader, nir_intrinsic_load_push_constant); nir_intrinsic_set_base(src_offset, 0); nir_intrinsic_set_range(src_offset, 16); src_offset->src[0] = nir_src_for_ssa(nir_imm_int(&b, 0)); src_offset->num_components = 2; nir_ssa_dest_init(&src_offset->instr, &src_offset->dest, 2, 32, "src_offset"); nir_builder_instr_insert(&b, &src_offset->instr); nir_intrinsic_instr *dst_offset = nir_intrinsic_instr_create(b.shader, nir_intrinsic_load_push_constant); nir_intrinsic_set_base(dst_offset, 0); nir_intrinsic_set_range(dst_offset, 16); dst_offset->src[0] = nir_src_for_ssa(nir_imm_int(&b, 8)); dst_offset->num_components = 2; nir_ssa_dest_init(&dst_offset->instr, &dst_offset->dest, 2, 32, "dst_offset"); nir_builder_instr_insert(&b, &dst_offset->instr); nir_ssa_def *img_coord = nir_channels(&b, nir_iadd(&b, global_id, &src_offset->dest.ssa), 0x3); nir_variable *color = nir_local_variable_create(b.impl, glsl_vec4_type(), "color"); radv_meta_build_resolve_shader_core(&b, is_integer, samples, input_img, color, img_coord); nir_ssa_def *outval = nir_load_var(&b, color); if (is_srgb) outval = radv_meta_build_resolve_srgb_conversion(&b, outval); nir_ssa_def *coord = nir_iadd(&b, global_id, &dst_offset->dest.ssa); nir_intrinsic_instr *store = nir_intrinsic_instr_create(b.shader, nir_intrinsic_image_store); store->src[0] = nir_src_for_ssa(coord); store->src[1] = nir_src_for_ssa(nir_ssa_undef(&b, 1, 32)); store->src[2] = nir_src_for_ssa(outval); store->variables[0] = nir_deref_var_create(store, output_img); nir_builder_instr_insert(&b, &store->instr); return b.shader; } static VkResult create_layout(struct radv_device *device) { VkResult result; /* * two descriptors one for the image being sampled * one for the buffer being written. */ VkDescriptorSetLayoutCreateInfo ds_create_info = { .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO, .flags = VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR, .bindingCount = 2, .pBindings = (VkDescriptorSetLayoutBinding[]) { { .binding = 0, .descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, .descriptorCount = 1, .stageFlags = VK_SHADER_STAGE_COMPUTE_BIT, .pImmutableSamplers = NULL }, { .binding = 1, .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, .descriptorCount = 1, .stageFlags = VK_SHADER_STAGE_COMPUTE_BIT, .pImmutableSamplers = NULL }, } }; result = radv_CreateDescriptorSetLayout(radv_device_to_handle(device), &ds_create_info, &device->meta_state.alloc, &device->meta_state.resolve_compute.ds_layout); if (result != VK_SUCCESS) goto fail; VkPipelineLayoutCreateInfo pl_create_info = { .sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO, .setLayoutCount = 1, .pSetLayouts = &device->meta_state.resolve_compute.ds_layout, .pushConstantRangeCount = 1, .pPushConstantRanges = &(VkPushConstantRange){VK_SHADER_STAGE_COMPUTE_BIT, 0, 16}, }; result = radv_CreatePipelineLayout(radv_device_to_handle(device), &pl_create_info, &device->meta_state.alloc, &device->meta_state.resolve_compute.p_layout); if (result != VK_SUCCESS) goto fail; return VK_SUCCESS; fail: return result; } static VkResult create_resolve_pipeline(struct radv_device *device, int samples, bool is_integer, bool is_srgb, VkPipeline *pipeline) { VkResult result; struct radv_shader_module cs = { .nir = NULL }; cs.nir = build_resolve_compute_shader(device, is_integer, is_srgb, samples); /* compute shader */ VkPipelineShaderStageCreateInfo pipeline_shader_stage = { .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, .stage = VK_SHADER_STAGE_COMPUTE_BIT, .module = radv_shader_module_to_handle(&cs), .pName = "main", .pSpecializationInfo = NULL, }; VkComputePipelineCreateInfo vk_pipeline_info = { .sType = VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO, .stage = pipeline_shader_stage, .flags = 0, .layout = device->meta_state.resolve_compute.p_layout, }; result = radv_CreateComputePipelines(radv_device_to_handle(device), radv_pipeline_cache_to_handle(&device->meta_state.cache), 1, &vk_pipeline_info, NULL, pipeline); if (result != VK_SUCCESS) goto fail; ralloc_free(cs.nir); return VK_SUCCESS; fail: ralloc_free(cs.nir); return result; } VkResult radv_device_init_meta_resolve_compute_state(struct radv_device *device) { struct radv_meta_state *state = &device->meta_state; VkResult res; memset(&device->meta_state.resolve_compute, 0, sizeof(device->meta_state.resolve_compute)); res = create_layout(device); if (res != VK_SUCCESS) return res; for (uint32_t i = 0; i < MAX_SAMPLES_LOG2; ++i) { uint32_t samples = 1 << i; res = create_resolve_pipeline(device, samples, false, false, &state->resolve_compute.rc[i].pipeline); res = create_resolve_pipeline(device, samples, true, false, &state->resolve_compute.rc[i].i_pipeline); res = create_resolve_pipeline(device, samples, false, true, &state->resolve_compute.rc[i].srgb_pipeline); } return res; } void radv_device_finish_meta_resolve_compute_state(struct radv_device *device) { struct radv_meta_state *state = &device->meta_state; for (uint32_t i = 0; i < MAX_SAMPLES_LOG2; ++i) { radv_DestroyPipeline(radv_device_to_handle(device), state->resolve_compute.rc[i].pipeline, &state->alloc); radv_DestroyPipeline(radv_device_to_handle(device), state->resolve_compute.rc[i].i_pipeline, &state->alloc); radv_DestroyPipeline(radv_device_to_handle(device), state->resolve_compute.rc[i].srgb_pipeline, &state->alloc); } radv_DestroyDescriptorSetLayout(radv_device_to_handle(device), state->resolve_compute.ds_layout, &state->alloc); radv_DestroyPipelineLayout(radv_device_to_handle(device), state->resolve_compute.p_layout, &state->alloc); } static void emit_resolve(struct radv_cmd_buffer *cmd_buffer, struct radv_image_view *src_iview, struct radv_image_view *dest_iview, const VkOffset2D *src_offset, const VkOffset2D *dest_offset, const VkExtent2D *resolve_extent) { struct radv_device *device = cmd_buffer->device; const uint32_t samples = src_iview->image->info.samples; const uint32_t samples_log2 = ffs(samples) - 1; radv_meta_push_descriptor_set(cmd_buffer, VK_PIPELINE_BIND_POINT_COMPUTE, device->meta_state.resolve_compute.p_layout, 0, /* set */ 2, /* descriptorWriteCount */ (VkWriteDescriptorSet[]) { { .sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET, .dstBinding = 0, .dstArrayElement = 0, .descriptorCount = 1, .descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, .pImageInfo = (VkDescriptorImageInfo[]) { { .sampler = VK_NULL_HANDLE, .imageView = radv_image_view_to_handle(src_iview), .imageLayout = VK_IMAGE_LAYOUT_GENERAL }, } }, { .sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET, .dstBinding = 1, .dstArrayElement = 0, .descriptorCount = 1, .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, .pImageInfo = (VkDescriptorImageInfo[]) { { .sampler = VK_NULL_HANDLE, .imageView = radv_image_view_to_handle(dest_iview), .imageLayout = VK_IMAGE_LAYOUT_GENERAL, }, } } }); VkPipeline pipeline; if (vk_format_is_int(src_iview->image->vk_format)) pipeline = device->meta_state.resolve_compute.rc[samples_log2].i_pipeline; else if (vk_format_is_srgb(src_iview->image->vk_format)) pipeline = device->meta_state.resolve_compute.rc[samples_log2].srgb_pipeline; else pipeline = device->meta_state.resolve_compute.rc[samples_log2].pipeline; if (cmd_buffer->state.compute_pipeline != radv_pipeline_from_handle(pipeline)) { radv_CmdBindPipeline(radv_cmd_buffer_to_handle(cmd_buffer), VK_PIPELINE_BIND_POINT_COMPUTE, pipeline); } unsigned push_constants[4] = { src_offset->x, src_offset->y, dest_offset->x, dest_offset->y, }; radv_CmdPushConstants(radv_cmd_buffer_to_handle(cmd_buffer), device->meta_state.resolve_compute.p_layout, VK_SHADER_STAGE_COMPUTE_BIT, 0, 16, push_constants); radv_unaligned_dispatch(cmd_buffer, resolve_extent->width, resolve_extent->height, 1); } void radv_meta_resolve_compute_image(struct radv_cmd_buffer *cmd_buffer, struct radv_image *src_image, VkImageLayout src_image_layout, struct radv_image *dest_image, VkImageLayout dest_image_layout, uint32_t region_count, const VkImageResolve *regions) { struct radv_meta_saved_compute_state saved_state; for (uint32_t r = 0; r < region_count; ++r) { const VkImageResolve *region = ®ions[r]; const uint32_t src_base_layer = radv_meta_get_iview_layer(src_image, ®ion->srcSubresource, ®ion->srcOffset); VkImageSubresourceRange range; range.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; range.baseMipLevel = region->srcSubresource.mipLevel; range.levelCount = 1; range.baseArrayLayer = src_base_layer; range.layerCount = region->srcSubresource.layerCount; radv_fast_clear_flush_image_inplace(cmd_buffer, src_image, &range); } radv_meta_save_compute(&saved_state, cmd_buffer, 16); for (uint32_t r = 0; r < region_count; ++r) { const VkImageResolve *region = ®ions[r]; assert(region->srcSubresource.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT); assert(region->dstSubresource.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT); assert(region->srcSubresource.layerCount == region->dstSubresource.layerCount); const uint32_t src_base_layer = radv_meta_get_iview_layer(src_image, ®ion->srcSubresource, ®ion->srcOffset); const uint32_t dest_base_layer = radv_meta_get_iview_layer(dest_image, ®ion->dstSubresource, ®ion->dstOffset); const struct VkExtent3D extent = radv_sanitize_image_extent(src_image->type, region->extent); const struct VkOffset3D srcOffset = radv_sanitize_image_offset(src_image->type, region->srcOffset); const struct VkOffset3D dstOffset = radv_sanitize_image_offset(dest_image->type, region->dstOffset); for (uint32_t layer = 0; layer < region->srcSubresource.layerCount; ++layer) { struct radv_image_view src_iview; radv_image_view_init(&src_iview, cmd_buffer->device, &(VkImageViewCreateInfo) { .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, .image = radv_image_to_handle(src_image), .viewType = radv_meta_get_view_type(src_image), .format = src_image->vk_format, .subresourceRange = { .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, .baseMipLevel = region->srcSubresource.mipLevel, .levelCount = 1, .baseArrayLayer = src_base_layer + layer, .layerCount = 1, }, }); struct radv_image_view dest_iview; radv_image_view_init(&dest_iview, cmd_buffer->device, &(VkImageViewCreateInfo) { .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, .image = radv_image_to_handle(dest_image), .viewType = radv_meta_get_view_type(dest_image), .format = vk_to_non_srgb_format(dest_image->vk_format), .subresourceRange = { .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, .baseMipLevel = region->dstSubresource.mipLevel, .levelCount = 1, .baseArrayLayer = dest_base_layer + layer, .layerCount = 1, }, }); emit_resolve(cmd_buffer, &src_iview, &dest_iview, &(VkOffset2D) {srcOffset.x, srcOffset.y }, &(VkOffset2D) {dstOffset.x, dstOffset.y }, &(VkExtent2D) {extent.width, extent.height }); } } radv_meta_restore_compute(&saved_state, cmd_buffer, 16); } /** * Emit any needed resolves for the current subpass. */ void radv_cmd_buffer_resolve_subpass_cs(struct radv_cmd_buffer *cmd_buffer) { struct radv_framebuffer *fb = cmd_buffer->state.framebuffer; const struct radv_subpass *subpass = cmd_buffer->state.subpass; struct radv_meta_saved_compute_state saved_state; /* FINISHME(perf): Skip clears for resolve attachments. * * From the Vulkan 1.0 spec: * * If the first use of an attachment in a render pass is as a resolve * attachment, then the loadOp is effectively ignored as the resolve is * guaranteed to overwrite all pixels in the render area. */ if (!subpass->has_resolve) return; for (uint32_t i = 0; i < subpass->color_count; ++i) { VkAttachmentReference src_att = subpass->color_attachments[i]; VkAttachmentReference dest_att = subpass->resolve_attachments[i]; if (src_att.attachment == VK_ATTACHMENT_UNUSED || dest_att.attachment == VK_ATTACHMENT_UNUSED) continue; struct radv_image *dst_img = cmd_buffer->state.framebuffer->attachments[dest_att.attachment].attachment->image; struct radv_image_view *src_iview = cmd_buffer->state.framebuffer->attachments[src_att.attachment].attachment; if (dst_img->surface.dcc_size) { radv_initialize_dcc(cmd_buffer, dst_img, 0xffffffff); cmd_buffer->state.attachments[dest_att.attachment].current_layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; } VkImageSubresourceRange range; range.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; range.baseMipLevel = 0; range.levelCount = 1; range.baseArrayLayer = 0; range.layerCount = 1; radv_fast_clear_flush_image_inplace(cmd_buffer, src_iview->image, &range); } radv_meta_save_compute(&saved_state, cmd_buffer, 16); for (uint32_t i = 0; i < subpass->color_count; ++i) { VkAttachmentReference src_att = subpass->color_attachments[i]; VkAttachmentReference dest_att = subpass->resolve_attachments[i]; struct radv_image_view *src_iview = cmd_buffer->state.framebuffer->attachments[src_att.attachment].attachment; struct radv_image_view *dst_iview = cmd_buffer->state.framebuffer->attachments[dest_att.attachment].attachment; if (dest_att.attachment == VK_ATTACHMENT_UNUSED) continue; emit_resolve(cmd_buffer, src_iview, dst_iview, &(VkOffset2D) { 0, 0 }, &(VkOffset2D) { 0, 0 }, &(VkExtent2D) { fb->width, fb->height }); } radv_meta_restore_compute(&saved_state, cmd_buffer, 16); for (uint32_t i = 0; i < subpass->color_count; ++i) { VkAttachmentReference dest_att = subpass->resolve_attachments[i]; struct radv_image *dst_img = cmd_buffer->state.framebuffer->attachments[dest_att.attachment].attachment->image; if (dest_att.attachment == VK_ATTACHMENT_UNUSED) continue; VkImageSubresourceRange range; range.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; range.baseMipLevel = 0; range.levelCount = 1; range.baseArrayLayer = 0; range.layerCount = 1; radv_fast_clear_flush_image_inplace(cmd_buffer, dst_img, &range); } }