summaryrefslogtreecommitdiff
path: root/lib/Target/X86/X86FrameLowering.cpp
blob: 828dd7eca713b584d9812eac72e3707ea5d343ed (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
//===-- X86FrameLowering.cpp - X86 Frame Information ----------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the X86 implementation of TargetFrameLowering class.
//
//===----------------------------------------------------------------------===//

#include "X86FrameLowering.h"
#include "X86InstrBuilder.h"
#include "X86InstrInfo.h"
#include "X86MachineFunctionInfo.h"
#include "X86Subtarget.h"
#include "X86TargetMachine.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/Analysis/EHPersonalities.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/WinEHFuncInfo.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Function.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Support/Debug.h"
#include <cstdlib>

using namespace llvm;

X86FrameLowering::X86FrameLowering(const X86Subtarget &STI,
                                   unsigned StackAlignOverride)
    : TargetFrameLowering(StackGrowsDown, StackAlignOverride,
                          STI.is64Bit() ? -8 : -4),
      STI(STI), TII(*STI.getInstrInfo()), TRI(STI.getRegisterInfo()) {
  // Cache a bunch of frame-related predicates for this subtarget.
  SlotSize = TRI->getSlotSize();
  Is64Bit = STI.is64Bit();
  IsLP64 = STI.isTarget64BitLP64();
  // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit.
  Uses64BitFramePtr = STI.isTarget64BitLP64() || STI.isTargetNaCl64();
  StackPtr = TRI->getStackRegister();
}

bool X86FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
  return !MF.getFrameInfo()->hasVarSizedObjects() &&
         !MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences();
}

/// canSimplifyCallFramePseudos - If there is a reserved call frame, the
/// call frame pseudos can be simplified.  Having a FP, as in the default
/// implementation, is not sufficient here since we can't always use it.
/// Use a more nuanced condition.
bool
X86FrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const {
  return hasReservedCallFrame(MF) ||
         (hasFP(MF) && !TRI->needsStackRealignment(MF)) ||
         TRI->hasBasePointer(MF);
}

// needsFrameIndexResolution - Do we need to perform FI resolution for
// this function. Normally, this is required only when the function
// has any stack objects. However, FI resolution actually has another job,
// not apparent from the title - it resolves callframesetup/destroy 
// that were not simplified earlier.
// So, this is required for x86 functions that have push sequences even
// when there are no stack objects.
bool
X86FrameLowering::needsFrameIndexResolution(const MachineFunction &MF) const {
  return MF.getFrameInfo()->hasStackObjects() ||
         MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences();
}

/// hasFP - Return true if the specified function should have a dedicated frame
/// pointer register.  This is true if the function has variable sized allocas
/// or if frame pointer elimination is disabled.
bool X86FrameLowering::hasFP(const MachineFunction &MF) const {
  const MachineFrameInfo *MFI = MF.getFrameInfo();
  const MachineModuleInfo &MMI = MF.getMMI();

  return (MF.getTarget().Options.DisableFramePointerElim(MF) ||
          TRI->needsStackRealignment(MF) ||
          MFI->hasVarSizedObjects() ||
          MFI->isFrameAddressTaken() || MFI->hasOpaqueSPAdjustment() ||
          MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() ||
          MMI.callsUnwindInit() || MMI.hasEHFunclets() || MMI.callsEHReturn() ||
          MFI->hasStackMap() || MFI->hasPatchPoint());
}

static unsigned getSUBriOpcode(unsigned IsLP64, int64_t Imm) {
  if (IsLP64) {
    if (isInt<8>(Imm))
      return X86::SUB64ri8;
    return X86::SUB64ri32;
  } else {
    if (isInt<8>(Imm))
      return X86::SUB32ri8;
    return X86::SUB32ri;
  }
}

static unsigned getADDriOpcode(unsigned IsLP64, int64_t Imm) {
  if (IsLP64) {
    if (isInt<8>(Imm))
      return X86::ADD64ri8;
    return X86::ADD64ri32;
  } else {
    if (isInt<8>(Imm))
      return X86::ADD32ri8;
    return X86::ADD32ri;
  }
}

static unsigned getSUBrrOpcode(unsigned isLP64) {
  return isLP64 ? X86::SUB64rr : X86::SUB32rr;
}

static unsigned getADDrrOpcode(unsigned isLP64) {
  return isLP64 ? X86::ADD64rr : X86::ADD32rr;
}

static unsigned getANDriOpcode(bool IsLP64, int64_t Imm) {
  if (IsLP64) {
    if (isInt<8>(Imm))
      return X86::AND64ri8;
    return X86::AND64ri32;
  }
  if (isInt<8>(Imm))
    return X86::AND32ri8;
  return X86::AND32ri;
}

static unsigned getLEArOpcode(unsigned IsLP64) {
  return IsLP64 ? X86::LEA64r : X86::LEA32r;
}

/// findDeadCallerSavedReg - Return a caller-saved register that isn't live
/// when it reaches the "return" instruction. We can then pop a stack object
/// to this register without worry about clobbering it.
static unsigned findDeadCallerSavedReg(MachineBasicBlock &MBB,
                                       MachineBasicBlock::iterator &MBBI,
                                       const X86RegisterInfo *TRI,
                                       bool Is64Bit) {
  const MachineFunction *MF = MBB.getParent();
  const Function *F = MF->getFunction();
  if (!F || MF->getMMI().callsEHReturn())
    return 0;

  const TargetRegisterClass &AvailableRegs = *TRI->getGPRsForTailCall(*MF);

  unsigned Opc = MBBI->getOpcode();
  switch (Opc) {
  default: return 0;
  case X86::RETL:
  case X86::RETQ:
  case X86::RETIL:
  case X86::RETIQ:
  case X86::TCRETURNdi:
  case X86::TCRETURNri:
  case X86::TCRETURNmi:
  case X86::TCRETURNdi64:
  case X86::TCRETURNri64:
  case X86::TCRETURNmi64:
  case X86::EH_RETURN:
  case X86::EH_RETURN64: {
    SmallSet<uint16_t, 8> Uses;
    for (unsigned i = 0, e = MBBI->getNumOperands(); i != e; ++i) {
      MachineOperand &MO = MBBI->getOperand(i);
      if (!MO.isReg() || MO.isDef())
        continue;
      unsigned Reg = MO.getReg();
      if (!Reg)
        continue;
      for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
        Uses.insert(*AI);
    }

    for (auto CS : AvailableRegs)
      if (!Uses.count(CS) && CS != X86::RIP)
        return CS;
  }
  }

  return 0;
}

static bool isEAXLiveIn(MachineFunction &MF) {
  for (MachineRegisterInfo::livein_iterator II = MF.getRegInfo().livein_begin(),
       EE = MF.getRegInfo().livein_end(); II != EE; ++II) {
    unsigned Reg = II->first;

    if (Reg == X86::RAX || Reg == X86::EAX || Reg == X86::AX ||
        Reg == X86::AH || Reg == X86::AL)
      return true;
  }

  return false;
}

/// Check if the flags need to be preserved before the terminators.
/// This would be the case, if the eflags is live-in of the region
/// composed by the terminators or live-out of that region, without
/// being defined by a terminator.
static bool
flagsNeedToBePreservedBeforeTheTerminators(const MachineBasicBlock &MBB) {
  for (const MachineInstr &MI : MBB.terminators()) {
    bool BreakNext = false;
    for (const MachineOperand &MO : MI.operands()) {
      if (!MO.isReg())
        continue;
      unsigned Reg = MO.getReg();
      if (Reg != X86::EFLAGS)
        continue;

      // This terminator needs an eflags that is not defined
      // by a previous another terminator:
      // EFLAGS is live-in of the region composed by the terminators.
      if (!MO.isDef())
        return true;
      // This terminator defines the eflags, i.e., we don't need to preserve it.
      // However, we still need to check this specific terminator does not
      // read a live-in value.
      BreakNext = true;
    }
    // We found a definition of the eflags, no need to preserve them.
    if (BreakNext)
      return false;
  }

  // None of the terminators use or define the eflags.
  // Check if they are live-out, that would imply we need to preserve them.
  for (const MachineBasicBlock *Succ : MBB.successors())
    if (Succ->isLiveIn(X86::EFLAGS))
      return true;

  return false;
}

/// emitSPUpdate - Emit a series of instructions to increment / decrement the
/// stack pointer by a constant value.
void X86FrameLowering::emitSPUpdate(MachineBasicBlock &MBB,
                                    MachineBasicBlock::iterator &MBBI,
                                    int64_t NumBytes, bool InEpilogue) const {
  bool isSub = NumBytes < 0;
  uint64_t Offset = isSub ? -NumBytes : NumBytes;

  uint64_t Chunk = (1LL << 31) - 1;
  DebugLoc DL = MBB.findDebugLoc(MBBI);

  while (Offset) {
    if (Offset > Chunk) {
      // Rather than emit a long series of instructions for large offsets,
      // load the offset into a register and do one sub/add
      unsigned Reg = 0;

      if (isSub && !isEAXLiveIn(*MBB.getParent()))
        Reg = (unsigned)(Is64Bit ? X86::RAX : X86::EAX);
      else
        Reg = findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit);

      if (Reg) {
        unsigned Opc = Is64Bit ? X86::MOV64ri : X86::MOV32ri;
        BuildMI(MBB, MBBI, DL, TII.get(Opc), Reg)
          .addImm(Offset);
        Opc = isSub
          ? getSUBrrOpcode(Is64Bit)
          : getADDrrOpcode(Is64Bit);
        MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
          .addReg(StackPtr)
          .addReg(Reg);
        MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
        Offset = 0;
        continue;
      }
    }

    uint64_t ThisVal = std::min(Offset, Chunk);
    if (ThisVal == (Is64Bit ? 8 : 4)) {
      // Use push / pop instead.
      unsigned Reg = isSub
        ? (unsigned)(Is64Bit ? X86::RAX : X86::EAX)
        : findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit);
      if (Reg) {
        unsigned Opc = isSub
          ? (Is64Bit ? X86::PUSH64r : X86::PUSH32r)
          : (Is64Bit ? X86::POP64r  : X86::POP32r);
        MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc))
          .addReg(Reg, getDefRegState(!isSub) | getUndefRegState(isSub));
        if (isSub)
          MI->setFlag(MachineInstr::FrameSetup);
        else
          MI->setFlag(MachineInstr::FrameDestroy);
        Offset -= ThisVal;
        continue;
      }
    }

    MachineInstrBuilder MI = BuildStackAdjustment(
        MBB, MBBI, DL, isSub ? -ThisVal : ThisVal, InEpilogue);
    if (isSub)
      MI.setMIFlag(MachineInstr::FrameSetup);
    else
      MI.setMIFlag(MachineInstr::FrameDestroy);

    Offset -= ThisVal;
  }
}

MachineInstrBuilder X86FrameLowering::BuildStackAdjustment(
    MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, DebugLoc DL,
    int64_t Offset, bool InEpilogue) const {
  assert(Offset != 0 && "zero offset stack adjustment requested");

  // On Atom, using LEA to adjust SP is preferred, but using it in the epilogue
  // is tricky.
  bool UseLEA;
  if (!InEpilogue) {
    // Check if inserting the prologue at the beginning
    // of MBB would require to use LEA operations.
    // We need to use LEA operations if EFLAGS is live in, because
    // it means an instruction will read it before it gets defined.
    UseLEA = STI.useLeaForSP() || MBB.isLiveIn(X86::EFLAGS);
  } else {
    // If we can use LEA for SP but we shouldn't, check that none
    // of the terminators uses the eflags. Otherwise we will insert
    // a ADD that will redefine the eflags and break the condition.
    // Alternatively, we could move the ADD, but this may not be possible
    // and is an optimization anyway.
    UseLEA = canUseLEAForSPInEpilogue(*MBB.getParent());
    if (UseLEA && !STI.useLeaForSP())
      UseLEA = flagsNeedToBePreservedBeforeTheTerminators(MBB);
    // If that assert breaks, that means we do not do the right thing
    // in canUseAsEpilogue.
    assert((UseLEA || !flagsNeedToBePreservedBeforeTheTerminators(MBB)) &&
           "We shouldn't have allowed this insertion point");
  }

  MachineInstrBuilder MI;
  if (UseLEA) {
    MI = addRegOffset(BuildMI(MBB, MBBI, DL,
                              TII.get(getLEArOpcode(Uses64BitFramePtr)),
                              StackPtr),
                      StackPtr, false, Offset);
  } else {
    bool IsSub = Offset < 0;
    uint64_t AbsOffset = IsSub ? -Offset : Offset;
    unsigned Opc = IsSub ? getSUBriOpcode(Uses64BitFramePtr, AbsOffset)
                         : getADDriOpcode(Uses64BitFramePtr, AbsOffset);
    MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
             .addReg(StackPtr)
             .addImm(AbsOffset);
    MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
  }
  return MI;
}

int X86FrameLowering::mergeSPUpdates(MachineBasicBlock &MBB,
                                     MachineBasicBlock::iterator &MBBI,
                                     bool doMergeWithPrevious) const {
  if ((doMergeWithPrevious && MBBI == MBB.begin()) ||
      (!doMergeWithPrevious && MBBI == MBB.end()))
    return 0;

  MachineBasicBlock::iterator PI = doMergeWithPrevious ? std::prev(MBBI) : MBBI;
  MachineBasicBlock::iterator NI = doMergeWithPrevious ? nullptr
                                                       : std::next(MBBI);
  unsigned Opc = PI->getOpcode();
  int Offset = 0;

  if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
       Opc == X86::ADD32ri || Opc == X86::ADD32ri8 ||
       Opc == X86::LEA32r || Opc == X86::LEA64_32r) &&
      PI->getOperand(0).getReg() == StackPtr){
    Offset += PI->getOperand(2).getImm();
    MBB.erase(PI);
    if (!doMergeWithPrevious) MBBI = NI;
  } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
              Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
             PI->getOperand(0).getReg() == StackPtr) {
    Offset -= PI->getOperand(2).getImm();
    MBB.erase(PI);
    if (!doMergeWithPrevious) MBBI = NI;
  }

  return Offset;
}

void X86FrameLowering::BuildCFI(MachineBasicBlock &MBB,
                                MachineBasicBlock::iterator MBBI, DebugLoc DL,
                                MCCFIInstruction CFIInst) const {
  MachineFunction &MF = *MBB.getParent();
  unsigned CFIIndex = MF.getMMI().addFrameInst(CFIInst);
  BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
      .addCFIIndex(CFIIndex);
}

void
X86FrameLowering::emitCalleeSavedFrameMoves(MachineBasicBlock &MBB,
                                            MachineBasicBlock::iterator MBBI,
                                            DebugLoc DL) const {
  MachineFunction &MF = *MBB.getParent();
  MachineFrameInfo *MFI = MF.getFrameInfo();
  MachineModuleInfo &MMI = MF.getMMI();
  const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();

  // Add callee saved registers to move list.
  const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
  if (CSI.empty()) return;

  // Calculate offsets.
  for (std::vector<CalleeSavedInfo>::const_iterator
         I = CSI.begin(), E = CSI.end(); I != E; ++I) {
    int64_t Offset = MFI->getObjectOffset(I->getFrameIdx());
    unsigned Reg = I->getReg();

    unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
    BuildCFI(MBB, MBBI, DL,
             MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
  }
}

/// usesTheStack - This function checks if any of the users of EFLAGS
/// copies the EFLAGS. We know that the code that lowers COPY of EFLAGS has
/// to use the stack, and if we don't adjust the stack we clobber the first
/// frame index.
/// See X86InstrInfo::copyPhysReg.
static bool usesTheStack(const MachineFunction &MF) {
  const MachineRegisterInfo &MRI = MF.getRegInfo();

  for (MachineRegisterInfo::reg_instr_iterator
       ri = MRI.reg_instr_begin(X86::EFLAGS), re = MRI.reg_instr_end();
       ri != re; ++ri)
    if (ri->isCopy())
      return true;

  return false;
}

MachineInstr *X86FrameLowering::emitStackProbe(MachineFunction &MF,
                                               MachineBasicBlock &MBB,
                                               MachineBasicBlock::iterator MBBI,
                                               DebugLoc DL,
                                               bool InProlog) const {
  const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
  if (STI.isTargetWindowsCoreCLR()) {
    if (InProlog) {
      return emitStackProbeInlineStub(MF, MBB, MBBI, DL, true);
    } else {
      return emitStackProbeInline(MF, MBB, MBBI, DL, false);
    }
  } else {
    return emitStackProbeCall(MF, MBB, MBBI, DL, InProlog);
  }
}

void X86FrameLowering::inlineStackProbe(MachineFunction &MF,
                                        MachineBasicBlock &PrologMBB) const {
  const StringRef ChkStkStubSymbol = "__chkstk_stub";
  MachineInstr *ChkStkStub = nullptr;

  for (MachineInstr &MI : PrologMBB) {
    if (MI.isCall() && MI.getOperand(0).isSymbol() &&
        ChkStkStubSymbol == MI.getOperand(0).getSymbolName()) {
      ChkStkStub = &MI;
      break;
    }
  }

  if (ChkStkStub != nullptr) {
    MachineBasicBlock::iterator MBBI = std::next(ChkStkStub->getIterator());
    assert(std::prev(MBBI).operator==(ChkStkStub) &&
      "MBBI expected after __chkstk_stub.");
    DebugLoc DL = PrologMBB.findDebugLoc(MBBI);
    emitStackProbeInline(MF, PrologMBB, MBBI, DL, true);
    ChkStkStub->eraseFromParent();
  }
}

MachineInstr *X86FrameLowering::emitStackProbeInline(
  MachineFunction &MF, MachineBasicBlock &MBB,
  MachineBasicBlock::iterator MBBI, DebugLoc DL, bool InProlog) const {
  const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
  assert(STI.is64Bit() && "different expansion needed for 32 bit");
  assert(STI.isTargetWindowsCoreCLR() && "custom expansion expects CoreCLR");
  const TargetInstrInfo &TII = *STI.getInstrInfo();
  const BasicBlock *LLVM_BB = MBB.getBasicBlock();

  // RAX contains the number of bytes of desired stack adjustment.
  // The handling here assumes this value has already been updated so as to
  // maintain stack alignment.
  //
  // We need to exit with RSP modified by this amount and execute suitable
  // page touches to notify the OS that we're growing the stack responsibly.
  // All stack probing must be done without modifying RSP.
  //
  // MBB:
  //    SizeReg = RAX;
  //    ZeroReg = 0
  //    CopyReg = RSP
  //    Flags, TestReg = CopyReg - SizeReg
  //    FinalReg = !Flags.Ovf ? TestReg : ZeroReg
  //    LimitReg = gs magic thread env access
  //    if FinalReg >= LimitReg goto ContinueMBB
  // RoundBB:
  //    RoundReg = page address of FinalReg
  // LoopMBB:
  //    LoopReg = PHI(LimitReg,ProbeReg)
  //    ProbeReg = LoopReg - PageSize
  //    [ProbeReg] = 0
  //    if (ProbeReg > RoundReg) goto LoopMBB
  // ContinueMBB:
  //    RSP = RSP - RAX
  //    [rest of original MBB]

  // Set up the new basic blocks
  MachineBasicBlock *RoundMBB = MF.CreateMachineBasicBlock(LLVM_BB);
  MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
  MachineBasicBlock *ContinueMBB = MF.CreateMachineBasicBlock(LLVM_BB);

  MachineFunction::iterator MBBIter = std::next(MBB.getIterator());
  MF.insert(MBBIter, RoundMBB);
  MF.insert(MBBIter, LoopMBB);
  MF.insert(MBBIter, ContinueMBB);

  // Split MBB and move the tail portion down to ContinueMBB.
  MachineBasicBlock::iterator BeforeMBBI = std::prev(MBBI);
  ContinueMBB->splice(ContinueMBB->begin(), &MBB, MBBI, MBB.end());
  ContinueMBB->transferSuccessorsAndUpdatePHIs(&MBB);

  // Some useful constants
  const int64_t ThreadEnvironmentStackLimit = 0x10;
  const int64_t PageSize = 0x1000;
  const int64_t PageMask = ~(PageSize - 1);

  // Registers we need. For the normal case we use virtual
  // registers. For the prolog expansion we use RAX, RCX and RDX.
  MachineRegisterInfo &MRI = MF.getRegInfo();
  const TargetRegisterClass *RegClass = &X86::GR64RegClass;
  const unsigned SizeReg = InProlog ? (unsigned)X86::RAX
                                    : MRI.createVirtualRegister(RegClass),
                 ZeroReg = InProlog ? (unsigned)X86::RCX
                                    : MRI.createVirtualRegister(RegClass),
                 CopyReg = InProlog ? (unsigned)X86::RDX
                                    : MRI.createVirtualRegister(RegClass),
                 TestReg = InProlog ? (unsigned)X86::RDX
                                    : MRI.createVirtualRegister(RegClass),
                 FinalReg = InProlog ? (unsigned)X86::RDX
                                     : MRI.createVirtualRegister(RegClass),
                 RoundedReg = InProlog ? (unsigned)X86::RDX
                                       : MRI.createVirtualRegister(RegClass),
                 LimitReg = InProlog ? (unsigned)X86::RCX
                                     : MRI.createVirtualRegister(RegClass),
                 JoinReg = InProlog ? (unsigned)X86::RCX
                                    : MRI.createVirtualRegister(RegClass),
                 ProbeReg = InProlog ? (unsigned)X86::RCX
                                     : MRI.createVirtualRegister(RegClass);

  // SP-relative offsets where we can save RCX and RDX.
  int64_t RCXShadowSlot = 0;
  int64_t RDXShadowSlot = 0;

  // If inlining in the prolog, save RCX and RDX.     
  // Future optimization: don't save or restore if not live in.
  if (InProlog) {
    // Compute the offsets. We need to account for things already
    // pushed onto the stack at this point: return address, frame
    // pointer (if used), and callee saves.
    X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
    const int64_t CalleeSaveSize = X86FI->getCalleeSavedFrameSize();
    const bool HasFP = hasFP(MF);
    RCXShadowSlot = 8 + CalleeSaveSize + (HasFP ? 8 : 0);
    RDXShadowSlot = RCXShadowSlot + 8;
    // Emit the saves.
    addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false,
                 RCXShadowSlot)
        .addReg(X86::RCX);
    addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false,
                 RDXShadowSlot)
        .addReg(X86::RDX);
  } else {
    // Not in the prolog. Copy RAX to a virtual reg.
    BuildMI(&MBB, DL, TII.get(X86::MOV64rr), SizeReg).addReg(X86::RAX);
  }

  // Add code to MBB to check for overflow and set the new target stack pointer
  // to zero if so.
  BuildMI(&MBB, DL, TII.get(X86::XOR64rr), ZeroReg)
      .addReg(ZeroReg, RegState::Undef)
      .addReg(ZeroReg, RegState::Undef);
  BuildMI(&MBB, DL, TII.get(X86::MOV64rr), CopyReg).addReg(X86::RSP);
  BuildMI(&MBB, DL, TII.get(X86::SUB64rr), TestReg)
      .addReg(CopyReg)
      .addReg(SizeReg);
  BuildMI(&MBB, DL, TII.get(X86::CMOVB64rr), FinalReg)
      .addReg(TestReg)
      .addReg(ZeroReg);

  // FinalReg now holds final stack pointer value, or zero if
  // allocation would overflow. Compare against the current stack
  // limit from the thread environment block. Note this limit is the
  // lowest touched page on the stack, not the point at which the OS
  // will cause an overflow exception, so this is just an optimization
  // to avoid unnecessarily touching pages that are below the current
  // SP but already commited to the stack by the OS.
  BuildMI(&MBB, DL, TII.get(X86::MOV64rm), LimitReg)
      .addReg(0)
      .addImm(1)
      .addReg(0)
      .addImm(ThreadEnvironmentStackLimit)
      .addReg(X86::GS);
  BuildMI(&MBB, DL, TII.get(X86::CMP64rr)).addReg(FinalReg).addReg(LimitReg);
  // Jump if the desired stack pointer is at or above the stack limit.
  BuildMI(&MBB, DL, TII.get(X86::JAE_1)).addMBB(ContinueMBB);

  // Add code to roundMBB to round the final stack pointer to a page boundary.
  BuildMI(RoundMBB, DL, TII.get(X86::AND64ri32), RoundedReg)
      .addReg(FinalReg)
      .addImm(PageMask);
  BuildMI(RoundMBB, DL, TII.get(X86::JMP_1)).addMBB(LoopMBB);

  // LimitReg now holds the current stack limit, RoundedReg page-rounded
  // final RSP value. Add code to loopMBB to decrement LimitReg page-by-page
  // and probe until we reach RoundedReg.
  if (!InProlog) {
    BuildMI(LoopMBB, DL, TII.get(X86::PHI), JoinReg)
        .addReg(LimitReg)
        .addMBB(RoundMBB)
        .addReg(ProbeReg)
        .addMBB(LoopMBB);
  }

  addRegOffset(BuildMI(LoopMBB, DL, TII.get(X86::LEA64r), ProbeReg), JoinReg,
               false, -PageSize);

  // Probe by storing a byte onto the stack.
  BuildMI(LoopMBB, DL, TII.get(X86::MOV8mi))
      .addReg(ProbeReg)
      .addImm(1)
      .addReg(0)
      .addImm(0)
      .addReg(0)
      .addImm(0);
  BuildMI(LoopMBB, DL, TII.get(X86::CMP64rr))
      .addReg(RoundedReg)
      .addReg(ProbeReg);
  BuildMI(LoopMBB, DL, TII.get(X86::JNE_1)).addMBB(LoopMBB);

  MachineBasicBlock::iterator ContinueMBBI = ContinueMBB->getFirstNonPHI();

  // If in prolog, restore RDX and RCX.
  if (InProlog) {
    addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::MOV64rm),
                         X86::RCX),
                 X86::RSP, false, RCXShadowSlot);
    addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::MOV64rm),
                         X86::RDX),
                 X86::RSP, false, RDXShadowSlot);
  }

  // Now that the probing is done, add code to continueMBB to update
  // the stack pointer for real.
  BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::SUB64rr), X86::RSP)
      .addReg(X86::RSP)
      .addReg(SizeReg);

  // Add the control flow edges we need.
  MBB.addSuccessor(ContinueMBB);
  MBB.addSuccessor(RoundMBB);
  RoundMBB->addSuccessor(LoopMBB);
  LoopMBB->addSuccessor(ContinueMBB);
  LoopMBB->addSuccessor(LoopMBB);

  // Mark all the instructions added to the prolog as frame setup.
  if (InProlog) {
    for (++BeforeMBBI; BeforeMBBI != MBB.end(); ++BeforeMBBI) {
      BeforeMBBI->setFlag(MachineInstr::FrameSetup);
    }
    for (MachineInstr &MI : *RoundMBB) {
      MI.setFlag(MachineInstr::FrameSetup);
    }
    for (MachineInstr &MI : *LoopMBB) {
      MI.setFlag(MachineInstr::FrameSetup);
    }
    for (MachineBasicBlock::iterator CMBBI = ContinueMBB->begin();
         CMBBI != ContinueMBBI; ++CMBBI) {
      CMBBI->setFlag(MachineInstr::FrameSetup);
    }
  }

  // Possible TODO: physreg liveness for InProlog case.

  return ContinueMBBI;
}

MachineInstr *X86FrameLowering::emitStackProbeCall(
    MachineFunction &MF, MachineBasicBlock &MBB,
    MachineBasicBlock::iterator MBBI, DebugLoc DL, bool InProlog) const {
  bool IsLargeCodeModel = MF.getTarget().getCodeModel() == CodeModel::Large;

  unsigned CallOp;
  if (Is64Bit)
    CallOp = IsLargeCodeModel ? X86::CALL64r : X86::CALL64pcrel32;
  else
    CallOp = X86::CALLpcrel32;

  const char *Symbol;
  if (Is64Bit) {
    if (STI.isTargetCygMing()) {
      Symbol = "___chkstk_ms";
    } else {
      Symbol = "__chkstk";
    }
  } else if (STI.isTargetCygMing())
    Symbol = "_alloca";
  else
    Symbol = "_chkstk";

  MachineInstrBuilder CI;
  MachineBasicBlock::iterator ExpansionMBBI = std::prev(MBBI);

  // All current stack probes take AX and SP as input, clobber flags, and
  // preserve all registers. x86_64 probes leave RSP unmodified.
  if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) {
    // For the large code model, we have to call through a register. Use R11,
    // as it is scratch in all supported calling conventions.
    BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::R11)
        .addExternalSymbol(Symbol);
    CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)).addReg(X86::R11);
  } else {
    CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)).addExternalSymbol(Symbol);
  }

  unsigned AX = Is64Bit ? X86::RAX : X86::EAX;
  unsigned SP = Is64Bit ? X86::RSP : X86::ESP;
  CI.addReg(AX, RegState::Implicit)
      .addReg(SP, RegState::Implicit)
      .addReg(AX, RegState::Define | RegState::Implicit)
      .addReg(SP, RegState::Define | RegState::Implicit)
      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);

  if (Is64Bit) {
    // MSVC x64's __chkstk and cygwin/mingw's ___chkstk_ms do not adjust %rsp
    // themselves. It also does not clobber %rax so we can reuse it when
    // adjusting %rsp.
    BuildMI(MBB, MBBI, DL, TII.get(X86::SUB64rr), X86::RSP)
        .addReg(X86::RSP)
        .addReg(X86::RAX);
  }

  if (InProlog) {
    // Apply the frame setup flag to all inserted instrs.
    for (++ExpansionMBBI; ExpansionMBBI != MBBI; ++ExpansionMBBI)
      ExpansionMBBI->setFlag(MachineInstr::FrameSetup);
  }

  return MBBI;
}

MachineInstr *X86FrameLowering::emitStackProbeInlineStub(
    MachineFunction &MF, MachineBasicBlock &MBB,
    MachineBasicBlock::iterator MBBI, DebugLoc DL, bool InProlog) const {

  assert(InProlog && "ChkStkStub called outside prolog!");

  BuildMI(MBB, MBBI, DL, TII.get(X86::CALLpcrel32))
      .addExternalSymbol("__chkstk_stub");

  return MBBI;
}

static unsigned calculateSetFPREG(uint64_t SPAdjust) {
  // Win64 ABI has a less restrictive limitation of 240; 128 works equally well
  // and might require smaller successive adjustments.
  const uint64_t Win64MaxSEHOffset = 128;
  uint64_t SEHFrameOffset = std::min(SPAdjust, Win64MaxSEHOffset);
  // Win64 ABI requires 16-byte alignment for the UWOP_SET_FPREG opcode.
  return SEHFrameOffset & -16;
}

// If we're forcing a stack realignment we can't rely on just the frame
// info, we need to know the ABI stack alignment as well in case we
// have a call out.  Otherwise just make sure we have some alignment - we'll
// go with the minimum SlotSize.
uint64_t X86FrameLowering::calculateMaxStackAlign(const MachineFunction &MF) const {
  const MachineFrameInfo *MFI = MF.getFrameInfo();
  uint64_t MaxAlign = MFI->getMaxAlignment(); // Desired stack alignment.
  unsigned StackAlign = getStackAlignment();
  if (MF.getFunction()->hasFnAttribute("stackrealign")) {
    if (MFI->hasCalls())
      MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign;
    else if (MaxAlign < SlotSize)
      MaxAlign = SlotSize;
  }
  return MaxAlign;
}

void X86FrameLowering::BuildStackAlignAND(MachineBasicBlock &MBB,
                                          MachineBasicBlock::iterator MBBI,
                                          DebugLoc DL, unsigned Reg,
                                          uint64_t MaxAlign) const {
  uint64_t Val = -MaxAlign;
  unsigned AndOp = getANDriOpcode(Uses64BitFramePtr, Val);
  MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AndOp), Reg)
                         .addReg(Reg)
                         .addImm(Val)
                         .setMIFlag(MachineInstr::FrameSetup);

  // The EFLAGS implicit def is dead.
  MI->getOperand(3).setIsDead();
}

/// emitPrologue - Push callee-saved registers onto the stack, which
/// automatically adjust the stack pointer. Adjust the stack pointer to allocate
/// space for local variables. Also emit labels used by the exception handler to
/// generate the exception handling frames.

/*
  Here's a gist of what gets emitted:

  ; Establish frame pointer, if needed
  [if needs FP]
      push  %rbp
      .cfi_def_cfa_offset 16
      .cfi_offset %rbp, -16
      .seh_pushreg %rpb
      mov  %rsp, %rbp
      .cfi_def_cfa_register %rbp

  ; Spill general-purpose registers
  [for all callee-saved GPRs]
      pushq %<reg>
      [if not needs FP]
         .cfi_def_cfa_offset (offset from RETADDR)
      .seh_pushreg %<reg>

  ; If the required stack alignment > default stack alignment
  ; rsp needs to be re-aligned.  This creates a "re-alignment gap"
  ; of unknown size in the stack frame.
  [if stack needs re-alignment]
      and  $MASK, %rsp

  ; Allocate space for locals
  [if target is Windows and allocated space > 4096 bytes]
      ; Windows needs special care for allocations larger
      ; than one page.
      mov $NNN, %rax
      call ___chkstk_ms/___chkstk
      sub  %rax, %rsp
  [else]
      sub  $NNN, %rsp

  [if needs FP]
      .seh_stackalloc (size of XMM spill slots)
      .seh_setframe %rbp, SEHFrameOffset ; = size of all spill slots
  [else]
      .seh_stackalloc NNN

  ; Spill XMMs
  ; Note, that while only Windows 64 ABI specifies XMMs as callee-preserved,
  ; they may get spilled on any platform, if the current function
  ; calls @llvm.eh.unwind.init
  [if needs FP]
      [for all callee-saved XMM registers]
          movaps  %<xmm reg>, -MMM(%rbp)
      [for all callee-saved XMM registers]
          .seh_savexmm %<xmm reg>, (-MMM + SEHFrameOffset)
              ; i.e. the offset relative to (%rbp - SEHFrameOffset)
  [else]
      [for all callee-saved XMM registers]
          movaps  %<xmm reg>, KKK(%rsp)
      [for all callee-saved XMM registers]
          .seh_savexmm %<xmm reg>, KKK

  .seh_endprologue

  [if needs base pointer]
      mov  %rsp, %rbx
      [if needs to restore base pointer]
          mov %rsp, -MMM(%rbp)

  ; Emit CFI info
  [if needs FP]
      [for all callee-saved registers]
          .cfi_offset %<reg>, (offset from %rbp)
  [else]
       .cfi_def_cfa_offset (offset from RETADDR)
      [for all callee-saved registers]
          .cfi_offset %<reg>, (offset from %rsp)

  Notes:
  - .seh directives are emitted only for Windows 64 ABI
  - .cfi directives are emitted for all other ABIs
  - for 32-bit code, substitute %e?? registers for %r??
*/

void X86FrameLowering::emitPrologue(MachineFunction &MF,
                                    MachineBasicBlock &MBB) const {
  assert(&STI == &MF.getSubtarget<X86Subtarget>() &&
         "MF used frame lowering for wrong subtarget");
  MachineBasicBlock::iterator MBBI = MBB.begin();
  MachineFrameInfo *MFI = MF.getFrameInfo();
  const Function *Fn = MF.getFunction();
  MachineModuleInfo &MMI = MF.getMMI();
  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
  uint64_t MaxAlign = calculateMaxStackAlign(MF); // Desired stack alignment.
  uint64_t StackSize = MFI->getStackSize();    // Number of bytes to allocate.
  bool IsFunclet = MBB.isEHFuncletEntry();
  EHPersonality Personality = EHPersonality::Unknown;
  if (Fn->hasPersonalityFn())
    Personality = classifyEHPersonality(Fn->getPersonalityFn());
  bool FnHasClrFunclet =
      MMI.hasEHFunclets() && Personality == EHPersonality::CoreCLR;
  bool IsClrFunclet = IsFunclet && FnHasClrFunclet;
  bool HasFP = hasFP(MF);
  bool IsWin64CC = STI.isCallingConvWin64(Fn->getCallingConv());
  bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
  bool NeedsWinCFI = IsWin64Prologue && Fn->needsUnwindTableEntry();
  bool NeedsDwarfCFI =
      !IsWin64Prologue && (MMI.hasDebugInfo() || Fn->needsUnwindTableEntry());
  unsigned FramePtr = TRI->getFrameRegister(MF);
  const unsigned MachineFramePtr =
      STI.isTarget64BitILP32()
          ? getX86SubSuperRegister(FramePtr, MVT::i64, false)
          : FramePtr;
  unsigned BasePtr = TRI->getBaseRegister();
  
  // Debug location must be unknown since the first debug location is used
  // to determine the end of the prologue.
  DebugLoc DL;

  // Add RETADDR move area to callee saved frame size.
  int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
  if (TailCallReturnAddrDelta && IsWin64Prologue)
    report_fatal_error("Can't handle guaranteed tail call under win64 yet");

  if (TailCallReturnAddrDelta < 0)
    X86FI->setCalleeSavedFrameSize(
      X86FI->getCalleeSavedFrameSize() - TailCallReturnAddrDelta);

  bool UseStackProbe = (STI.isOSWindows() && !STI.isTargetMachO());

  // The default stack probe size is 4096 if the function has no stackprobesize
  // attribute.
  unsigned StackProbeSize = 4096;
  if (Fn->hasFnAttribute("stack-probe-size"))
    Fn->getFnAttribute("stack-probe-size")
        .getValueAsString()
        .getAsInteger(0, StackProbeSize);

  // If this is x86-64 and the Red Zone is not disabled, if we are a leaf
  // function, and use up to 128 bytes of stack space, don't have a frame
  // pointer, calls, or dynamic alloca then we do not need to adjust the
  // stack pointer (we fit in the Red Zone). We also check that we don't
  // push and pop from the stack.
  if (Is64Bit && !Fn->hasFnAttribute(Attribute::NoRedZone) &&
      !TRI->needsStackRealignment(MF) &&
      !MFI->hasVarSizedObjects() && // No dynamic alloca.
      !MFI->adjustsStack() &&       // No calls.
      !IsWin64CC &&                 // Win64 has no Red Zone
      !usesTheStack(MF) &&          // Don't push and pop.
      !MF.shouldSplitStack()) {     // Regular stack
    uint64_t MinSize = X86FI->getCalleeSavedFrameSize();
    if (HasFP) MinSize += SlotSize;
    StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0);
    MFI->setStackSize(StackSize);
  }

  // Insert stack pointer adjustment for later moving of return addr.  Only
  // applies to tail call optimized functions where the callee argument stack
  // size is bigger than the callers.
  if (TailCallReturnAddrDelta < 0) {
    BuildStackAdjustment(MBB, MBBI, DL, TailCallReturnAddrDelta,
                         /*InEpilogue=*/false)
        .setMIFlag(MachineInstr::FrameSetup);
  }

  // Mapping for machine moves:
  //
  //   DST: VirtualFP AND
  //        SRC: VirtualFP              => DW_CFA_def_cfa_offset
  //        ELSE                        => DW_CFA_def_cfa
  //
  //   SRC: VirtualFP AND
  //        DST: Register               => DW_CFA_def_cfa_register
  //
  //   ELSE
  //        OFFSET < 0                  => DW_CFA_offset_extended_sf
  //        REG < 64                    => DW_CFA_offset + Reg
  //        ELSE                        => DW_CFA_offset_extended

  uint64_t NumBytes = 0;
  int stackGrowth = -SlotSize;

  // Find the funclet establisher parameter
  unsigned Establisher = X86::NoRegister;
  if (IsClrFunclet)
    Establisher = Uses64BitFramePtr ? X86::RCX : X86::ECX;
  else if (IsFunclet)
    Establisher = Uses64BitFramePtr ? X86::RDX : X86::EDX;

  if (IsWin64Prologue && IsFunclet && !IsClrFunclet) {
    // Immediately spill establisher into the home slot.
    // The runtime cares about this.
    // MOV64mr %rdx, 16(%rsp)
    unsigned MOVmr = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
    addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MOVmr)), StackPtr, true, 16)
        .addReg(Establisher)
        .setMIFlag(MachineInstr::FrameSetup);
    MBB.addLiveIn(Establisher);
  }

  if (HasFP) {
    // Calculate required stack adjustment.
    uint64_t FrameSize = StackSize - SlotSize;
    // If required, include space for extra hidden slot for stashing base pointer.
    if (X86FI->getRestoreBasePointer())
      FrameSize += SlotSize;

    NumBytes = FrameSize - X86FI->getCalleeSavedFrameSize();

    // Callee-saved registers are pushed on stack before the stack is realigned.
    if (TRI->needsStackRealignment(MF) && !IsWin64Prologue)
      NumBytes = RoundUpToAlignment(NumBytes, MaxAlign);

    // Get the offset of the stack slot for the EBP register, which is
    // guaranteed to be the last slot by processFunctionBeforeFrameFinalized.
    // Update the frame offset adjustment.
    if (!IsFunclet)
      MFI->setOffsetAdjustment(-NumBytes);
    else
      assert(MFI->getOffsetAdjustment() == -(int)NumBytes &&
             "should calculate same local variable offset for funclets");

    // Save EBP/RBP into the appropriate stack slot.
    BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r))
      .addReg(MachineFramePtr, RegState::Kill)
      .setMIFlag(MachineInstr::FrameSetup);

    if (NeedsDwarfCFI) {
      // Mark the place where EBP/RBP was saved.
      // Define the current CFA rule to use the provided offset.
      assert(StackSize);
      BuildCFI(MBB, MBBI, DL,
               MCCFIInstruction::createDefCfaOffset(nullptr, 2 * stackGrowth));

      // Change the rule for the FramePtr to be an "offset" rule.
      unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true);
      BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createOffset(
                                  nullptr, DwarfFramePtr, 2 * stackGrowth));
    }

    if (NeedsWinCFI) {
      BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg))
          .addImm(FramePtr)
          .setMIFlag(MachineInstr::FrameSetup);
    }

    if (!IsWin64Prologue && !IsFunclet) {
      // Update EBP with the new base value.
      BuildMI(MBB, MBBI, DL,
              TII.get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr),
              FramePtr)
          .addReg(StackPtr)
          .setMIFlag(MachineInstr::FrameSetup);

      if (NeedsDwarfCFI) {
        // Mark effective beginning of when frame pointer becomes valid.
        // Define the current CFA to use the EBP/RBP register.
        unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true);
        BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaRegister(
                                    nullptr, DwarfFramePtr));
      }
    }

    // Mark the FramePtr as live-in in every block. Don't do this again for
    // funclet prologues.
    if (!IsFunclet) {
      for (MachineBasicBlock &EveryMBB : MF)
        EveryMBB.addLiveIn(MachineFramePtr);
    }
  } else {
    assert(!IsFunclet && "funclets without FPs not yet implemented");
    NumBytes = StackSize - X86FI->getCalleeSavedFrameSize();
  }

  // For EH funclets, only allocate enough space for outgoing calls. Save the
  // NumBytes value that we would've used for the parent frame.
  unsigned ParentFrameNumBytes = NumBytes;
  if (IsFunclet)
    NumBytes = getWinEHFuncletFrameSize(MF);

  // Skip the callee-saved push instructions.
  bool PushedRegs = false;
  int StackOffset = 2 * stackGrowth;

  while (MBBI != MBB.end() &&
         MBBI->getFlag(MachineInstr::FrameSetup) &&
         (MBBI->getOpcode() == X86::PUSH32r ||
          MBBI->getOpcode() == X86::PUSH64r)) {
    PushedRegs = true;
    unsigned Reg = MBBI->getOperand(0).getReg();
    ++MBBI;

    if (!HasFP && NeedsDwarfCFI) {
      // Mark callee-saved push instruction.
      // Define the current CFA rule to use the provided offset.
      assert(StackSize);
      BuildCFI(MBB, MBBI, DL,
               MCCFIInstruction::createDefCfaOffset(nullptr, StackOffset));
      StackOffset += stackGrowth;
    }

    if (NeedsWinCFI) {
      BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)).addImm(Reg).setMIFlag(
          MachineInstr::FrameSetup);
    }
  }

  // Realign stack after we pushed callee-saved registers (so that we'll be
  // able to calculate their offsets from the frame pointer).
  // Don't do this for Win64, it needs to realign the stack after the prologue.
  if (!IsWin64Prologue && !IsFunclet && TRI->needsStackRealignment(MF)) {
    assert(HasFP && "There should be a frame pointer if stack is realigned.");
    BuildStackAlignAND(MBB, MBBI, DL, StackPtr, MaxAlign);
  }

  // If there is an SUB32ri of ESP immediately before this instruction, merge
  // the two. This can be the case when tail call elimination is enabled and
  // the callee has more arguments then the caller.
  NumBytes -= mergeSPUpdates(MBB, MBBI, true);

  // Adjust stack pointer: ESP -= numbytes.

  // Windows and cygwin/mingw require a prologue helper routine when allocating
  // more than 4K bytes on the stack.  Windows uses __chkstk and cygwin/mingw
  // uses __alloca.  __alloca and the 32-bit version of __chkstk will probe the
  // stack and adjust the stack pointer in one go.  The 64-bit version of
  // __chkstk is only responsible for probing the stack.  The 64-bit prologue is
  // responsible for adjusting the stack pointer.  Touching the stack at 4K
  // increments is necessary to ensure that the guard pages used by the OS
  // virtual memory manager are allocated in correct sequence.
  uint64_t AlignedNumBytes = NumBytes;
  if (IsWin64Prologue && !IsFunclet && TRI->needsStackRealignment(MF))
    AlignedNumBytes = RoundUpToAlignment(AlignedNumBytes, MaxAlign);
  if (AlignedNumBytes >= StackProbeSize && UseStackProbe) {
    // Check whether EAX is livein for this function.
    bool isEAXAlive = isEAXLiveIn(MF);

    if (isEAXAlive) {
      // Sanity check that EAX is not livein for this function.
      // It should not be, so throw an assert.
      assert(!Is64Bit && "EAX is livein in x64 case!");

      // Save EAX
      BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r))
        .addReg(X86::EAX, RegState::Kill)
        .setMIFlag(MachineInstr::FrameSetup);
    }

    if (Is64Bit) {
      // Handle the 64-bit Windows ABI case where we need to call __chkstk.
      // Function prologue is responsible for adjusting the stack pointer.
      if (isUInt<32>(NumBytes)) {
        BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
            .addImm(NumBytes)
            .setMIFlag(MachineInstr::FrameSetup);
      } else if (isInt<32>(NumBytes)) {
        BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri32), X86::RAX)
            .addImm(NumBytes)
            .setMIFlag(MachineInstr::FrameSetup);
      } else {
        BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::RAX)
            .addImm(NumBytes)
            .setMIFlag(MachineInstr::FrameSetup);
      }
    } else {
      // Allocate NumBytes-4 bytes on stack in case of isEAXAlive.
      // We'll also use 4 already allocated bytes for EAX.
      BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
          .addImm(isEAXAlive ? NumBytes - 4 : NumBytes)
          .setMIFlag(MachineInstr::FrameSetup);
    }

    // Call __chkstk, __chkstk_ms, or __alloca.
    emitStackProbe(MF, MBB, MBBI, DL, true);

    if (isEAXAlive) {
      // Restore EAX
      MachineInstr *MI =
          addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm), X86::EAX),
                       StackPtr, false, NumBytes - 4);
      MI->setFlag(MachineInstr::FrameSetup);
      MBB.insert(MBBI, MI);
    }
  } else if (NumBytes) {
    emitSPUpdate(MBB, MBBI, -(int64_t)NumBytes, /*InEpilogue=*/false);
  }

  if (NeedsWinCFI && NumBytes)
    BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlloc))
        .addImm(NumBytes)
        .setMIFlag(MachineInstr::FrameSetup);

  int SEHFrameOffset = 0;
  unsigned SPOrEstablisher;
  if (IsFunclet) {
    if (IsClrFunclet) {
      // The establisher parameter passed to a CLR funclet is actually a pointer
      // to the (mostly empty) frame of its nearest enclosing funclet; we have
      // to find the root function establisher frame by loading the PSPSym from
      // the intermediate frame.
      unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF);
      MachinePointerInfo NoInfo;
      MBB.addLiveIn(Establisher);
      addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), Establisher),
                   Establisher, false, PSPSlotOffset)
          .addMemOperand(MF.getMachineMemOperand(
              NoInfo, MachineMemOperand::MOLoad, SlotSize, SlotSize));
      ;
      // Save the root establisher back into the current funclet's (mostly
      // empty) frame, in case a sub-funclet or the GC needs it.
      addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr,
                   false, PSPSlotOffset)
          .addReg(Establisher)
          .addMemOperand(
              MF.getMachineMemOperand(NoInfo, MachineMemOperand::MOStore |
                                                  MachineMemOperand::MOVolatile,
                                      SlotSize, SlotSize));
    }
    SPOrEstablisher = Establisher;
  } else {
    SPOrEstablisher = StackPtr;
  }

  if (IsWin64Prologue && HasFP) {
    // Set RBP to a small fixed offset from RSP. In the funclet case, we base
    // this calculation on the incoming establisher, which holds the value of
    // RSP from the parent frame at the end of the prologue.
    SEHFrameOffset = calculateSetFPREG(ParentFrameNumBytes);
    if (SEHFrameOffset)
      addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr),
                   SPOrEstablisher, false, SEHFrameOffset);
    else
      BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rr), FramePtr)
          .addReg(SPOrEstablisher);

    // If this is not a funclet, emit the CFI describing our frame pointer.
    if (NeedsWinCFI && !IsFunclet) {
      BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame))
          .addImm(FramePtr)
          .addImm(SEHFrameOffset)
          .setMIFlag(MachineInstr::FrameSetup);
      if (isAsynchronousEHPersonality(Personality))
        MF.getWinEHFuncInfo()->SEHSetFrameOffset = SEHFrameOffset;
    }
  } else if (IsFunclet && STI.is32Bit()) {
    // Reset EBP / ESI to something good for funclets.
    MBBI = restoreWin32EHStackPointers(MBB, MBBI, DL);
    // If we're a catch funclet, we can be returned to via catchret. Save ESP
    // into the registration node so that the runtime will restore it for us.
    if (!MBB.isCleanupFuncletEntry()) {
      assert(Personality == EHPersonality::MSVC_CXX);
      unsigned FrameReg;
      int FI = MF.getWinEHFuncInfo()->EHRegNodeFrameIndex;
      int64_t EHRegOffset = getFrameIndexReference(MF, FI, FrameReg);
      // ESP is the first field, so no extra displacement is needed.
      addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32mr)), FrameReg,
                   false, EHRegOffset)
          .addReg(X86::ESP);
    }
  }

  while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) {
    const MachineInstr *FrameInstr = &*MBBI;
    ++MBBI;

    if (NeedsWinCFI) {
      int FI;
      if (unsigned Reg = TII.isStoreToStackSlot(FrameInstr, FI)) {
        if (X86::FR64RegClass.contains(Reg)) {
          unsigned IgnoredFrameReg;
          int Offset = getFrameIndexReference(MF, FI, IgnoredFrameReg);
          Offset += SEHFrameOffset;

          BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SaveXMM))
              .addImm(Reg)
              .addImm(Offset)
              .setMIFlag(MachineInstr::FrameSetup);
        }
      }
    }
  }

  if (NeedsWinCFI)
    BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_EndPrologue))
        .setMIFlag(MachineInstr::FrameSetup);

  if (FnHasClrFunclet && !IsFunclet) {
    // Save the so-called Initial-SP (i.e. the value of the stack pointer
    // immediately after the prolog)  into the PSPSlot so that funclets
    // and the GC can recover it.
    unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF);
    auto PSPInfo = MachinePointerInfo::getFixedStack(
        MF, MF.getWinEHFuncInfo()->PSPSymFrameIdx);
    addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, false,
                 PSPSlotOffset)
        .addReg(StackPtr)
        .addMemOperand(MF.getMachineMemOperand(
            PSPInfo, MachineMemOperand::MOStore | MachineMemOperand::MOVolatile,
            SlotSize, SlotSize));
  }

  // Realign stack after we spilled callee-saved registers (so that we'll be
  // able to calculate their offsets from the frame pointer).
  // Win64 requires aligning the stack after the prologue.
  if (IsWin64Prologue && TRI->needsStackRealignment(MF)) {
    assert(HasFP && "There should be a frame pointer if stack is realigned.");
    BuildStackAlignAND(MBB, MBBI, DL, SPOrEstablisher, MaxAlign);
  }

  // We already dealt with stack realignment and funclets above.
  if (IsFunclet && STI.is32Bit())
    return;

  // If we need a base pointer, set it up here. It's whatever the value
  // of the stack pointer is at this point. Any variable size objects
  // will be allocated after this, so we can still use the base pointer
  // to reference locals.
  if (TRI->hasBasePointer(MF)) {
    // Update the base pointer with the current stack pointer.
    unsigned Opc = Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr;
    BuildMI(MBB, MBBI, DL, TII.get(Opc), BasePtr)
      .addReg(SPOrEstablisher)
      .setMIFlag(MachineInstr::FrameSetup);
    if (X86FI->getRestoreBasePointer()) {
      // Stash value of base pointer.  Saving RSP instead of EBP shortens
      // dependence chain. Used by SjLj EH.
      unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
      addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)),
                   FramePtr, true, X86FI->getRestoreBasePointerOffset())
        .addReg(SPOrEstablisher)
        .setMIFlag(MachineInstr::FrameSetup);
    }

    if (X86FI->getHasSEHFramePtrSave() && !IsFunclet) {
      // Stash the value of the frame pointer relative to the base pointer for
      // Win32 EH. This supports Win32 EH, which does the inverse of the above:
      // it recovers the frame pointer from the base pointer rather than the
      // other way around.
      unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
      unsigned UsedReg;
      int Offset =
          getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg);
      assert(UsedReg == BasePtr);
      addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), UsedReg, true, Offset)
          .addReg(FramePtr)
          .setMIFlag(MachineInstr::FrameSetup);
    }
  }

  if (((!HasFP && NumBytes) || PushedRegs) && NeedsDwarfCFI) {
    // Mark end of stack pointer adjustment.
    if (!HasFP && NumBytes) {
      // Define the current CFA rule to use the provided offset.
      assert(StackSize);
      BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaOffset(
                                  nullptr, -StackSize + stackGrowth));
    }

    // Emit DWARF info specifying the offsets of the callee-saved registers.
    if (PushedRegs)
      emitCalleeSavedFrameMoves(MBB, MBBI, DL);
  }
}

bool X86FrameLowering::canUseLEAForSPInEpilogue(
    const MachineFunction &MF) const {
  // We can't use LEA instructions for adjusting the stack pointer if this is a
  // leaf function in the Win64 ABI.  Only ADD instructions may be used to
  // deallocate the stack.
  // This means that we can use LEA for SP in two situations:
  // 1. We *aren't* using the Win64 ABI which means we are free to use LEA.
  // 2. We *have* a frame pointer which means we are permitted to use LEA.
  return !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() || hasFP(MF);
}

static bool isFuncletReturnInstr(MachineInstr *MI) {
  switch (MI->getOpcode()) {
  case X86::CATCHRET:
  case X86::CLEANUPRET:
    return true;
  default:
    return false;
  }
  llvm_unreachable("impossible");
}

// CLR funclets use a special "Previous Stack Pointer Symbol" slot on the
// stack. It holds a pointer to the bottom of the root function frame.  The
// establisher frame pointer passed to a nested funclet may point to the
// (mostly empty) frame of its parent funclet, but it will need to find
// the frame of the root function to access locals.  To facilitate this,
// every funclet copies the pointer to the bottom of the root function
// frame into a PSPSym slot in its own (mostly empty) stack frame. Using the
// same offset for the PSPSym in the root function frame that's used in the
// funclets' frames allows each funclet to dynamically accept any ancestor
// frame as its establisher argument (the runtime doesn't guarantee the
// immediate parent for some reason lost to history), and also allows the GC,
// which uses the PSPSym for some bookkeeping, to find it in any funclet's
// frame with only a single offset reported for the entire method.
unsigned
X86FrameLowering::getPSPSlotOffsetFromSP(const MachineFunction &MF) const {
  const WinEHFuncInfo &Info = *MF.getWinEHFuncInfo();
  // getFrameIndexReferenceFromSP has an out ref parameter for the stack
  // pointer register; pass a dummy that we ignore
  unsigned SPReg;
  int Offset = getFrameIndexReferenceFromSP(MF, Info.PSPSymFrameIdx, SPReg);
  assert(Offset >= 0);
  return static_cast<unsigned>(Offset);
}

unsigned
X86FrameLowering::getWinEHFuncletFrameSize(const MachineFunction &MF) const {
  // This is the size of the pushed CSRs.
  unsigned CSSize =
      MF.getInfo<X86MachineFunctionInfo>()->getCalleeSavedFrameSize();
  // This is the amount of stack a funclet needs to allocate.
  unsigned UsedSize;
  EHPersonality Personality =
      classifyEHPersonality(MF.getFunction()->getPersonalityFn());
  if (Personality == EHPersonality::CoreCLR) {
    // CLR funclets need to hold enough space to include the PSPSym, at the
    // same offset from the stack pointer (immediately after the prolog) as it
    // resides at in the main function.
    UsedSize = getPSPSlotOffsetFromSP(MF) + SlotSize;
  } else {
    // Other funclets just need enough stack for outgoing call arguments.
    UsedSize = MF.getFrameInfo()->getMaxCallFrameSize();
  }
  // RBP is not included in the callee saved register block. After pushing RBP,
  // everything is 16 byte aligned. Everything we allocate before an outgoing
  // call must also be 16 byte aligned.
  unsigned FrameSizeMinusRBP =
      RoundUpToAlignment(CSSize + UsedSize, getStackAlignment());
  // Subtract out the size of the callee saved registers. This is how much stack
  // each funclet will allocate.
  return FrameSizeMinusRBP - CSSize;
}

void X86FrameLowering::emitEpilogue(MachineFunction &MF,
                                    MachineBasicBlock &MBB) const {
  const MachineFrameInfo *MFI = MF.getFrameInfo();
  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
  MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
  DebugLoc DL;
  if (MBBI != MBB.end())
    DL = MBBI->getDebugLoc();
  // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit.
  const bool Is64BitILP32 = STI.isTarget64BitILP32();
  unsigned FramePtr = TRI->getFrameRegister(MF);
  unsigned MachineFramePtr =
      Is64BitILP32 ? getX86SubSuperRegister(FramePtr, MVT::i64, false)
                   : FramePtr;

  bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
  bool NeedsWinCFI =
      IsWin64Prologue && MF.getFunction()->needsUnwindTableEntry();
  bool IsFunclet = isFuncletReturnInstr(MBBI);
  MachineBasicBlock *TargetMBB = nullptr;

  // Get the number of bytes to allocate from the FrameInfo.
  uint64_t StackSize = MFI->getStackSize();
  uint64_t MaxAlign = calculateMaxStackAlign(MF);
  unsigned CSSize = X86FI->getCalleeSavedFrameSize();
  uint64_t NumBytes = 0;

  if (MBBI->getOpcode() == X86::CATCHRET) {
    // SEH shouldn't use catchret.
    assert(!isAsynchronousEHPersonality(
               classifyEHPersonality(MF.getFunction()->getPersonalityFn())) &&
           "SEH should not use CATCHRET");

    NumBytes = getWinEHFuncletFrameSize(MF);
    assert(hasFP(MF) && "EH funclets without FP not yet implemented");
    TargetMBB = MBBI->getOperand(0).getMBB();

    // Pop EBP.
    BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::POP64r : X86::POP32r),
            MachineFramePtr)
        .setMIFlag(MachineInstr::FrameDestroy);
  } else if (MBBI->getOpcode() == X86::CLEANUPRET) {
    NumBytes = getWinEHFuncletFrameSize(MF);
    assert(hasFP(MF) && "EH funclets without FP not yet implemented");
    BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::POP64r : X86::POP32r),
            MachineFramePtr)
        .setMIFlag(MachineInstr::FrameDestroy);
  } else if (hasFP(MF)) {
    // Calculate required stack adjustment.
    uint64_t FrameSize = StackSize - SlotSize;
    NumBytes = FrameSize - CSSize;

    // Callee-saved registers were pushed on stack before the stack was
    // realigned.
    if (TRI->needsStackRealignment(MF) && !IsWin64Prologue)
      NumBytes = RoundUpToAlignment(FrameSize, MaxAlign);

    // Pop EBP.
    BuildMI(MBB, MBBI, DL,
            TII.get(Is64Bit ? X86::POP64r : X86::POP32r), MachineFramePtr)
        .setMIFlag(MachineInstr::FrameDestroy);
  } else {
    NumBytes = StackSize - CSSize;
  }
  uint64_t SEHStackAllocAmt = NumBytes;

  // Skip the callee-saved pop instructions.
  while (MBBI != MBB.begin()) {
    MachineBasicBlock::iterator PI = std::prev(MBBI);
    unsigned Opc = PI->getOpcode();

    if ((Opc != X86::POP32r || !PI->getFlag(MachineInstr::FrameDestroy)) &&
        (Opc != X86::POP64r || !PI->getFlag(MachineInstr::FrameDestroy)) &&
        Opc != X86::DBG_VALUE && !PI->isTerminator())
      break;

    --MBBI;
  }
  MachineBasicBlock::iterator FirstCSPop = MBBI;

  if (TargetMBB) {
    // Fill EAX/RAX with the address of the target block.
    unsigned ReturnReg = STI.is64Bit() ? X86::RAX : X86::EAX;
    if (STI.is64Bit()) {
      // LEA64r TargetMBB(%rip), %rax
      BuildMI(MBB, FirstCSPop, DL, TII.get(X86::LEA64r), ReturnReg)
          .addReg(X86::RIP)
          .addImm(0)
          .addReg(0)
          .addMBB(TargetMBB)
          .addReg(0);
    } else {
      // MOV32ri $TargetMBB, %eax
      BuildMI(MBB, FirstCSPop, DL, TII.get(X86::MOV32ri), ReturnReg)
          .addMBB(TargetMBB);
    }
    // Record that we've taken the address of TargetMBB and no longer just
    // reference it in a terminator.
    TargetMBB->setHasAddressTaken();
  }

  if (MBBI != MBB.end())
    DL = MBBI->getDebugLoc();

  // If there is an ADD32ri or SUB32ri of ESP immediately before this
  // instruction, merge the two instructions.
  if (NumBytes || MFI->hasVarSizedObjects())
    NumBytes += mergeSPUpdates(MBB, MBBI, true);

  // If dynamic alloca is used, then reset esp to point to the last callee-saved
  // slot before popping them off! Same applies for the case, when stack was
  // realigned. Don't do this if this was a funclet epilogue, since the funclets
  // will not do realignment or dynamic stack allocation.
  if ((TRI->needsStackRealignment(MF) || MFI->hasVarSizedObjects()) &&
      !IsFunclet) {
    if (TRI->needsStackRealignment(MF))
      MBBI = FirstCSPop;
    unsigned SEHFrameOffset = calculateSetFPREG(SEHStackAllocAmt);
    uint64_t LEAAmount =
        IsWin64Prologue ? SEHStackAllocAmt - SEHFrameOffset : -CSSize;

    // There are only two legal forms of epilogue:
    // - add SEHAllocationSize, %rsp
    // - lea SEHAllocationSize(%FramePtr), %rsp
    //
    // 'mov %FramePtr, %rsp' will not be recognized as an epilogue sequence.
    // However, we may use this sequence if we have a frame pointer because the
    // effects of the prologue can safely be undone.
    if (LEAAmount != 0) {
      unsigned Opc = getLEArOpcode(Uses64BitFramePtr);
      addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr),
                   FramePtr, false, LEAAmount);
      --MBBI;
    } else {
      unsigned Opc = (Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr);
      BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
        .addReg(FramePtr);
      --MBBI;
    }
  } else if (NumBytes) {
    // Adjust stack pointer back: ESP += numbytes.
    emitSPUpdate(MBB, MBBI, NumBytes, /*InEpilogue=*/true);
    --MBBI;
  }

  // Windows unwinder will not invoke function's exception handler if IP is
  // either in prologue or in epilogue.  This behavior causes a problem when a
  // call immediately precedes an epilogue, because the return address points
  // into the epilogue.  To cope with that, we insert an epilogue marker here,
  // then replace it with a 'nop' if it ends up immediately after a CALL in the
  // final emitted code.
  if (NeedsWinCFI)
    BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_Epilogue));

  // Add the return addr area delta back since we are not tail calling.
  int Offset = -1 * X86FI->getTCReturnAddrDelta();
  assert(Offset >= 0 && "TCDelta should never be positive");
  if (Offset) {
    MBBI = MBB.getFirstTerminator();

    // Check for possible merge with preceding ADD instruction.
    Offset += mergeSPUpdates(MBB, MBBI, true);
    emitSPUpdate(MBB, MBBI, Offset, /*InEpilogue=*/true);
  }
}

// NOTE: this only has a subset of the full frame index logic. In
// particular, the FI < 0 and AfterFPPop logic is handled in
// X86RegisterInfo::eliminateFrameIndex, but not here. Possibly
// (probably?) it should be moved into here.
int X86FrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI,
                                             unsigned &FrameReg) const {
  const MachineFrameInfo *MFI = MF.getFrameInfo();

  // We can't calculate offset from frame pointer if the stack is realigned,
  // so enforce usage of stack/base pointer.  The base pointer is used when we
  // have dynamic allocas in addition to dynamic realignment.
  if (TRI->hasBasePointer(MF))
    FrameReg = TRI->getBaseRegister();
  else if (TRI->needsStackRealignment(MF))
    FrameReg = TRI->getStackRegister();
  else
    FrameReg = TRI->getFrameRegister(MF);

  // Offset will hold the offset from the stack pointer at function entry to the
  // object.
  // We need to factor in additional offsets applied during the prologue to the
  // frame, base, and stack pointer depending on which is used.
  int Offset = MFI->getObjectOffset(FI) - getOffsetOfLocalArea();
  const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
  unsigned CSSize = X86FI->getCalleeSavedFrameSize();
  uint64_t StackSize = MFI->getStackSize();
  bool HasFP = hasFP(MF);
  bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
  int64_t FPDelta = 0;

  if (IsWin64Prologue) {
    assert(!MFI->hasCalls() || (StackSize % 16) == 8);

    // Calculate required stack adjustment.
    uint64_t FrameSize = StackSize - SlotSize;
    // If required, include space for extra hidden slot for stashing base pointer.
    if (X86FI->getRestoreBasePointer())
      FrameSize += SlotSize;
    uint64_t NumBytes = FrameSize - CSSize;

    uint64_t SEHFrameOffset = calculateSetFPREG(NumBytes);
    if (FI && FI == X86FI->getFAIndex())
      return -SEHFrameOffset;

    // FPDelta is the offset from the "traditional" FP location of the old base
    // pointer followed by return address and the location required by the
    // restricted Win64 prologue.
    // Add FPDelta to all offsets below that go through the frame pointer.
    FPDelta = FrameSize - SEHFrameOffset;
    assert((!MFI->hasCalls() || (FPDelta % 16) == 0) &&
           "FPDelta isn't aligned per the Win64 ABI!");
  }


  if (TRI->hasBasePointer(MF)) {
    assert(HasFP && "VLAs and dynamic stack realign, but no FP?!");
    if (FI < 0) {
      // Skip the saved EBP.
      return Offset + SlotSize + FPDelta;
    } else {
      assert((-(Offset + StackSize)) % MFI->getObjectAlignment(FI) == 0);
      return Offset + StackSize;
    }
  } else if (TRI->needsStackRealignment(MF)) {
    if (FI < 0) {
      // Skip the saved EBP.
      return Offset + SlotSize + FPDelta;
    } else {
      assert((-(Offset + StackSize)) % MFI->getObjectAlignment(FI) == 0);
      return Offset + StackSize;
    }
    // FIXME: Support tail calls
  } else {
    if (!HasFP)
      return Offset + StackSize;

    // Skip the saved EBP.
    Offset += SlotSize;

    // Skip the RETADDR move area
    int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
    if (TailCallReturnAddrDelta < 0)
      Offset -= TailCallReturnAddrDelta;
  }

  return Offset + FPDelta;
}

// Simplified from getFrameIndexReference keeping only StackPointer cases
int X86FrameLowering::getFrameIndexReferenceFromSP(const MachineFunction &MF,
                                                   int FI,
                                                   unsigned &FrameReg) const {
  const MachineFrameInfo *MFI = MF.getFrameInfo();
  // Does not include any dynamic realign.
  const uint64_t StackSize = MFI->getStackSize();
  {
#ifndef NDEBUG
    // LLVM arranges the stack as follows:
    //   ...
    //   ARG2
    //   ARG1
    //   RETADDR
    //   PUSH RBP   <-- RBP points here
    //   PUSH CSRs
    //   ~~~~~~~    <-- possible stack realignment (non-win64)
    //   ...
    //   STACK OBJECTS
    //   ...        <-- RSP after prologue points here
    //   ~~~~~~~    <-- possible stack realignment (win64)
    //
    // if (hasVarSizedObjects()):
    //   ...        <-- "base pointer" (ESI/RBX) points here
    //   DYNAMIC ALLOCAS
    //   ...        <-- RSP points here
    //
    // Case 1: In the simple case of no stack realignment and no dynamic
    // allocas, both "fixed" stack objects (arguments and CSRs) are addressable
    // with fixed offsets from RSP.
    //
    // Case 2: In the case of stack realignment with no dynamic allocas, fixed
    // stack objects are addressed with RBP and regular stack objects with RSP.
    //
    // Case 3: In the case of dynamic allocas and stack realignment, RSP is used
    // to address stack arguments for outgoing calls and nothing else. The "base
    // pointer" points to local variables, and RBP points to fixed objects.
    //
    // In cases 2 and 3, we can only answer for non-fixed stack objects, and the
    // answer we give is relative to the SP after the prologue, and not the
    // SP in the middle of the function.

    assert((!MFI->isFixedObjectIndex(FI) || !TRI->needsStackRealignment(MF) ||
            STI.isTargetWin64()) &&
           "offset from fixed object to SP is not static");

    // We don't handle tail calls, and shouldn't be seeing them either.
    int TailCallReturnAddrDelta =
        MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta();
    assert(!(TailCallReturnAddrDelta < 0) && "we don't handle this case!");
#endif
  }

  // Fill in FrameReg output argument.
  FrameReg = TRI->getStackRegister();

  // This is how the math works out:
  //
  //  %rsp grows (i.e. gets lower) left to right. Each box below is
  //  one word (eight bytes).  Obj0 is the stack slot we're trying to
  //  get to.
  //
  //    ----------------------------------
  //    | BP | Obj0 | Obj1 | ... | ObjN |
  //    ----------------------------------
  //    ^    ^      ^                   ^
  //    A    B      C                   E
  //
  // A is the incoming stack pointer.
  // (B - A) is the local area offset (-8 for x86-64) [1]
  // (C - A) is the Offset returned by MFI->getObjectOffset for Obj0 [2]
  //
  // |(E - B)| is the StackSize (absolute value, positive).  For a
  // stack that grown down, this works out to be (B - E). [3]
  //
  // E is also the value of %rsp after stack has been set up, and we
  // want (C - E) -- the value we can add to %rsp to get to Obj0.  Now
  // (C - E) == (C - A) - (B - A) + (B - E)
  //            { Using [1], [2] and [3] above }
  //         == getObjectOffset - LocalAreaOffset + StackSize
  //

  // Get the Offset from the StackPointer
  int Offset = MFI->getObjectOffset(FI) - getOffsetOfLocalArea();

  return Offset + StackSize;
}

bool X86FrameLowering::assignCalleeSavedSpillSlots(
    MachineFunction &MF, const TargetRegisterInfo *TRI,
    std::vector<CalleeSavedInfo> &CSI) const {
  MachineFrameInfo *MFI = MF.getFrameInfo();
  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();

  unsigned CalleeSavedFrameSize = 0;
  int SpillSlotOffset = getOffsetOfLocalArea() + X86FI->getTCReturnAddrDelta();

  if (hasFP(MF)) {
    // emitPrologue always spills frame register the first thing.
    SpillSlotOffset -= SlotSize;
    MFI->CreateFixedSpillStackObject(SlotSize, SpillSlotOffset);

    // Since emitPrologue and emitEpilogue will handle spilling and restoring of
    // the frame register, we can delete it from CSI list and not have to worry
    // about avoiding it later.
    unsigned FPReg = TRI->getFrameRegister(MF);
    for (unsigned i = 0; i < CSI.size(); ++i) {
      if (TRI->regsOverlap(CSI[i].getReg(),FPReg)) {
        CSI.erase(CSI.begin() + i);
        break;
      }
    }
  }

  // Assign slots for GPRs. It increases frame size.
  for (unsigned i = CSI.size(); i != 0; --i) {
    unsigned Reg = CSI[i - 1].getReg();

    if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg))
      continue;

    SpillSlotOffset -= SlotSize;
    CalleeSavedFrameSize += SlotSize;

    int SlotIndex = MFI->CreateFixedSpillStackObject(SlotSize, SpillSlotOffset);
    CSI[i - 1].setFrameIdx(SlotIndex);
  }

  X86FI->setCalleeSavedFrameSize(CalleeSavedFrameSize);

  // Assign slots for XMMs.
  for (unsigned i = CSI.size(); i != 0; --i) {
    unsigned Reg = CSI[i - 1].getReg();
    if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg))
      continue;

    const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
    // ensure alignment
    SpillSlotOffset -= std::abs(SpillSlotOffset) % RC->getAlignment();
    // spill into slot
    SpillSlotOffset -= RC->getSize();
    int SlotIndex =
        MFI->CreateFixedSpillStackObject(RC->getSize(), SpillSlotOffset);
    CSI[i - 1].setFrameIdx(SlotIndex);
    MFI->ensureMaxAlignment(RC->getAlignment());
  }

  return true;
}

bool X86FrameLowering::spillCalleeSavedRegisters(
    MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
    const std::vector<CalleeSavedInfo> &CSI,
    const TargetRegisterInfo *TRI) const {
  DebugLoc DL = MBB.findDebugLoc(MI);

  // Don't save CSRs in 32-bit EH funclets. The caller saves EBX, EBP, ESI, EDI
  // for us, and there are no XMM CSRs on Win32.
  if (MBB.isEHFuncletEntry() && STI.is32Bit() && STI.isOSWindows())
    return true;

  // Push GPRs. It increases frame size.
  unsigned Opc = STI.is64Bit() ? X86::PUSH64r : X86::PUSH32r;
  for (unsigned i = CSI.size(); i != 0; --i) {
    unsigned Reg = CSI[i - 1].getReg();

    if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg))
      continue;
    // Add the callee-saved register as live-in. It's killed at the spill.
    MBB.addLiveIn(Reg);

    BuildMI(MBB, MI, DL, TII.get(Opc)).addReg(Reg, RegState::Kill)
      .setMIFlag(MachineInstr::FrameSetup);
  }

  // Make XMM regs spilled. X86 does not have ability of push/pop XMM.
  // It can be done by spilling XMMs to stack frame.
  for (unsigned i = CSI.size(); i != 0; --i) {
    unsigned Reg = CSI[i-1].getReg();
    if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg))
      continue;
    // Add the callee-saved register as live-in. It's killed at the spill.
    MBB.addLiveIn(Reg);
    const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);

    TII.storeRegToStackSlot(MBB, MI, Reg, true, CSI[i - 1].getFrameIdx(), RC,
                            TRI);
    --MI;
    MI->setFlag(MachineInstr::FrameSetup);
    ++MI;
  }

  return true;
}

bool X86FrameLowering::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
                                               MachineBasicBlock::iterator MI,
                                        const std::vector<CalleeSavedInfo> &CSI,
                                          const TargetRegisterInfo *TRI) const {
  if (CSI.empty())
    return false;

  if (isFuncletReturnInstr(MI) && STI.isOSWindows()) {
    // Don't restore CSRs in 32-bit EH funclets. Matches
    // spillCalleeSavedRegisters.
    if (STI.is32Bit())
      return true;
    // Don't restore CSRs before an SEH catchret. SEH except blocks do not form
    // funclets. emitEpilogue transforms these to normal jumps.
    if (MI->getOpcode() == X86::CATCHRET) {
      const Function *Func = MBB.getParent()->getFunction();
      bool IsSEH = isAsynchronousEHPersonality(
          classifyEHPersonality(Func->getPersonalityFn()));
      if (IsSEH)
        return true;
    }
  }

  DebugLoc DL = MBB.findDebugLoc(MI);

  // Reload XMMs from stack frame.
  for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
    unsigned Reg = CSI[i].getReg();
    if (X86::GR64RegClass.contains(Reg) ||
        X86::GR32RegClass.contains(Reg))
      continue;

    const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
    TII.loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(), RC, TRI);
  }

  // POP GPRs.
  unsigned Opc = STI.is64Bit() ? X86::POP64r : X86::POP32r;
  for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
    unsigned Reg = CSI[i].getReg();
    if (!X86::GR64RegClass.contains(Reg) &&
        !X86::GR32RegClass.contains(Reg))
      continue;

    BuildMI(MBB, MI, DL, TII.get(Opc), Reg)
        .setMIFlag(MachineInstr::FrameDestroy);
  }
  return true;
}

void X86FrameLowering::determineCalleeSaves(MachineFunction &MF,
                                            BitVector &SavedRegs,
                                            RegScavenger *RS) const {
  TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);

  MachineFrameInfo *MFI = MF.getFrameInfo();

  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
  int64_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();

  if (TailCallReturnAddrDelta < 0) {
    // create RETURNADDR area
    //   arg
    //   arg
    //   RETADDR
    //   { ...
    //     RETADDR area
    //     ...
    //   }
    //   [EBP]
    MFI->CreateFixedObject(-TailCallReturnAddrDelta,
                           TailCallReturnAddrDelta - SlotSize, true);
  }

  // Spill the BasePtr if it's used.
  if (TRI->hasBasePointer(MF)) {
    SavedRegs.set(TRI->getBaseRegister());

    // Allocate a spill slot for EBP if we have a base pointer and EH funclets.
    if (MF.getMMI().hasEHFunclets()) {
      int FI = MFI->CreateSpillStackObject(SlotSize, SlotSize);
      X86FI->setHasSEHFramePtrSave(true);
      X86FI->setSEHFramePtrSaveIndex(FI);
    }
  }
}

static bool
HasNestArgument(const MachineFunction *MF) {
  const Function *F = MF->getFunction();
  for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
       I != E; I++) {
    if (I->hasNestAttr())
      return true;
  }
  return false;
}

/// GetScratchRegister - Get a temp register for performing work in the
/// segmented stack and the Erlang/HiPE stack prologue. Depending on platform
/// and the properties of the function either one or two registers will be
/// needed. Set primary to true for the first register, false for the second.
static unsigned
GetScratchRegister(bool Is64Bit, bool IsLP64, const MachineFunction &MF, bool Primary) {
  CallingConv::ID CallingConvention = MF.getFunction()->getCallingConv();

  // Erlang stuff.
  if (CallingConvention == CallingConv::HiPE) {
    if (Is64Bit)
      return Primary ? X86::R14 : X86::R13;
    else
      return Primary ? X86::EBX : X86::EDI;
  }

  if (Is64Bit) {
    if (IsLP64)
      return Primary ? X86::R11 : X86::R12;
    else
      return Primary ? X86::R11D : X86::R12D;
  }

  bool IsNested = HasNestArgument(&MF);

  if (CallingConvention == CallingConv::X86_FastCall ||
      CallingConvention == CallingConv::Fast) {
    if (IsNested)
      report_fatal_error("Segmented stacks does not support fastcall with "
                         "nested function.");
    return Primary ? X86::EAX : X86::ECX;
  }
  if (IsNested)
    return Primary ? X86::EDX : X86::EAX;
  return Primary ? X86::ECX : X86::EAX;
}

// The stack limit in the TCB is set to this many bytes above the actual stack
// limit.
static const uint64_t kSplitStackAvailable = 256;

void X86FrameLowering::adjustForSegmentedStacks(
    MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
  MachineFrameInfo *MFI = MF.getFrameInfo();
  uint64_t StackSize;
  unsigned TlsReg, TlsOffset;
  DebugLoc DL;

  unsigned ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true);
  assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
         "Scratch register is live-in");

  if (MF.getFunction()->isVarArg())
    report_fatal_error("Segmented stacks do not support vararg functions.");
  if (!STI.isTargetLinux() && !STI.isTargetDarwin() && !STI.isTargetWin32() &&
      !STI.isTargetWin64() && !STI.isTargetFreeBSD() &&
      !STI.isTargetDragonFly())
    report_fatal_error("Segmented stacks not supported on this platform.");

  // Eventually StackSize will be calculated by a link-time pass; which will
  // also decide whether checking code needs to be injected into this particular
  // prologue.
  StackSize = MFI->getStackSize();

  // Do not generate a prologue for functions with a stack of size zero
  if (StackSize == 0)
    return;

  MachineBasicBlock *allocMBB = MF.CreateMachineBasicBlock();
  MachineBasicBlock *checkMBB = MF.CreateMachineBasicBlock();
  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
  bool IsNested = false;

  // We need to know if the function has a nest argument only in 64 bit mode.
  if (Is64Bit)
    IsNested = HasNestArgument(&MF);

  // The MOV R10, RAX needs to be in a different block, since the RET we emit in
  // allocMBB needs to be last (terminating) instruction.

  for (const auto &LI : PrologueMBB.liveins()) {
    allocMBB->addLiveIn(LI);
    checkMBB->addLiveIn(LI);
  }

  if (IsNested)
    allocMBB->addLiveIn(IsLP64 ? X86::R10 : X86::R10D);

  MF.push_front(allocMBB);
  MF.push_front(checkMBB);

  // When the frame size is less than 256 we just compare the stack
  // boundary directly to the value of the stack pointer, per gcc.
  bool CompareStackPointer = StackSize < kSplitStackAvailable;

  // Read the limit off the current stacklet off the stack_guard location.
  if (Is64Bit) {
    if (STI.isTargetLinux()) {
      TlsReg = X86::FS;
      TlsOffset = IsLP64 ? 0x70 : 0x40;
    } else if (STI.isTargetDarwin()) {
      TlsReg = X86::GS;
      TlsOffset = 0x60 + 90*8; // See pthread_machdep.h. Steal TLS slot 90.
    } else if (STI.isTargetWin64()) {
      TlsReg = X86::GS;
      TlsOffset = 0x28; // pvArbitrary, reserved for application use
    } else if (STI.isTargetFreeBSD()) {
      TlsReg = X86::FS;
      TlsOffset = 0x18;
    } else if (STI.isTargetDragonFly()) {
      TlsReg = X86::FS;
      TlsOffset = 0x20; // use tls_tcb.tcb_segstack
    } else {
      report_fatal_error("Segmented stacks not supported on this platform.");
    }

    if (CompareStackPointer)
      ScratchReg = IsLP64 ? X86::RSP : X86::ESP;
    else
      BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::LEA64r : X86::LEA64_32r), ScratchReg).addReg(X86::RSP)
        .addImm(1).addReg(0).addImm(-StackSize).addReg(0);

    BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::CMP64rm : X86::CMP32rm)).addReg(ScratchReg)
      .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg);
  } else {
    if (STI.isTargetLinux()) {
      TlsReg = X86::GS;
      TlsOffset = 0x30;
    } else if (STI.isTargetDarwin()) {
      TlsReg = X86::GS;
      TlsOffset = 0x48 + 90*4;
    } else if (STI.isTargetWin32()) {
      TlsReg = X86::FS;
      TlsOffset = 0x14; // pvArbitrary, reserved for application use
    } else if (STI.isTargetDragonFly()) {
      TlsReg = X86::FS;
      TlsOffset = 0x10; // use tls_tcb.tcb_segstack
    } else if (STI.isTargetFreeBSD()) {
      report_fatal_error("Segmented stacks not supported on FreeBSD i386.");
    } else {
      report_fatal_error("Segmented stacks not supported on this platform.");
    }

    if (CompareStackPointer)
      ScratchReg = X86::ESP;
    else
      BuildMI(checkMBB, DL, TII.get(X86::LEA32r), ScratchReg).addReg(X86::ESP)
        .addImm(1).addReg(0).addImm(-StackSize).addReg(0);

    if (STI.isTargetLinux() || STI.isTargetWin32() || STI.isTargetWin64() ||
        STI.isTargetDragonFly()) {
      BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)).addReg(ScratchReg)
        .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg);
    } else if (STI.isTargetDarwin()) {

      // TlsOffset doesn't fit into a mod r/m byte so we need an extra register.
      unsigned ScratchReg2;
      bool SaveScratch2;
      if (CompareStackPointer) {
        // The primary scratch register is available for holding the TLS offset.
        ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, true);
        SaveScratch2 = false;
      } else {
        // Need to use a second register to hold the TLS offset
        ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, false);

        // Unfortunately, with fastcc the second scratch register may hold an
        // argument.
        SaveScratch2 = MF.getRegInfo().isLiveIn(ScratchReg2);
      }

      // If Scratch2 is live-in then it needs to be saved.
      assert((!MF.getRegInfo().isLiveIn(ScratchReg2) || SaveScratch2) &&
             "Scratch register is live-in and not saved");

      if (SaveScratch2)
        BuildMI(checkMBB, DL, TII.get(X86::PUSH32r))
          .addReg(ScratchReg2, RegState::Kill);

      BuildMI(checkMBB, DL, TII.get(X86::MOV32ri), ScratchReg2)
        .addImm(TlsOffset);
      BuildMI(checkMBB, DL, TII.get(X86::CMP32rm))
        .addReg(ScratchReg)
        .addReg(ScratchReg2).addImm(1).addReg(0)
        .addImm(0)
        .addReg(TlsReg);

      if (SaveScratch2)
        BuildMI(checkMBB, DL, TII.get(X86::POP32r), ScratchReg2);
    }
  }

  // This jump is taken if SP >= (Stacklet Limit + Stack Space required).
  // It jumps to normal execution of the function body.
  BuildMI(checkMBB, DL, TII.get(X86::JA_1)).addMBB(&PrologueMBB);

  // On 32 bit we first push the arguments size and then the frame size. On 64
  // bit, we pass the stack frame size in r10 and the argument size in r11.
  if (Is64Bit) {
    // Functions with nested arguments use R10, so it needs to be saved across
    // the call to _morestack

    const unsigned RegAX = IsLP64 ? X86::RAX : X86::EAX;
    const unsigned Reg10 = IsLP64 ? X86::R10 : X86::R10D;
    const unsigned Reg11 = IsLP64 ? X86::R11 : X86::R11D;
    const unsigned MOVrr = IsLP64 ? X86::MOV64rr : X86::MOV32rr;
    const unsigned MOVri = IsLP64 ? X86::MOV64ri : X86::MOV32ri;

    if (IsNested)
      BuildMI(allocMBB, DL, TII.get(MOVrr), RegAX).addReg(Reg10);

    BuildMI(allocMBB, DL, TII.get(MOVri), Reg10)
      .addImm(StackSize);
    BuildMI(allocMBB, DL, TII.get(MOVri), Reg11)
      .addImm(X86FI->getArgumentStackSize());
  } else {
    BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
      .addImm(X86FI->getArgumentStackSize());
    BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
      .addImm(StackSize);
  }

  // __morestack is in libgcc
  if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) {
    // Under the large code model, we cannot assume that __morestack lives
    // within 2^31 bytes of the call site, so we cannot use pc-relative
    // addressing. We cannot perform the call via a temporary register,
    // as the rax register may be used to store the static chain, and all
    // other suitable registers may be either callee-save or used for
    // parameter passing. We cannot use the stack at this point either
    // because __morestack manipulates the stack directly.
    //
    // To avoid these issues, perform an indirect call via a read-only memory
    // location containing the address.
    //
    // This solution is not perfect, as it assumes that the .rodata section
    // is laid out within 2^31 bytes of each function body, but this seems
    // to be sufficient for JIT.
    BuildMI(allocMBB, DL, TII.get(X86::CALL64m))
        .addReg(X86::RIP)
        .addImm(0)
        .addReg(0)
        .addExternalSymbol("__morestack_addr")
        .addReg(0);
    MF.getMMI().setUsesMorestackAddr(true);
  } else {
    if (Is64Bit)
      BuildMI(allocMBB, DL, TII.get(X86::CALL64pcrel32))
        .addExternalSymbol("__morestack");
    else
      BuildMI(allocMBB, DL, TII.get(X86::CALLpcrel32))
        .addExternalSymbol("__morestack");
  }

  if (IsNested)
    BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET_RESTORE_R10));
  else
    BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET));

  allocMBB->addSuccessor(&PrologueMBB);

  checkMBB->addSuccessor(allocMBB);
  checkMBB->addSuccessor(&PrologueMBB);

#ifdef XDEBUG
  MF.verify();
#endif
}

/// Erlang programs may need a special prologue to handle the stack size they
/// might need at runtime. That is because Erlang/OTP does not implement a C
/// stack but uses a custom implementation of hybrid stack/heap architecture.
/// (for more information see Eric Stenman's Ph.D. thesis:
/// http://publications.uu.se/uu/fulltext/nbn_se_uu_diva-2688.pdf)
///
/// CheckStack:
///       temp0 = sp - MaxStack
///       if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
/// OldStart:
///       ...
/// IncStack:
///       call inc_stack   # doubles the stack space
///       temp0 = sp - MaxStack
///       if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
void X86FrameLowering::adjustForHiPEPrologue(
    MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
  MachineFrameInfo *MFI = MF.getFrameInfo();
  DebugLoc DL;
  // HiPE-specific values
  const unsigned HipeLeafWords = 24;
  const unsigned CCRegisteredArgs = Is64Bit ? 6 : 5;
  const unsigned Guaranteed = HipeLeafWords * SlotSize;
  unsigned CallerStkArity = MF.getFunction()->arg_size() > CCRegisteredArgs ?
                            MF.getFunction()->arg_size() - CCRegisteredArgs : 0;
  unsigned MaxStack = MFI->getStackSize() + CallerStkArity*SlotSize + SlotSize;

  assert(STI.isTargetLinux() &&
         "HiPE prologue is only supported on Linux operating systems.");

  // Compute the largest caller's frame that is needed to fit the callees'
  // frames. This 'MaxStack' is computed from:
  //
  // a) the fixed frame size, which is the space needed for all spilled temps,
  // b) outgoing on-stack parameter areas, and
  // c) the minimum stack space this function needs to make available for the
  //    functions it calls (a tunable ABI property).
  if (MFI->hasCalls()) {
    unsigned MoreStackForCalls = 0;

    for (MachineFunction::iterator MBBI = MF.begin(), MBBE = MF.end();
         MBBI != MBBE; ++MBBI)
      for (MachineBasicBlock::iterator MI = MBBI->begin(), ME = MBBI->end();
           MI != ME; ++MI) {
        if (!MI->isCall())
          continue;

        // Get callee operand.
        const MachineOperand &MO = MI->getOperand(0);

        // Only take account of global function calls (no closures etc.).
        if (!MO.isGlobal())
          continue;

        const Function *F = dyn_cast<Function>(MO.getGlobal());
        if (!F)
          continue;

        // Do not update 'MaxStack' for primitive and built-in functions
        // (encoded with names either starting with "erlang."/"bif_" or not
        // having a ".", such as a simple <Module>.<Function>.<Arity>, or an
        // "_", such as the BIF "suspend_0") as they are executed on another
        // stack.
        if (F->getName().find("erlang.") != StringRef::npos ||
            F->getName().find("bif_") != StringRef::npos ||
            F->getName().find_first_of("._") == StringRef::npos)
          continue;

        unsigned CalleeStkArity =
          F->arg_size() > CCRegisteredArgs ? F->arg_size()-CCRegisteredArgs : 0;
        if (HipeLeafWords - 1 > CalleeStkArity)
          MoreStackForCalls = std::max(MoreStackForCalls,
                               (HipeLeafWords - 1 - CalleeStkArity) * SlotSize);
      }
    MaxStack += MoreStackForCalls;
  }

  // If the stack frame needed is larger than the guaranteed then runtime checks
  // and calls to "inc_stack_0" BIF should be inserted in the assembly prologue.
  if (MaxStack > Guaranteed) {
    MachineBasicBlock *stackCheckMBB = MF.CreateMachineBasicBlock();
    MachineBasicBlock *incStackMBB = MF.CreateMachineBasicBlock();

    for (const auto &LI : PrologueMBB.liveins()) {
      stackCheckMBB->addLiveIn(LI);
      incStackMBB->addLiveIn(LI);
    }

    MF.push_front(incStackMBB);
    MF.push_front(stackCheckMBB);

    unsigned ScratchReg, SPReg, PReg, SPLimitOffset;
    unsigned LEAop, CMPop, CALLop;
    if (Is64Bit) {
      SPReg = X86::RSP;
      PReg  = X86::RBP;
      LEAop = X86::LEA64r;
      CMPop = X86::CMP64rm;
      CALLop = X86::CALL64pcrel32;
      SPLimitOffset = 0x90;
    } else {
      SPReg = X86::ESP;
      PReg  = X86::EBP;
      LEAop = X86::LEA32r;
      CMPop = X86::CMP32rm;
      CALLop = X86::CALLpcrel32;
      SPLimitOffset = 0x4c;
    }

    ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true);
    assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
           "HiPE prologue scratch register is live-in");

    // Create new MBB for StackCheck:
    addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(LEAop), ScratchReg),
                 SPReg, false, -MaxStack);
    // SPLimitOffset is in a fixed heap location (pointed by BP).
    addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(CMPop))
                 .addReg(ScratchReg), PReg, false, SPLimitOffset);
    BuildMI(stackCheckMBB, DL, TII.get(X86::JAE_1)).addMBB(&PrologueMBB);

    // Create new MBB for IncStack:
    BuildMI(incStackMBB, DL, TII.get(CALLop)).
      addExternalSymbol("inc_stack_0");
    addRegOffset(BuildMI(incStackMBB, DL, TII.get(LEAop), ScratchReg),
                 SPReg, false, -MaxStack);
    addRegOffset(BuildMI(incStackMBB, DL, TII.get(CMPop))
                 .addReg(ScratchReg), PReg, false, SPLimitOffset);
    BuildMI(incStackMBB, DL, TII.get(X86::JLE_1)).addMBB(incStackMBB);

    stackCheckMBB->addSuccessor(&PrologueMBB, {99, 100});
    stackCheckMBB->addSuccessor(incStackMBB, {1, 100});
    incStackMBB->addSuccessor(&PrologueMBB, {99, 100});
    incStackMBB->addSuccessor(incStackMBB, {1, 100});
  }
#ifdef XDEBUG
  MF.verify();
#endif
}

bool X86FrameLowering::adjustStackWithPops(MachineBasicBlock &MBB,
    MachineBasicBlock::iterator MBBI, DebugLoc DL, int Offset) const {

  if (Offset <= 0)
    return false;

  if (Offset % SlotSize)
    return false;

  int NumPops = Offset / SlotSize;
  // This is only worth it if we have at most 2 pops.
  if (NumPops != 1 && NumPops != 2)
    return false;

  // Handle only the trivial case where the adjustment directly follows
  // a call. This is the most common one, anyway.
  if (MBBI == MBB.begin())
    return false;
  MachineBasicBlock::iterator Prev = std::prev(MBBI);
  if (!Prev->isCall() || !Prev->getOperand(1).isRegMask())
    return false;

  unsigned Regs[2];
  unsigned FoundRegs = 0;

  auto RegMask = Prev->getOperand(1);

  auto &RegClass =
      Is64Bit ? X86::GR64_NOREX_NOSPRegClass : X86::GR32_NOREX_NOSPRegClass;
  // Try to find up to NumPops free registers.
  for (auto Candidate : RegClass) {

    // Poor man's liveness:
    // Since we're immediately after a call, any register that is clobbered
    // by the call and not defined by it can be considered dead.
    if (!RegMask.clobbersPhysReg(Candidate))
      continue;

    bool IsDef = false;
    for (const MachineOperand &MO : Prev->implicit_operands()) {
      if (MO.isReg() && MO.isDef() && MO.getReg() == Candidate) {
        IsDef = true;
        break;
      }
    }

    if (IsDef)
      continue;

    Regs[FoundRegs++] = Candidate;
    if (FoundRegs == (unsigned)NumPops)
      break;
  }

  if (FoundRegs == 0)
    return false;

  // If we found only one free register, but need two, reuse the same one twice.
  while (FoundRegs < (unsigned)NumPops)
    Regs[FoundRegs++] = Regs[0];

  for (int i = 0; i < NumPops; ++i)
    BuildMI(MBB, MBBI, DL, 
            TII.get(STI.is64Bit() ? X86::POP64r : X86::POP32r), Regs[i]);

  return true;
}

void X86FrameLowering::
eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
                              MachineBasicBlock::iterator I) const {
  bool reserveCallFrame = hasReservedCallFrame(MF);
  unsigned Opcode = I->getOpcode();
  bool isDestroy = Opcode == TII.getCallFrameDestroyOpcode();
  DebugLoc DL = I->getDebugLoc();
  uint64_t Amount = !reserveCallFrame ? I->getOperand(0).getImm() : 0;
  uint64_t InternalAmt = (isDestroy || Amount) ? I->getOperand(1).getImm() : 0;
  I = MBB.erase(I);

  if (!reserveCallFrame) {
    // If the stack pointer can be changed after prologue, turn the
    // adjcallstackup instruction into a 'sub ESP, <amt>' and the
    // adjcallstackdown instruction into 'add ESP, <amt>'

    // We need to keep the stack aligned properly.  To do this, we round the
    // amount of space needed for the outgoing arguments up to the next
    // alignment boundary.
    unsigned StackAlign = getStackAlignment();
    Amount = RoundUpToAlignment(Amount, StackAlign);

    MachineModuleInfo &MMI = MF.getMMI();
    const Function *Fn = MF.getFunction();
    bool WindowsCFI = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
    bool DwarfCFI = !WindowsCFI && 
                    (MMI.hasDebugInfo() || Fn->needsUnwindTableEntry());

    // If we have any exception handlers in this function, and we adjust
    // the SP before calls, we may need to indicate this to the unwinder
    // using GNU_ARGS_SIZE. Note that this may be necessary even when
    // Amount == 0, because the preceding function may have set a non-0
    // GNU_ARGS_SIZE.
    // TODO: We don't need to reset this between subsequent functions,
    // if it didn't change.
    bool HasDwarfEHHandlers = !WindowsCFI &&
                              !MF.getMMI().getLandingPads().empty();

    if (HasDwarfEHHandlers && !isDestroy &&
        MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences())
      BuildCFI(MBB, I, DL,
               MCCFIInstruction::createGnuArgsSize(nullptr, Amount));

    if (Amount == 0)
      return;

    // Factor out the amount that gets handled inside the sequence
    // (Pushes of argument for frame setup, callee pops for frame destroy)
    Amount -= InternalAmt;

    // TODO: This is needed only if we require precise CFA.
    // If this is a callee-pop calling convention, emit a CFA adjust for
    // the amount the callee popped.
    if (isDestroy && InternalAmt && DwarfCFI && !hasFP(MF))
      BuildCFI(MBB, I, DL, 
               MCCFIInstruction::createAdjustCfaOffset(nullptr, -InternalAmt));

    if (Amount) {
      // Add Amount to SP to destroy a frame, and subtract to setup.
      int Offset = isDestroy ? Amount : -Amount;

      if (!(Fn->optForMinSize() && 
            adjustStackWithPops(MBB, I, DL, Offset)))
        BuildStackAdjustment(MBB, I, DL, Offset, /*InEpilogue=*/false);
    }

    if (DwarfCFI && !hasFP(MF)) {
      // If we don't have FP, but need to generate unwind information,
      // we need to set the correct CFA offset after the stack adjustment.
      // How much we adjust the CFA offset depends on whether we're emitting
      // CFI only for EH purposes or for debugging. EH only requires the CFA
      // offset to be correct at each call site, while for debugging we want
      // it to be more precise.
      int CFAOffset = Amount;
      // TODO: When not using precise CFA, we also need to adjust for the
      // InternalAmt here.

      if (CFAOffset) {
        CFAOffset = isDestroy ? -CFAOffset : CFAOffset;
        BuildCFI(MBB, I, DL, 
                 MCCFIInstruction::createAdjustCfaOffset(nullptr, CFAOffset));
      }
    }

    return;
  }

  if (isDestroy && InternalAmt) {
    // If we are performing frame pointer elimination and if the callee pops
    // something off the stack pointer, add it back.  We do this until we have
    // more advanced stack pointer tracking ability.
    // We are not tracking the stack pointer adjustment by the callee, so make
    // sure we restore the stack pointer immediately after the call, there may
    // be spill code inserted between the CALL and ADJCALLSTACKUP instructions.
    MachineBasicBlock::iterator B = MBB.begin();
    while (I != B && !std::prev(I)->isCall())
      --I;
    BuildStackAdjustment(MBB, I, DL, -InternalAmt, /*InEpilogue=*/false);
  }
}

bool X86FrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const {
  assert(MBB.getParent() && "Block is not attached to a function!");

  // Win64 has strict requirements in terms of epilogue and we are
  // not taking a chance at messing with them.
  // I.e., unless this block is already an exit block, we can't use
  // it as an epilogue.
  if (STI.isTargetWin64() && !MBB.succ_empty() && !MBB.isReturnBlock())
    return false;

  if (canUseLEAForSPInEpilogue(*MBB.getParent()))
    return true;

  // If we cannot use LEA to adjust SP, we may need to use ADD, which
  // clobbers the EFLAGS. Check that we do not need to preserve it,
  // otherwise, conservatively assume this is not
  // safe to insert the epilogue here.
  return !flagsNeedToBePreservedBeforeTheTerminators(MBB);
}

bool X86FrameLowering::enableShrinkWrapping(const MachineFunction &MF) const {
  // If we may need to emit frameless compact unwind information, give
  // up as this is currently broken: PR25614.
  return MF.getFunction()->hasFnAttribute(Attribute::NoUnwind) || hasFP(MF);
}

MachineBasicBlock::iterator X86FrameLowering::restoreWin32EHStackPointers(
    MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
    DebugLoc DL, bool RestoreSP) const {
  assert(STI.isTargetWindowsMSVC() && "funclets only supported in MSVC env");
  assert(STI.isTargetWin32() && "EBP/ESI restoration only required on win32");
  assert(STI.is32Bit() && !Uses64BitFramePtr &&
         "restoring EBP/ESI on non-32-bit target");

  MachineFunction &MF = *MBB.getParent();
  unsigned FramePtr = TRI->getFrameRegister(MF);
  unsigned BasePtr = TRI->getBaseRegister();
  WinEHFuncInfo &FuncInfo = *MF.getWinEHFuncInfo();
  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
  MachineFrameInfo *MFI = MF.getFrameInfo();

  // FIXME: Don't set FrameSetup flag in catchret case.

  int FI = FuncInfo.EHRegNodeFrameIndex;
  int EHRegSize = MFI->getObjectSize(FI);

  if (RestoreSP) {
    // MOV32rm -EHRegSize(%ebp), %esp
    addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), X86::ESP),
                 X86::EBP, true, -EHRegSize)
        .setMIFlag(MachineInstr::FrameSetup);
  }

  unsigned UsedReg;
  int EHRegOffset = getFrameIndexReference(MF, FI, UsedReg);
  int EndOffset = -EHRegOffset - EHRegSize;
  FuncInfo.EHRegNodeEndOffset = EndOffset;

  if (UsedReg == FramePtr) {
    // ADD $offset, %ebp
    unsigned ADDri = getADDriOpcode(false, EndOffset);
    BuildMI(MBB, MBBI, DL, TII.get(ADDri), FramePtr)
        .addReg(FramePtr)
        .addImm(EndOffset)
        .setMIFlag(MachineInstr::FrameSetup)
        ->getOperand(3)
        .setIsDead();
    assert(EndOffset >= 0 &&
           "end of registration object above normal EBP position!");
  } else if (UsedReg == BasePtr) {
    // LEA offset(%ebp), %esi
    addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA32r), BasePtr),
                 FramePtr, false, EndOffset)
        .setMIFlag(MachineInstr::FrameSetup);
    // MOV32rm SavedEBPOffset(%esi), %ebp
    assert(X86FI->getHasSEHFramePtrSave());
    int Offset =
        getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg);
    assert(UsedReg == BasePtr);
    addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), FramePtr),
                 UsedReg, true, Offset)
        .setMIFlag(MachineInstr::FrameSetup);
  } else {
    llvm_unreachable("32-bit frames with WinEH must use FramePtr or BasePtr");
  }
  return MBBI;
}

unsigned X86FrameLowering::getWinEHParentFrameOffset(const MachineFunction &MF) const {
  // RDX, the parent frame pointer, is homed into 16(%rsp) in the prologue.
  unsigned Offset = 16;
  // RBP is immediately pushed.
  Offset += SlotSize;
  // All callee-saved registers are then pushed.
  Offset += MF.getInfo<X86MachineFunctionInfo>()->getCalleeSavedFrameSize();
  // Every funclet allocates enough stack space for the largest outgoing call.
  Offset += getWinEHFuncletFrameSize(MF);
  return Offset;
}

void X86FrameLowering::processFunctionBeforeFrameFinalized(
    MachineFunction &MF, RegScavenger *RS) const {
  // If this function isn't doing Win64-style C++ EH, we don't need to do
  // anything.
  const Function *Fn = MF.getFunction();
  if (!STI.is64Bit() || !MF.getMMI().hasEHFunclets() ||
      classifyEHPersonality(Fn->getPersonalityFn()) != EHPersonality::MSVC_CXX)
    return;

  // Win64 C++ EH needs to allocate the UnwindHelp object at some fixed offset
  // relative to RSP after the prologue.  Find the offset of the last fixed
  // object, so that we can allocate a slot immediately following it. If there
  // were no fixed objects, use offset -SlotSize, which is immediately after the
  // return address. Fixed objects have negative frame indices.
  MachineFrameInfo *MFI = MF.getFrameInfo();
  int64_t MinFixedObjOffset = -SlotSize;
  for (int I = MFI->getObjectIndexBegin(); I < 0; ++I)
    MinFixedObjOffset = std::min(MinFixedObjOffset, MFI->getObjectOffset(I));

  int64_t UnwindHelpOffset = MinFixedObjOffset - SlotSize;
  int UnwindHelpFI =
      MFI->CreateFixedObject(SlotSize, UnwindHelpOffset, /*Immutable=*/false);
  MF.getWinEHFuncInfo()->UnwindHelpFrameIdx = UnwindHelpFI;

  // Store -2 into UnwindHelp on function entry. We have to scan forwards past
  // other frame setup instructions.
  MachineBasicBlock &MBB = MF.front();
  auto MBBI = MBB.begin();
  while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup))
    ++MBBI;

  DebugLoc DL = MBB.findDebugLoc(MBBI);
  addFrameReference(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mi32)),
                    UnwindHelpFI)
      .addImm(-2);
}