summaryrefslogtreecommitdiff
path: root/lib/Target/X86/X86CallFrameOptimization.cpp
blob: fc6ee1752f1f101aa076a0e7178d54961f86f157 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
//===----- X86CallFrameOptimization.cpp - Optimize x86 call sequences -----===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines a pass that optimizes call sequences on x86.
// Currently, it converts movs of function parameters onto the stack into
// pushes. This is beneficial for two main reasons:
// 1) The push instruction encoding is much smaller than an esp-relative mov
// 2) It is possible to push memory arguments directly. So, if the
//    the transformation is preformed pre-reg-alloc, it can help relieve
//    register pressure.
//
//===----------------------------------------------------------------------===//

#include <algorithm>

#include "X86.h"
#include "X86InstrInfo.h"
#include "X86Subtarget.h"
#include "X86MachineFunctionInfo.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/IR/Function.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"

using namespace llvm;

#define DEBUG_TYPE "x86-cf-opt"

static cl::opt<bool>
    NoX86CFOpt("no-x86-call-frame-opt",
               cl::desc("Avoid optimizing x86 call frames for size"),
               cl::init(false), cl::Hidden);

namespace {
class X86CallFrameOptimization : public MachineFunctionPass {
public:
  X86CallFrameOptimization() : MachineFunctionPass(ID) {}

  bool runOnMachineFunction(MachineFunction &MF) override;

private:
  // Information we know about a particular call site
  struct CallContext {
    CallContext()
        : FrameSetup(nullptr), Call(nullptr), SPCopy(nullptr), ExpectedDist(0),
          MovVector(4, nullptr), NoStackParams(false), UsePush(false){}

    // Iterator referring to the frame setup instruction
    MachineBasicBlock::iterator FrameSetup;

    // Actual call instruction
    MachineInstr *Call;

    // A copy of the stack pointer
    MachineInstr *SPCopy;

    // The total displacement of all passed parameters
    int64_t ExpectedDist;

    // The sequence of movs used to pass the parameters
    SmallVector<MachineInstr *, 4> MovVector;

    // True if this call site has no stack parameters
    bool NoStackParams;

    // True of this callsite can use push instructions
    bool UsePush;
  };

  typedef SmallVector<CallContext, 8> ContextVector;

  bool isLegal(MachineFunction &MF);

  bool isProfitable(MachineFunction &MF, ContextVector &CallSeqMap);

  void collectCallInfo(MachineFunction &MF, MachineBasicBlock &MBB,
                       MachineBasicBlock::iterator I, CallContext &Context);

  bool adjustCallSequence(MachineFunction &MF, const CallContext &Context);

  MachineInstr *canFoldIntoRegPush(MachineBasicBlock::iterator FrameSetup,
                                   unsigned Reg);

  enum InstClassification { Convert, Skip, Exit };

  InstClassification classifyInstruction(MachineBasicBlock &MBB,
                                         MachineBasicBlock::iterator MI,
                                         const X86RegisterInfo &RegInfo,
                                         DenseSet<unsigned int> &UsedRegs);

  const char *getPassName() const override { return "X86 Optimize Call Frame"; }

  const TargetInstrInfo *TII;
  const X86FrameLowering *TFL;
  const X86Subtarget *STI;
  const MachineRegisterInfo *MRI;
  static char ID;
};

char X86CallFrameOptimization::ID = 0;
}

FunctionPass *llvm::createX86CallFrameOptimization() {
  return new X86CallFrameOptimization();
}

// This checks whether the transformation is legal.
// Also returns false in cases where it's potentially legal, but
// we don't even want to try.
bool X86CallFrameOptimization::isLegal(MachineFunction &MF) {
  if (NoX86CFOpt.getValue())
    return false;

  // We currently only support call sequences where *all* parameters.
  // are passed on the stack.
  // No point in running this in 64-bit mode, since some arguments are
  // passed in-register in all common calling conventions, so the pattern
  // we're looking for will never match.
  if (STI->is64Bit())
    return false;

  // We can't encode multiple DW_CFA_GNU_args_size or DW_CFA_def_cfa_offset
  // in the compact unwind encoding that Darwin uses. So, bail if there
  // is a danger of that being generated.
  if (STI->isTargetDarwin() && 
     (!MF.getMMI().getLandingPads().empty() || 
       (MF.getFunction()->needsUnwindTableEntry() && !TFL->hasFP(MF))))
    return false;

  // You would expect straight-line code between call-frame setup and
  // call-frame destroy. You would be wrong. There are circumstances (e.g.
  // CMOV_GR8 expansion of a select that feeds a function call!) where we can
  // end up with the setup and the destroy in different basic blocks.
  // This is bad, and breaks SP adjustment.
  // So, check that all of the frames in the function are closed inside
  // the same block, and, for good measure, that there are no nested frames.
  unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode();
  unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
  for (MachineBasicBlock &BB : MF) {
    bool InsideFrameSequence = false;
    for (MachineInstr &MI : BB) {
      if (MI.getOpcode() == FrameSetupOpcode) {
        if (InsideFrameSequence)
          return false;
        InsideFrameSequence = true;
      } else if (MI.getOpcode() == FrameDestroyOpcode) {
        if (!InsideFrameSequence)
          return false;
        InsideFrameSequence = false;
      }
    }

    if (InsideFrameSequence)
      return false;
  }

  return true;
}

// Check whether this trasnformation is profitable for a particular
// function - in terms of code size.
bool X86CallFrameOptimization::isProfitable(MachineFunction &MF, 
  ContextVector &CallSeqVector) {
  // This transformation is always a win when we do not expect to have
  // a reserved call frame. Under other circumstances, it may be either
  // a win or a loss, and requires a heuristic.
  bool CannotReserveFrame = MF.getFrameInfo()->hasVarSizedObjects();
  if (CannotReserveFrame)
    return true;

  // Don't do this when not optimizing for size.
  if (!MF.getFunction()->optForSize())
    return false;

  unsigned StackAlign = TFL->getStackAlignment();

  int64_t Advantage = 0;
  for (auto CC : CallSeqVector) {
    // Call sites where no parameters are passed on the stack
    // do not affect the cost, since there needs to be no
    // stack adjustment.
    if (CC.NoStackParams)
      continue;

    if (!CC.UsePush) {
      // If we don't use pushes for a particular call site,
      // we pay for not having a reserved call frame with an
      // additional sub/add esp pair. The cost is ~3 bytes per instruction,
      // depending on the size of the constant.
      // TODO: Callee-pop functions should have a smaller penalty, because
      // an add is needed even with a reserved call frame.
      Advantage -= 6;
    } else {
      // We can use pushes. First, account for the fixed costs.
      // We'll need a add after the call.
      Advantage -= 3;
      // If we have to realign the stack, we'll also need and sub before
      if (CC.ExpectedDist % StackAlign)
        Advantage -= 3;
      // Now, for each push, we save ~3 bytes. For small constants, we actually,
      // save more (up to 5 bytes), but 3 should be a good approximation.
      Advantage += (CC.ExpectedDist / 4) * 3;
    }
  }

  return (Advantage >= 0);
}

bool X86CallFrameOptimization::runOnMachineFunction(MachineFunction &MF) {
  STI = &MF.getSubtarget<X86Subtarget>();
  TII = STI->getInstrInfo();
  TFL = STI->getFrameLowering();
  MRI = &MF.getRegInfo();

  if (!isLegal(MF))
    return false;

  unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode();

  bool Changed = false;

  ContextVector CallSeqVector;

  for (MachineFunction::iterator BB = MF.begin(), E = MF.end(); BB != E; ++BB)
    for (MachineBasicBlock::iterator I = BB->begin(); I != BB->end(); ++I)
      if (I->getOpcode() == FrameSetupOpcode) {
        CallContext Context;
        collectCallInfo(MF, *BB, I, Context);
        CallSeqVector.push_back(Context);
      }

  if (!isProfitable(MF, CallSeqVector))
    return false;

  for (auto CC : CallSeqVector)
    if (CC.UsePush)
      Changed |= adjustCallSequence(MF, CC);

  return Changed;
}

X86CallFrameOptimization::InstClassification
X86CallFrameOptimization::classifyInstruction(
    MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
    const X86RegisterInfo &RegInfo, DenseSet<unsigned int> &UsedRegs) {
  if (MI == MBB.end())
    return Exit;

  // The instructions we actually care about are movs onto the stack
  int Opcode = MI->getOpcode();
  if (Opcode == X86::MOV32mi || Opcode == X86::MOV32mr)
    return Convert;

  // Not all calling conventions have only stack MOVs between the stack
  // adjust and the call.

  // We want to tolerate other instructions, to cover more cases.
  // In particular:
  // a) PCrel calls, where we expect an additional COPY of the basereg.
  // b) Passing frame-index addresses.
  // c) Calling conventions that have inreg parameters. These generate
  //    both copies and movs into registers.
  // To avoid creating lots of special cases, allow any instruction
  // that does not write into memory, does not def or use the stack
  // pointer, and does not def any register that was used by a preceding
  // push.
  // (Reading from memory is allowed, even if referenced through a
  // frame index, since these will get adjusted properly in PEI)

  // The reason for the last condition is that the pushes can't replace
  // the movs in place, because the order must be reversed.
  // So if we have a MOV32mr that uses EDX, then an instruction that defs
  // EDX, and then the call, after the transformation the push will use
  // the modified version of EDX, and not the original one.
  // Since we are still in SSA form at this point, we only need to
  // make sure we don't clobber any *physical* registers that were
  // used by an earlier mov that will become a push.

  if (MI->isCall() || MI->mayStore())
    return Exit;

  for (const MachineOperand &MO : MI->operands()) {
    if (!MO.isReg())
      continue;
    unsigned int Reg = MO.getReg();
    if (!RegInfo.isPhysicalRegister(Reg))
      continue;
    if (RegInfo.regsOverlap(Reg, RegInfo.getStackRegister()))
      return Exit;
    if (MO.isDef()) {
      for (unsigned int U : UsedRegs)
        if (RegInfo.regsOverlap(Reg, U))
          return Exit;
    }
  }

  return Skip;
}

void X86CallFrameOptimization::collectCallInfo(MachineFunction &MF,
                                               MachineBasicBlock &MBB,
                                               MachineBasicBlock::iterator I,
                                               CallContext &Context) {
  // Check that this particular call sequence is amenable to the
  // transformation.
  const X86RegisterInfo &RegInfo = *static_cast<const X86RegisterInfo *>(
                                       STI->getRegisterInfo());
  unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();

  // We expect to enter this at the beginning of a call sequence
  assert(I->getOpcode() == TII->getCallFrameSetupOpcode());
  MachineBasicBlock::iterator FrameSetup = I++;
  Context.FrameSetup = FrameSetup;

  // How much do we adjust the stack? This puts an upper bound on
  // the number of parameters actually passed on it.
  unsigned int MaxAdjust = FrameSetup->getOperand(0).getImm() / 4;

  // A zero adjustment means no stack parameters
  if (!MaxAdjust) {
    Context.NoStackParams = true;
    return;
  }

  // For globals in PIC mode, we can have some LEAs here.
  // Ignore them, they don't bother us.
  // TODO: Extend this to something that covers more cases.
  while (I->getOpcode() == X86::LEA32r)
    ++I;

  // We expect a copy instruction here.
  // TODO: The copy instruction is a lowering artifact.
  //       We should also support a copy-less version, where the stack
  //       pointer is used directly.
  if (!I->isCopy() || !I->getOperand(0).isReg())
    return;
  Context.SPCopy = I++;

  unsigned StackPtr = Context.SPCopy->getOperand(0).getReg();

  // Scan the call setup sequence for the pattern we're looking for.
  // We only handle a simple case - a sequence of MOV32mi or MOV32mr
  // instructions, that push a sequence of 32-bit values onto the stack, with
  // no gaps between them.
  if (MaxAdjust > 4)
    Context.MovVector.resize(MaxAdjust, nullptr);

  InstClassification Classification;
  DenseSet<unsigned int> UsedRegs;

  while ((Classification = classifyInstruction(MBB, I, RegInfo, UsedRegs)) !=
         Exit) {
    if (Classification == Skip) {
      ++I;
      continue;
    }

    // We know the instruction is a MOV32mi/MOV32mr.
    // We only want movs of the form:
    // movl imm/r32, k(%esp)
    // If we run into something else, bail.
    // Note that AddrBaseReg may, counter to its name, not be a register,
    // but rather a frame index.
    // TODO: Support the fi case. This should probably work now that we
    // have the infrastructure to track the stack pointer within a call
    // sequence.
    if (!I->getOperand(X86::AddrBaseReg).isReg() ||
        (I->getOperand(X86::AddrBaseReg).getReg() != StackPtr) ||
        !I->getOperand(X86::AddrScaleAmt).isImm() ||
        (I->getOperand(X86::AddrScaleAmt).getImm() != 1) ||
        (I->getOperand(X86::AddrIndexReg).getReg() != X86::NoRegister) ||
        (I->getOperand(X86::AddrSegmentReg).getReg() != X86::NoRegister) ||
        !I->getOperand(X86::AddrDisp).isImm())
      return;

    int64_t StackDisp = I->getOperand(X86::AddrDisp).getImm();
    assert(StackDisp >= 0 &&
           "Negative stack displacement when passing parameters");

    // We really don't want to consider the unaligned case.
    if (StackDisp % 4)
      return;
    StackDisp /= 4;

    assert((size_t)StackDisp < Context.MovVector.size() &&
           "Function call has more parameters than the stack is adjusted for.");

    // If the same stack slot is being filled twice, something's fishy.
    if (Context.MovVector[StackDisp] != nullptr)
      return;
    Context.MovVector[StackDisp] = I;

    for (const MachineOperand &MO : I->uses()) {
      if (!MO.isReg())
        continue;
      unsigned int Reg = MO.getReg();
      if (RegInfo.isPhysicalRegister(Reg))
        UsedRegs.insert(Reg);
    }

    ++I;
  }

  // We now expect the end of the sequence. If we stopped early,
  // or reached the end of the block without finding a call, bail.
  if (I == MBB.end() || !I->isCall())
    return;

  Context.Call = I;
  if ((++I)->getOpcode() != FrameDestroyOpcode)
    return;

  // Now, go through the vector, and see that we don't have any gaps,
  // but only a series of 32-bit MOVs.
  auto MMI = Context.MovVector.begin(), MME = Context.MovVector.end();
  for (; MMI != MME; ++MMI, Context.ExpectedDist += 4)
    if (*MMI == nullptr)
      break;

  // If the call had no parameters, do nothing
  if (MMI == Context.MovVector.begin())
    return;

  // We are either at the last parameter, or a gap.
  // Make sure it's not a gap
  for (; MMI != MME; ++MMI)
    if (*MMI != nullptr)
      return;

  Context.UsePush = true;
  return;
}

bool X86CallFrameOptimization::adjustCallSequence(MachineFunction &MF,
                                                  const CallContext &Context) {
  // Ok, we can in fact do the transformation for this call.
  // Do not remove the FrameSetup instruction, but adjust the parameters.
  // PEI will end up finalizing the handling of this.
  MachineBasicBlock::iterator FrameSetup = Context.FrameSetup;
  MachineBasicBlock &MBB = *(FrameSetup->getParent());
  FrameSetup->getOperand(1).setImm(Context.ExpectedDist);

  DebugLoc DL = FrameSetup->getDebugLoc();
  // Now, iterate through the vector in reverse order, and replace the movs
  // with pushes. MOVmi/MOVmr doesn't have any defs, so no need to
  // replace uses.
  for (int Idx = (Context.ExpectedDist / 4) - 1; Idx >= 0; --Idx) {
    MachineBasicBlock::iterator MOV = *Context.MovVector[Idx];
    MachineOperand PushOp = MOV->getOperand(X86::AddrNumOperands);
    MachineBasicBlock::iterator Push = nullptr;
    if (MOV->getOpcode() == X86::MOV32mi) {
      unsigned PushOpcode = X86::PUSHi32;
      // If the operand is a small (8-bit) immediate, we can use a
      // PUSH instruction with a shorter encoding.
      // Note that isImm() may fail even though this is a MOVmi, because
      // the operand can also be a symbol.
      if (PushOp.isImm()) {
        int64_t Val = PushOp.getImm();
        if (isInt<8>(Val))
          PushOpcode = X86::PUSH32i8;
      }
      Push = BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode))
          .addOperand(PushOp);
    } else {
      unsigned int Reg = PushOp.getReg();

      // If PUSHrmm is not slow on this target, try to fold the source of the
      // push into the instruction.
      bool SlowPUSHrmm = STI->isAtom() || STI->isSLM();

      // Check that this is legal to fold. Right now, we're extremely
      // conservative about that.
      MachineInstr *DefMov = nullptr;
      if (!SlowPUSHrmm && (DefMov = canFoldIntoRegPush(FrameSetup, Reg))) {
        Push = BuildMI(MBB, Context.Call, DL, TII->get(X86::PUSH32rmm));

        unsigned NumOps = DefMov->getDesc().getNumOperands();
        for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i)
          Push->addOperand(DefMov->getOperand(i));

        DefMov->eraseFromParent();
      } else {
        Push = BuildMI(MBB, Context.Call, DL, TII->get(X86::PUSH32r))
            .addReg(Reg)
            .getInstr();
      }
    }

    // For debugging, when using SP-based CFA, we need to adjust the CFA
    // offset after each push.
    // TODO: This is needed only if we require precise CFA.
    if (!TFL->hasFP(MF))
      TFL->BuildCFI(MBB, std::next(Push), DL, 
                    MCCFIInstruction::createAdjustCfaOffset(nullptr, 4));

    MBB.erase(MOV);
  }

  // The stack-pointer copy is no longer used in the call sequences.
  // There should not be any other users, but we can't commit to that, so:
  if (MRI->use_empty(Context.SPCopy->getOperand(0).getReg()))
    Context.SPCopy->eraseFromParent();

  // Once we've done this, we need to make sure PEI doesn't assume a reserved
  // frame.
  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
  FuncInfo->setHasPushSequences(true);

  return true;
}

MachineInstr *X86CallFrameOptimization::canFoldIntoRegPush(
    MachineBasicBlock::iterator FrameSetup, unsigned Reg) {
  // Do an extremely restricted form of load folding.
  // ISel will often create patterns like:
  // movl    4(%edi), %eax
  // movl    8(%edi), %ecx
  // movl    12(%edi), %edx
  // movl    %edx, 8(%esp)
  // movl    %ecx, 4(%esp)
  // movl    %eax, (%esp)
  // call
  // Get rid of those with prejudice.
  if (!TargetRegisterInfo::isVirtualRegister(Reg))
    return nullptr;

  // Make sure this is the only use of Reg.
  if (!MRI->hasOneNonDBGUse(Reg))
    return nullptr;

  MachineBasicBlock::iterator DefMI = MRI->getVRegDef(Reg);

  // Make sure the def is a MOV from memory.
  // If the def is an another block, give up.
  if (DefMI->getOpcode() != X86::MOV32rm ||
      DefMI->getParent() != FrameSetup->getParent())
    return nullptr;

  // Make sure we don't have any instructions between DefMI and the
  // push that make folding the load illegal.
  for (auto I = DefMI; I != FrameSetup; ++I)
    if (I->isLoadFoldBarrier())
      return nullptr;

  return DefMI;
}