1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
|
//===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the SystemZTargetLowering class.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "systemz-lower"
#include "SystemZISelLowering.h"
#include "SystemZCallingConv.h"
#include "SystemZConstantPoolValue.h"
#include "SystemZMachineFunctionInfo.h"
#include "SystemZTargetMachine.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
#include <cctype>
using namespace llvm;
namespace {
// Represents a sequence for extracting a 0/1 value from an IPM result:
// (((X ^ XORValue) + AddValue) >> Bit)
struct IPMConversion {
IPMConversion(unsigned xorValue, int64_t addValue, unsigned bit)
: XORValue(xorValue), AddValue(addValue), Bit(bit) {}
int64_t XORValue;
int64_t AddValue;
unsigned Bit;
};
// Represents information about a comparison.
struct Comparison {
Comparison(SDValue Op0In, SDValue Op1In)
: Op0(Op0In), Op1(Op1In), Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {}
// The operands to the comparison.
SDValue Op0, Op1;
// The opcode that should be used to compare Op0 and Op1.
unsigned Opcode;
// A SystemZICMP value. Only used for integer comparisons.
unsigned ICmpType;
// The mask of CC values that Opcode can produce.
unsigned CCValid;
// The mask of CC values for which the original condition is true.
unsigned CCMask;
};
}
// Classify VT as either 32 or 64 bit.
static bool is32Bit(EVT VT) {
switch (VT.getSimpleVT().SimpleTy) {
case MVT::i32:
return true;
case MVT::i64:
return false;
default:
llvm_unreachable("Unsupported type");
}
}
// Return a version of MachineOperand that can be safely used before the
// final use.
static MachineOperand earlyUseOperand(MachineOperand Op) {
if (Op.isReg())
Op.setIsKill(false);
return Op;
}
SystemZTargetLowering::SystemZTargetLowering(SystemZTargetMachine &tm)
: TargetLowering(tm, new TargetLoweringObjectFileELF()),
Subtarget(*tm.getSubtargetImpl()), TM(tm) {
MVT PtrVT = getPointerTy();
// Set up the register classes.
if (Subtarget.hasHighWord())
addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass);
else
addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass);
addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass);
addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass);
addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass);
addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
// Compute derived properties from the register classes
computeRegisterProperties();
// Set up special registers.
setExceptionPointerRegister(SystemZ::R6D);
setExceptionSelectorRegister(SystemZ::R7D);
setStackPointerRegisterToSaveRestore(SystemZ::R15D);
// TODO: It may be better to default to latency-oriented scheduling, however
// LLVM's current latency-oriented scheduler can't handle physreg definitions
// such as SystemZ has with CC, so set this to the register-pressure
// scheduler, because it can.
setSchedulingPreference(Sched::RegPressure);
setBooleanContents(ZeroOrOneBooleanContent);
setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
// Instructions are strings of 2-byte aligned 2-byte values.
setMinFunctionAlignment(2);
// Handle operations that are handled in a similar way for all types.
for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
I <= MVT::LAST_FP_VALUETYPE;
++I) {
MVT VT = MVT::SimpleValueType(I);
if (isTypeLegal(VT)) {
// Lower SET_CC into an IPM-based sequence.
setOperationAction(ISD::SETCC, VT, Custom);
// Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
setOperationAction(ISD::SELECT, VT, Expand);
// Lower SELECT_CC and BR_CC into separate comparisons and branches.
setOperationAction(ISD::SELECT_CC, VT, Custom);
setOperationAction(ISD::BR_CC, VT, Custom);
}
}
// Expand jump table branches as address arithmetic followed by an
// indirect jump.
setOperationAction(ISD::BR_JT, MVT::Other, Expand);
// Expand BRCOND into a BR_CC (see above).
setOperationAction(ISD::BRCOND, MVT::Other, Expand);
// Handle integer types.
for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
I <= MVT::LAST_INTEGER_VALUETYPE;
++I) {
MVT VT = MVT::SimpleValueType(I);
if (isTypeLegal(VT)) {
// Expand individual DIV and REMs into DIVREMs.
setOperationAction(ISD::SDIV, VT, Expand);
setOperationAction(ISD::UDIV, VT, Expand);
setOperationAction(ISD::SREM, VT, Expand);
setOperationAction(ISD::UREM, VT, Expand);
setOperationAction(ISD::SDIVREM, VT, Custom);
setOperationAction(ISD::UDIVREM, VT, Custom);
// Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and
// stores, putting a serialization instruction after the stores.
setOperationAction(ISD::ATOMIC_LOAD, VT, Custom);
setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
// Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are
// available, or if the operand is constant.
setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
// No special instructions for these.
setOperationAction(ISD::CTPOP, VT, Expand);
setOperationAction(ISD::CTTZ, VT, Expand);
setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
setOperationAction(ISD::ROTR, VT, Expand);
// Use *MUL_LOHI where possible instead of MULH*.
setOperationAction(ISD::MULHS, VT, Expand);
setOperationAction(ISD::MULHU, VT, Expand);
setOperationAction(ISD::SMUL_LOHI, VT, Custom);
setOperationAction(ISD::UMUL_LOHI, VT, Custom);
// We have instructions for signed but not unsigned FP conversion.
setOperationAction(ISD::FP_TO_UINT, VT, Expand);
}
}
// Type legalization will convert 8- and 16-bit atomic operations into
// forms that operate on i32s (but still keeping the original memory VT).
// Lower them into full i32 operations.
setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Custom);
setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Custom);
setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom);
setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Custom);
setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Custom);
setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Custom);
setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Custom);
setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
// We have instructions for signed but not unsigned FP conversion.
// Handle unsigned 32-bit types as signed 64-bit types.
setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
// We have native support for a 64-bit CTLZ, via FLOGR.
setOperationAction(ISD::CTLZ, MVT::i32, Promote);
setOperationAction(ISD::CTLZ, MVT::i64, Legal);
// Give LowerOperation the chance to replace 64-bit ORs with subregs.
setOperationAction(ISD::OR, MVT::i64, Custom);
// Give LowerOperation the chance to optimize SIGN_EXTEND sequences.
setOperationAction(ISD::SIGN_EXTEND, MVT::i64, Custom);
// FIXME: Can we support these natively?
setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
// We have native instructions for i8, i16 and i32 extensions, but not i1.
setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote);
setLoadExtAction(ISD::EXTLOAD, MVT::i1, Promote);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
// Handle the various types of symbolic address.
setOperationAction(ISD::ConstantPool, PtrVT, Custom);
setOperationAction(ISD::GlobalAddress, PtrVT, Custom);
setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
setOperationAction(ISD::BlockAddress, PtrVT, Custom);
setOperationAction(ISD::JumpTable, PtrVT, Custom);
// We need to handle dynamic allocations specially because of the
// 160-byte area at the bottom of the stack.
setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
// Use custom expanders so that we can force the function to use
// a frame pointer.
setOperationAction(ISD::STACKSAVE, MVT::Other, Custom);
setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
// Handle prefetches with PFD or PFDRL.
setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
// Handle floating-point types.
for (unsigned I = MVT::FIRST_FP_VALUETYPE;
I <= MVT::LAST_FP_VALUETYPE;
++I) {
MVT VT = MVT::SimpleValueType(I);
if (isTypeLegal(VT)) {
// We can use FI for FRINT.
setOperationAction(ISD::FRINT, VT, Legal);
// We can use the extended form of FI for other rounding operations.
if (Subtarget.hasFPExtension()) {
setOperationAction(ISD::FNEARBYINT, VT, Legal);
setOperationAction(ISD::FFLOOR, VT, Legal);
setOperationAction(ISD::FCEIL, VT, Legal);
setOperationAction(ISD::FTRUNC, VT, Legal);
setOperationAction(ISD::FROUND, VT, Legal);
}
// No special instructions for these.
setOperationAction(ISD::FSIN, VT, Expand);
setOperationAction(ISD::FCOS, VT, Expand);
setOperationAction(ISD::FREM, VT, Expand);
}
}
// We have fused multiply-addition for f32 and f64 but not f128.
setOperationAction(ISD::FMA, MVT::f32, Legal);
setOperationAction(ISD::FMA, MVT::f64, Legal);
setOperationAction(ISD::FMA, MVT::f128, Expand);
// Needed so that we don't try to implement f128 constant loads using
// a load-and-extend of a f80 constant (in cases where the constant
// would fit in an f80).
setLoadExtAction(ISD::EXTLOAD, MVT::f80, Expand);
// Floating-point truncation and stores need to be done separately.
setTruncStoreAction(MVT::f64, MVT::f32, Expand);
setTruncStoreAction(MVT::f128, MVT::f32, Expand);
setTruncStoreAction(MVT::f128, MVT::f64, Expand);
// We have 64-bit FPR<->GPR moves, but need special handling for
// 32-bit forms.
setOperationAction(ISD::BITCAST, MVT::i32, Custom);
setOperationAction(ISD::BITCAST, MVT::f32, Custom);
// VASTART and VACOPY need to deal with the SystemZ-specific varargs
// structure, but VAEND is a no-op.
setOperationAction(ISD::VASTART, MVT::Other, Custom);
setOperationAction(ISD::VACOPY, MVT::Other, Custom);
setOperationAction(ISD::VAEND, MVT::Other, Expand);
// We want to use MVC in preference to even a single load/store pair.
MaxStoresPerMemcpy = 0;
MaxStoresPerMemcpyOptSize = 0;
// The main memset sequence is a byte store followed by an MVC.
// Two STC or MV..I stores win over that, but the kind of fused stores
// generated by target-independent code don't when the byte value is
// variable. E.g. "STC <reg>;MHI <reg>,257;STH <reg>" is not better
// than "STC;MVC". Handle the choice in target-specific code instead.
MaxStoresPerMemset = 0;
MaxStoresPerMemsetOptSize = 0;
}
EVT SystemZTargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
if (!VT.isVector())
return MVT::i32;
return VT.changeVectorElementTypeToInteger();
}
bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
VT = VT.getScalarType();
if (!VT.isSimple())
return false;
switch (VT.getSimpleVT().SimpleTy) {
case MVT::f32:
case MVT::f64:
return true;
case MVT::f128:
return false;
default:
break;
}
return false;
}
bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
// We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
return Imm.isZero() || Imm.isNegZero();
}
bool SystemZTargetLowering::allowsUnalignedMemoryAccesses(EVT VT,
unsigned,
bool *Fast) const {
// Unaligned accesses should never be slower than the expanded version.
// We check specifically for aligned accesses in the few cases where
// they are required.
if (Fast)
*Fast = true;
return true;
}
bool SystemZTargetLowering::isLegalAddressingMode(const AddrMode &AM,
Type *Ty) const {
// Punt on globals for now, although they can be used in limited
// RELATIVE LONG cases.
if (AM.BaseGV)
return false;
// Require a 20-bit signed offset.
if (!isInt<20>(AM.BaseOffs))
return false;
// Indexing is OK but no scale factor can be applied.
return AM.Scale == 0 || AM.Scale == 1;
}
bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const {
if (!FromType->isIntegerTy() || !ToType->isIntegerTy())
return false;
unsigned FromBits = FromType->getPrimitiveSizeInBits();
unsigned ToBits = ToType->getPrimitiveSizeInBits();
return FromBits > ToBits;
}
bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const {
if (!FromVT.isInteger() || !ToVT.isInteger())
return false;
unsigned FromBits = FromVT.getSizeInBits();
unsigned ToBits = ToVT.getSizeInBits();
return FromBits > ToBits;
}
//===----------------------------------------------------------------------===//
// Inline asm support
//===----------------------------------------------------------------------===//
TargetLowering::ConstraintType
SystemZTargetLowering::getConstraintType(const std::string &Constraint) const {
if (Constraint.size() == 1) {
switch (Constraint[0]) {
case 'a': // Address register
case 'd': // Data register (equivalent to 'r')
case 'f': // Floating-point register
case 'h': // High-part register
case 'r': // General-purpose register
return C_RegisterClass;
case 'Q': // Memory with base and unsigned 12-bit displacement
case 'R': // Likewise, plus an index
case 'S': // Memory with base and signed 20-bit displacement
case 'T': // Likewise, plus an index
case 'm': // Equivalent to 'T'.
return C_Memory;
case 'I': // Unsigned 8-bit constant
case 'J': // Unsigned 12-bit constant
case 'K': // Signed 16-bit constant
case 'L': // Signed 20-bit displacement (on all targets we support)
case 'M': // 0x7fffffff
return C_Other;
default:
break;
}
}
return TargetLowering::getConstraintType(Constraint);
}
TargetLowering::ConstraintWeight SystemZTargetLowering::
getSingleConstraintMatchWeight(AsmOperandInfo &info,
const char *constraint) const {
ConstraintWeight weight = CW_Invalid;
Value *CallOperandVal = info.CallOperandVal;
// If we don't have a value, we can't do a match,
// but allow it at the lowest weight.
if (CallOperandVal == NULL)
return CW_Default;
Type *type = CallOperandVal->getType();
// Look at the constraint type.
switch (*constraint) {
default:
weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
break;
case 'a': // Address register
case 'd': // Data register (equivalent to 'r')
case 'h': // High-part register
case 'r': // General-purpose register
if (CallOperandVal->getType()->isIntegerTy())
weight = CW_Register;
break;
case 'f': // Floating-point register
if (type->isFloatingPointTy())
weight = CW_Register;
break;
case 'I': // Unsigned 8-bit constant
if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal))
if (isUInt<8>(C->getZExtValue()))
weight = CW_Constant;
break;
case 'J': // Unsigned 12-bit constant
if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal))
if (isUInt<12>(C->getZExtValue()))
weight = CW_Constant;
break;
case 'K': // Signed 16-bit constant
if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal))
if (isInt<16>(C->getSExtValue()))
weight = CW_Constant;
break;
case 'L': // Signed 20-bit displacement (on all targets we support)
if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal))
if (isInt<20>(C->getSExtValue()))
weight = CW_Constant;
break;
case 'M': // 0x7fffffff
if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal))
if (C->getZExtValue() == 0x7fffffff)
weight = CW_Constant;
break;
}
return weight;
}
// Parse a "{tNNN}" register constraint for which the register type "t"
// has already been verified. MC is the class associated with "t" and
// Map maps 0-based register numbers to LLVM register numbers.
static std::pair<unsigned, const TargetRegisterClass *>
parseRegisterNumber(const std::string &Constraint,
const TargetRegisterClass *RC, const unsigned *Map) {
assert(*(Constraint.end()-1) == '}' && "Missing '}'");
if (isdigit(Constraint[2])) {
std::string Suffix(Constraint.data() + 2, Constraint.size() - 2);
unsigned Index = atoi(Suffix.c_str());
if (Index < 16 && Map[Index])
return std::make_pair(Map[Index], RC);
}
return std::make_pair(0u, static_cast<TargetRegisterClass*>(0));
}
std::pair<unsigned, const TargetRegisterClass *> SystemZTargetLowering::
getRegForInlineAsmConstraint(const std::string &Constraint, MVT VT) const {
if (Constraint.size() == 1) {
// GCC Constraint Letters
switch (Constraint[0]) {
default: break;
case 'd': // Data register (equivalent to 'r')
case 'r': // General-purpose register
if (VT == MVT::i64)
return std::make_pair(0U, &SystemZ::GR64BitRegClass);
else if (VT == MVT::i128)
return std::make_pair(0U, &SystemZ::GR128BitRegClass);
return std::make_pair(0U, &SystemZ::GR32BitRegClass);
case 'a': // Address register
if (VT == MVT::i64)
return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
else if (VT == MVT::i128)
return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
case 'h': // High-part register (an LLVM extension)
return std::make_pair(0U, &SystemZ::GRH32BitRegClass);
case 'f': // Floating-point register
if (VT == MVT::f64)
return std::make_pair(0U, &SystemZ::FP64BitRegClass);
else if (VT == MVT::f128)
return std::make_pair(0U, &SystemZ::FP128BitRegClass);
return std::make_pair(0U, &SystemZ::FP32BitRegClass);
}
}
if (Constraint[0] == '{') {
// We need to override the default register parsing for GPRs and FPRs
// because the interpretation depends on VT. The internal names of
// the registers are also different from the external names
// (F0D and F0S instead of F0, etc.).
if (Constraint[1] == 'r') {
if (VT == MVT::i32)
return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
SystemZMC::GR32Regs);
if (VT == MVT::i128)
return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
SystemZMC::GR128Regs);
return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
SystemZMC::GR64Regs);
}
if (Constraint[1] == 'f') {
if (VT == MVT::f32)
return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
SystemZMC::FP32Regs);
if (VT == MVT::f128)
return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
SystemZMC::FP128Regs);
return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
SystemZMC::FP64Regs);
}
}
return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
}
void SystemZTargetLowering::
LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
std::vector<SDValue> &Ops,
SelectionDAG &DAG) const {
// Only support length 1 constraints for now.
if (Constraint.length() == 1) {
switch (Constraint[0]) {
case 'I': // Unsigned 8-bit constant
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
if (isUInt<8>(C->getZExtValue()))
Ops.push_back(DAG.getTargetConstant(C->getZExtValue(),
Op.getValueType()));
return;
case 'J': // Unsigned 12-bit constant
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
if (isUInt<12>(C->getZExtValue()))
Ops.push_back(DAG.getTargetConstant(C->getZExtValue(),
Op.getValueType()));
return;
case 'K': // Signed 16-bit constant
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
if (isInt<16>(C->getSExtValue()))
Ops.push_back(DAG.getTargetConstant(C->getSExtValue(),
Op.getValueType()));
return;
case 'L': // Signed 20-bit displacement (on all targets we support)
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
if (isInt<20>(C->getSExtValue()))
Ops.push_back(DAG.getTargetConstant(C->getSExtValue(),
Op.getValueType()));
return;
case 'M': // 0x7fffffff
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
if (C->getZExtValue() == 0x7fffffff)
Ops.push_back(DAG.getTargetConstant(C->getZExtValue(),
Op.getValueType()));
return;
}
}
TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
}
//===----------------------------------------------------------------------===//
// Calling conventions
//===----------------------------------------------------------------------===//
#include "SystemZGenCallingConv.inc"
bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType,
Type *ToType) const {
return isTruncateFree(FromType, ToType);
}
bool SystemZTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
if (!CI->isTailCall())
return false;
return true;
}
// Value is a value that has been passed to us in the location described by VA
// (and so has type VA.getLocVT()). Convert Value to VA.getValVT(), chaining
// any loads onto Chain.
static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDLoc DL,
CCValAssign &VA, SDValue Chain,
SDValue Value) {
// If the argument has been promoted from a smaller type, insert an
// assertion to capture this.
if (VA.getLocInfo() == CCValAssign::SExt)
Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
DAG.getValueType(VA.getValVT()));
else if (VA.getLocInfo() == CCValAssign::ZExt)
Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
DAG.getValueType(VA.getValVT()));
if (VA.isExtInLoc())
Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
else if (VA.getLocInfo() == CCValAssign::Indirect)
Value = DAG.getLoad(VA.getValVT(), DL, Chain, Value,
MachinePointerInfo(), false, false, false, 0);
else
assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
return Value;
}
// Value is a value of type VA.getValVT() that we need to copy into
// the location described by VA. Return a copy of Value converted to
// VA.getValVT(). The caller is responsible for handling indirect values.
static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDLoc DL,
CCValAssign &VA, SDValue Value) {
switch (VA.getLocInfo()) {
case CCValAssign::SExt:
return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
case CCValAssign::ZExt:
return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
case CCValAssign::AExt:
return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
case CCValAssign::Full:
return Value;
default:
llvm_unreachable("Unhandled getLocInfo()");
}
}
SDValue SystemZTargetLowering::
LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins,
SDLoc DL, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const {
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo *MFI = MF.getFrameInfo();
MachineRegisterInfo &MRI = MF.getRegInfo();
SystemZMachineFunctionInfo *FuncInfo =
MF.getInfo<SystemZMachineFunctionInfo>();
const SystemZFrameLowering *TFL =
static_cast<const SystemZFrameLowering *>(TM.getFrameLowering());
// Assign locations to all of the incoming arguments.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CallConv, IsVarArg, MF, TM, ArgLocs, *DAG.getContext());
CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
unsigned NumFixedGPRs = 0;
unsigned NumFixedFPRs = 0;
for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
SDValue ArgValue;
CCValAssign &VA = ArgLocs[I];
EVT LocVT = VA.getLocVT();
if (VA.isRegLoc()) {
// Arguments passed in registers
const TargetRegisterClass *RC;
switch (LocVT.getSimpleVT().SimpleTy) {
default:
// Integers smaller than i64 should be promoted to i64.
llvm_unreachable("Unexpected argument type");
case MVT::i32:
NumFixedGPRs += 1;
RC = &SystemZ::GR32BitRegClass;
break;
case MVT::i64:
NumFixedGPRs += 1;
RC = &SystemZ::GR64BitRegClass;
break;
case MVT::f32:
NumFixedFPRs += 1;
RC = &SystemZ::FP32BitRegClass;
break;
case MVT::f64:
NumFixedFPRs += 1;
RC = &SystemZ::FP64BitRegClass;
break;
}
unsigned VReg = MRI.createVirtualRegister(RC);
MRI.addLiveIn(VA.getLocReg(), VReg);
ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
} else {
assert(VA.isMemLoc() && "Argument not register or memory");
// Create the frame index object for this incoming parameter.
int FI = MFI->CreateFixedObject(LocVT.getSizeInBits() / 8,
VA.getLocMemOffset(), true);
// Create the SelectionDAG nodes corresponding to a load
// from this parameter. Unpromoted ints and floats are
// passed as right-justified 8-byte values.
EVT PtrVT = getPointerTy();
SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getIntPtrConstant(4));
ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
MachinePointerInfo::getFixedStack(FI),
false, false, false, 0);
}
// Convert the value of the argument register into the value that's
// being passed.
InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
}
if (IsVarArg) {
// Save the number of non-varargs registers for later use by va_start, etc.
FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
// Likewise the address (in the form of a frame index) of where the
// first stack vararg would be. The 1-byte size here is arbitrary.
int64_t StackSize = CCInfo.getNextStackOffset();
FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize, true));
// ...and a similar frame index for the caller-allocated save area
// that will be used to store the incoming registers.
int64_t RegSaveOffset = TFL->getOffsetOfLocalArea();
unsigned RegSaveIndex = MFI->CreateFixedObject(1, RegSaveOffset, true);
FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
// Store the FPR varargs in the reserved frame slots. (We store the
// GPRs as part of the prologue.)
if (NumFixedFPRs < SystemZ::NumArgFPRs) {
SDValue MemOps[SystemZ::NumArgFPRs];
for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) {
unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]);
int FI = MFI->CreateFixedObject(8, RegSaveOffset + Offset, true);
SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I],
&SystemZ::FP64BitRegClass);
SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
MachinePointerInfo::getFixedStack(FI),
false, false, 0);
}
// Join the stores, which are independent of one another.
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
&MemOps[NumFixedFPRs],
SystemZ::NumArgFPRs - NumFixedFPRs);
}
}
return Chain;
}
static bool canUseSiblingCall(CCState ArgCCInfo,
SmallVectorImpl<CCValAssign> &ArgLocs) {
// Punt if there are any indirect or stack arguments, or if the call
// needs the call-saved argument register R6.
for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
CCValAssign &VA = ArgLocs[I];
if (VA.getLocInfo() == CCValAssign::Indirect)
return false;
if (!VA.isRegLoc())
return false;
unsigned Reg = VA.getLocReg();
if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D)
return false;
}
return true;
}
SDValue
SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
SmallVectorImpl<SDValue> &InVals) const {
SelectionDAG &DAG = CLI.DAG;
SDLoc &DL = CLI.DL;
SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
SDValue Chain = CLI.Chain;
SDValue Callee = CLI.Callee;
bool &IsTailCall = CLI.IsTailCall;
CallingConv::ID CallConv = CLI.CallConv;
bool IsVarArg = CLI.IsVarArg;
MachineFunction &MF = DAG.getMachineFunction();
EVT PtrVT = getPointerTy();
// Analyze the operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ArgLocs;
CCState ArgCCInfo(CallConv, IsVarArg, MF, TM, ArgLocs, *DAG.getContext());
ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
// We don't support GuaranteedTailCallOpt, only automatically-detected
// sibling calls.
if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs))
IsTailCall = false;
// Get a count of how many bytes are to be pushed on the stack.
unsigned NumBytes = ArgCCInfo.getNextStackOffset();
// Mark the start of the call.
if (!IsTailCall)
Chain = DAG.getCALLSEQ_START(Chain, DAG.getConstant(NumBytes, PtrVT, true),
DL);
// Copy argument values to their designated locations.
SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
SmallVector<SDValue, 8> MemOpChains;
SDValue StackPtr;
for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
CCValAssign &VA = ArgLocs[I];
SDValue ArgValue = OutVals[I];
if (VA.getLocInfo() == CCValAssign::Indirect) {
// Store the argument in a stack slot and pass its address.
SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
MemOpChains.push_back(DAG.getStore(Chain, DL, ArgValue, SpillSlot,
MachinePointerInfo::getFixedStack(FI),
false, false, 0));
ArgValue = SpillSlot;
} else
ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
if (VA.isRegLoc())
// Queue up the argument copies and emit them at the end.
RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
else {
assert(VA.isMemLoc() && "Argument not register or memory");
// Work out the address of the stack slot. Unpromoted ints and
// floats are passed as right-justified 8-byte values.
if (!StackPtr.getNode())
StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT);
unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset();
if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
Offset += 4;
SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
DAG.getIntPtrConstant(Offset));
// Emit the store.
MemOpChains.push_back(DAG.getStore(Chain, DL, ArgValue, Address,
MachinePointerInfo(),
false, false, 0));
}
}
// Join the stores, which are independent of one another.
if (!MemOpChains.empty())
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
&MemOpChains[0], MemOpChains.size());
// Accept direct calls by converting symbolic call addresses to the
// associated Target* opcodes. Force %r1 to be used for indirect
// tail calls.
SDValue Glue;
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
} else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
} else if (IsTailCall) {
Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue);
Glue = Chain.getValue(1);
Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType());
}
// Build a sequence of copy-to-reg nodes, chained and glued together.
for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
RegsToPass[I].second, Glue);
Glue = Chain.getValue(1);
}
// The first call operand is the chain and the second is the target address.
SmallVector<SDValue, 8> Ops;
Ops.push_back(Chain);
Ops.push_back(Callee);
// Add argument registers to the end of the list so that they are
// known live into the call.
for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
Ops.push_back(DAG.getRegister(RegsToPass[I].first,
RegsToPass[I].second.getValueType()));
// Glue the call to the argument copies, if any.
if (Glue.getNode())
Ops.push_back(Glue);
// Emit the call.
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
if (IsTailCall)
return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, &Ops[0], Ops.size());
Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, &Ops[0], Ops.size());
Glue = Chain.getValue(1);
// Mark the end of the call, which is glued to the call itself.
Chain = DAG.getCALLSEQ_END(Chain,
DAG.getConstant(NumBytes, PtrVT, true),
DAG.getConstant(0, PtrVT, true),
Glue, DL);
Glue = Chain.getValue(1);
// Assign locations to each value returned by this call.
SmallVector<CCValAssign, 16> RetLocs;
CCState RetCCInfo(CallConv, IsVarArg, MF, TM, RetLocs, *DAG.getContext());
RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
// Copy all of the result registers out of their specified physreg.
for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
CCValAssign &VA = RetLocs[I];
// Copy the value out, gluing the copy to the end of the call sequence.
SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
VA.getLocVT(), Glue);
Chain = RetValue.getValue(1);
Glue = RetValue.getValue(2);
// Convert the value of the return register into the value that's
// being returned.
InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
}
return Chain;
}
SDValue
SystemZTargetLowering::LowerReturn(SDValue Chain,
CallingConv::ID CallConv, bool IsVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
SDLoc DL, SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
// Assign locations to each returned value.
SmallVector<CCValAssign, 16> RetLocs;
CCState RetCCInfo(CallConv, IsVarArg, MF, TM, RetLocs, *DAG.getContext());
RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
// Quick exit for void returns
if (RetLocs.empty())
return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain);
// Copy the result values into the output registers.
SDValue Glue;
SmallVector<SDValue, 4> RetOps;
RetOps.push_back(Chain);
for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
CCValAssign &VA = RetLocs[I];
SDValue RetValue = OutVals[I];
// Make the return register live on exit.
assert(VA.isRegLoc() && "Can only return in registers!");
// Promote the value as required.
RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
// Chain and glue the copies together.
unsigned Reg = VA.getLocReg();
Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
Glue = Chain.getValue(1);
RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
}
// Update chain and glue.
RetOps[0] = Chain;
if (Glue.getNode())
RetOps.push_back(Glue);
return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other,
RetOps.data(), RetOps.size());
}
SDValue SystemZTargetLowering::
prepareVolatileOrAtomicLoad(SDValue Chain, SDLoc DL, SelectionDAG &DAG) const {
return DAG.getNode(SystemZISD::SERIALIZE, DL, MVT::Other, Chain);
}
// CC is a comparison that will be implemented using an integer or
// floating-point comparison. Return the condition code mask for
// a branch on true. In the integer case, CCMASK_CMP_UO is set for
// unsigned comparisons and clear for signed ones. In the floating-point
// case, CCMASK_CMP_UO has its normal mask meaning (unordered).
static unsigned CCMaskForCondCode(ISD::CondCode CC) {
#define CONV(X) \
case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
switch (CC) {
default:
llvm_unreachable("Invalid integer condition!");
CONV(EQ);
CONV(NE);
CONV(GT);
CONV(GE);
CONV(LT);
CONV(LE);
case ISD::SETO: return SystemZ::CCMASK_CMP_O;
case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
}
#undef CONV
}
// Return a sequence for getting a 1 from an IPM result when CC has a
// value in CCMask and a 0 when CC has a value in CCValid & ~CCMask.
// The handling of CC values outside CCValid doesn't matter.
static IPMConversion getIPMConversion(unsigned CCValid, unsigned CCMask) {
// Deal with cases where the result can be taken directly from a bit
// of the IPM result.
if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_3)))
return IPMConversion(0, 0, SystemZ::IPM_CC);
if (CCMask == (CCValid & (SystemZ::CCMASK_2 | SystemZ::CCMASK_3)))
return IPMConversion(0, 0, SystemZ::IPM_CC + 1);
// Deal with cases where we can add a value to force the sign bit
// to contain the right value. Putting the bit in 31 means we can
// use SRL rather than RISBG(L), and also makes it easier to get a
// 0/-1 value, so it has priority over the other tests below.
//
// These sequences rely on the fact that the upper two bits of the
// IPM result are zero.
uint64_t TopBit = uint64_t(1) << 31;
if (CCMask == (CCValid & SystemZ::CCMASK_0))
return IPMConversion(0, -(1 << SystemZ::IPM_CC), 31);
if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_1)))
return IPMConversion(0, -(2 << SystemZ::IPM_CC), 31);
if (CCMask == (CCValid & (SystemZ::CCMASK_0
| SystemZ::CCMASK_1
| SystemZ::CCMASK_2)))
return IPMConversion(0, -(3 << SystemZ::IPM_CC), 31);
if (CCMask == (CCValid & SystemZ::CCMASK_3))
return IPMConversion(0, TopBit - (3 << SystemZ::IPM_CC), 31);
if (CCMask == (CCValid & (SystemZ::CCMASK_1
| SystemZ::CCMASK_2
| SystemZ::CCMASK_3)))
return IPMConversion(0, TopBit - (1 << SystemZ::IPM_CC), 31);
// Next try inverting the value and testing a bit. 0/1 could be
// handled this way too, but we dealt with that case above.
if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_2)))
return IPMConversion(-1, 0, SystemZ::IPM_CC);
// Handle cases where adding a value forces a non-sign bit to contain
// the right value.
if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_2)))
return IPMConversion(0, 1 << SystemZ::IPM_CC, SystemZ::IPM_CC + 1);
if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_3)))
return IPMConversion(0, -(1 << SystemZ::IPM_CC), SystemZ::IPM_CC + 1);
// The remaining cases are 1, 2, 0/1/3 and 0/2/3. All these are
// can be done by inverting the low CC bit and applying one of the
// sign-based extractions above.
if (CCMask == (CCValid & SystemZ::CCMASK_1))
return IPMConversion(1 << SystemZ::IPM_CC, -(1 << SystemZ::IPM_CC), 31);
if (CCMask == (CCValid & SystemZ::CCMASK_2))
return IPMConversion(1 << SystemZ::IPM_CC,
TopBit - (3 << SystemZ::IPM_CC), 31);
if (CCMask == (CCValid & (SystemZ::CCMASK_0
| SystemZ::CCMASK_1
| SystemZ::CCMASK_3)))
return IPMConversion(1 << SystemZ::IPM_CC, -(3 << SystemZ::IPM_CC), 31);
if (CCMask == (CCValid & (SystemZ::CCMASK_0
| SystemZ::CCMASK_2
| SystemZ::CCMASK_3)))
return IPMConversion(1 << SystemZ::IPM_CC,
TopBit - (1 << SystemZ::IPM_CC), 31);
llvm_unreachable("Unexpected CC combination");
}
// If C can be converted to a comparison against zero, adjust the operands
// as necessary.
static void adjustZeroCmp(SelectionDAG &DAG, Comparison &C) {
if (C.ICmpType == SystemZICMP::UnsignedOnly)
return;
ConstantSDNode *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode());
if (!ConstOp1)
return;
int64_t Value = ConstOp1->getSExtValue();
if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) ||
(Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) ||
(Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) ||
(Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) {
C.CCMask ^= SystemZ::CCMASK_CMP_EQ;
C.Op1 = DAG.getConstant(0, C.Op1.getValueType());
}
}
// If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI,
// adjust the operands as necessary.
static void adjustSubwordCmp(SelectionDAG &DAG, Comparison &C) {
// For us to make any changes, it must a comparison between a single-use
// load and a constant.
if (!C.Op0.hasOneUse() ||
C.Op0.getOpcode() != ISD::LOAD ||
C.Op1.getOpcode() != ISD::Constant)
return;
// We must have an 8- or 16-bit load.
LoadSDNode *Load = cast<LoadSDNode>(C.Op0);
unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits();
if (NumBits != 8 && NumBits != 16)
return;
// The load must be an extending one and the constant must be within the
// range of the unextended value.
ConstantSDNode *ConstOp1 = cast<ConstantSDNode>(C.Op1);
uint64_t Value = ConstOp1->getZExtValue();
uint64_t Mask = (1 << NumBits) - 1;
if (Load->getExtensionType() == ISD::SEXTLOAD) {
// Make sure that ConstOp1 is in range of C.Op0.
int64_t SignedValue = ConstOp1->getSExtValue();
if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask)
return;
if (C.ICmpType != SystemZICMP::SignedOnly) {
// Unsigned comparison between two sign-extended values is equivalent
// to unsigned comparison between two zero-extended values.
Value &= Mask;
} else if (NumBits == 8) {
// Try to treat the comparison as unsigned, so that we can use CLI.
// Adjust CCMask and Value as necessary.
if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT)
// Test whether the high bit of the byte is set.
Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT;
else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE)
// Test whether the high bit of the byte is clear.
Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT;
else
// No instruction exists for this combination.
return;
C.ICmpType = SystemZICMP::UnsignedOnly;
}
} else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
if (Value > Mask)
return;
assert(C.ICmpType == SystemZICMP::Any &&
"Signedness shouldn't matter here.");
} else
return;
// Make sure that the first operand is an i32 of the right extension type.
ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ?
ISD::SEXTLOAD :
ISD::ZEXTLOAD);
if (C.Op0.getValueType() != MVT::i32 ||
Load->getExtensionType() != ExtType)
C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32,
Load->getChain(), Load->getBasePtr(),
Load->getPointerInfo(), Load->getMemoryVT(),
Load->isVolatile(), Load->isNonTemporal(),
Load->getAlignment());
// Make sure that the second operand is an i32 with the right value.
if (C.Op1.getValueType() != MVT::i32 ||
Value != ConstOp1->getZExtValue())
C.Op1 = DAG.getConstant(Value, MVT::i32);
}
// Return true if Op is either an unextended load, or a load suitable
// for integer register-memory comparisons of type ICmpType.
static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) {
LoadSDNode *Load = dyn_cast<LoadSDNode>(Op.getNode());
if (Load) {
// There are no instructions to compare a register with a memory byte.
if (Load->getMemoryVT() == MVT::i8)
return false;
// Otherwise decide on extension type.
switch (Load->getExtensionType()) {
case ISD::NON_EXTLOAD:
return true;
case ISD::SEXTLOAD:
return ICmpType != SystemZICMP::UnsignedOnly;
case ISD::ZEXTLOAD:
return ICmpType != SystemZICMP::SignedOnly;
default:
break;
}
}
return false;
}
// Return true if it is better to swap the operands of C.
static bool shouldSwapCmpOperands(const Comparison &C) {
// Leave f128 comparisons alone, since they have no memory forms.
if (C.Op0.getValueType() == MVT::f128)
return false;
// Always keep a floating-point constant second, since comparisons with
// zero can use LOAD TEST and comparisons with other constants make a
// natural memory operand.
if (isa<ConstantFPSDNode>(C.Op1))
return false;
// Never swap comparisons with zero since there are many ways to optimize
// those later.
ConstantSDNode *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
if (ConstOp1 && ConstOp1->getZExtValue() == 0)
return false;
// Also keep natural memory operands second if the loaded value is
// only used here. Several comparisons have memory forms.
if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse())
return false;
// Look for cases where Cmp0 is a single-use load and Cmp1 isn't.
// In that case we generally prefer the memory to be second.
if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) {
// The only exceptions are when the second operand is a constant and
// we can use things like CHHSI.
if (!ConstOp1)
return true;
// The unsigned memory-immediate instructions can handle 16-bit
// unsigned integers.
if (C.ICmpType != SystemZICMP::SignedOnly &&
isUInt<16>(ConstOp1->getZExtValue()))
return false;
// The signed memory-immediate instructions can handle 16-bit
// signed integers.
if (C.ICmpType != SystemZICMP::UnsignedOnly &&
isInt<16>(ConstOp1->getSExtValue()))
return false;
return true;
}
// Try to promote the use of CGFR and CLGFR.
unsigned Opcode0 = C.Op0.getOpcode();
if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND)
return true;
if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND)
return true;
if (C.ICmpType != SystemZICMP::SignedOnly &&
Opcode0 == ISD::AND &&
C.Op0.getOperand(1).getOpcode() == ISD::Constant &&
cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff)
return true;
return false;
}
// Return a version of comparison CC mask CCMask in which the LT and GT
// actions are swapped.
static unsigned reverseCCMask(unsigned CCMask) {
return ((CCMask & SystemZ::CCMASK_CMP_EQ) |
(CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) |
(CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) |
(CCMask & SystemZ::CCMASK_CMP_UO));
}
// Check whether C tests for equality between X and Y and whether X - Y
// or Y - X is also computed. In that case it's better to compare the
// result of the subtraction against zero.
static void adjustForSubtraction(SelectionDAG &DAG, Comparison &C) {
if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
C.CCMask == SystemZ::CCMASK_CMP_NE) {
for (SDNode::use_iterator I = C.Op0->use_begin(), E = C.Op0->use_end();
I != E; ++I) {
SDNode *N = *I;
if (N->getOpcode() == ISD::SUB &&
((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) ||
(N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) {
C.Op0 = SDValue(N, 0);
C.Op1 = DAG.getConstant(0, N->getValueType(0));
return;
}
}
}
}
// Check whether C compares a floating-point value with zero and if that
// floating-point value is also negated. In this case we can use the
// negation to set CC, so avoiding separate LOAD AND TEST and
// LOAD (NEGATIVE/COMPLEMENT) instructions.
static void adjustForFNeg(Comparison &C) {
ConstantFPSDNode *C1 = dyn_cast<ConstantFPSDNode>(C.Op1);
if (C1 && C1->isZero()) {
for (SDNode::use_iterator I = C.Op0->use_begin(), E = C.Op0->use_end();
I != E; ++I) {
SDNode *N = *I;
if (N->getOpcode() == ISD::FNEG) {
C.Op0 = SDValue(N, 0);
C.CCMask = reverseCCMask(C.CCMask);
return;
}
}
}
}
// Check whether C compares (shl X, 32) with 0 and whether X is
// also sign-extended. In that case it is better to test the result
// of the sign extension using LTGFR.
//
// This case is important because InstCombine transforms a comparison
// with (sext (trunc X)) into a comparison with (shl X, 32).
static void adjustForLTGFR(Comparison &C) {
// Check for a comparison between (shl X, 32) and 0.
if (C.Op0.getOpcode() == ISD::SHL &&
C.Op0.getValueType() == MVT::i64 &&
C.Op1.getOpcode() == ISD::Constant &&
cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
if (C1 && C1->getZExtValue() == 32) {
SDValue ShlOp0 = C.Op0.getOperand(0);
// See whether X has any SIGN_EXTEND_INREG uses.
for (SDNode::use_iterator I = ShlOp0->use_begin(), E = ShlOp0->use_end();
I != E; ++I) {
SDNode *N = *I;
if (N->getOpcode() == ISD::SIGN_EXTEND_INREG &&
cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) {
C.Op0 = SDValue(N, 0);
return;
}
}
}
}
}
// If C compares the truncation of an extending load, try to compare
// the untruncated value instead. This exposes more opportunities to
// reuse CC.
static void adjustICmpTruncate(SelectionDAG &DAG, Comparison &C) {
if (C.Op0.getOpcode() == ISD::TRUNCATE &&
C.Op0.getOperand(0).getOpcode() == ISD::LOAD &&
C.Op1.getOpcode() == ISD::Constant &&
cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
LoadSDNode *L = cast<LoadSDNode>(C.Op0.getOperand(0));
if (L->getMemoryVT().getStoreSizeInBits()
<= C.Op0.getValueType().getSizeInBits()) {
unsigned Type = L->getExtensionType();
if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) ||
(Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) {
C.Op0 = C.Op0.getOperand(0);
C.Op1 = DAG.getConstant(0, C.Op0.getValueType());
}
}
}
}
// Return true if shift operation N has an in-range constant shift value.
// Store it in ShiftVal if so.
static bool isSimpleShift(SDValue N, unsigned &ShiftVal) {
ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1));
if (!Shift)
return false;
uint64_t Amount = Shift->getZExtValue();
if (Amount >= N.getValueType().getSizeInBits())
return false;
ShiftVal = Amount;
return true;
}
// Check whether an AND with Mask is suitable for a TEST UNDER MASK
// instruction and whether the CC value is descriptive enough to handle
// a comparison of type Opcode between the AND result and CmpVal.
// CCMask says which comparison result is being tested and BitSize is
// the number of bits in the operands. If TEST UNDER MASK can be used,
// return the corresponding CC mask, otherwise return 0.
static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask,
uint64_t Mask, uint64_t CmpVal,
unsigned ICmpType) {
assert(Mask != 0 && "ANDs with zero should have been removed by now");
// Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL.
if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) &&
!SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask))
return 0;
// Work out the masks for the lowest and highest bits.
unsigned HighShift = 63 - countLeadingZeros(Mask);
uint64_t High = uint64_t(1) << HighShift;
uint64_t Low = uint64_t(1) << countTrailingZeros(Mask);
// Signed ordered comparisons are effectively unsigned if the sign
// bit is dropped.
bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly);
// Check for equality comparisons with 0, or the equivalent.
if (CmpVal == 0) {
if (CCMask == SystemZ::CCMASK_CMP_EQ)
return SystemZ::CCMASK_TM_ALL_0;
if (CCMask == SystemZ::CCMASK_CMP_NE)
return SystemZ::CCMASK_TM_SOME_1;
}
if (EffectivelyUnsigned && CmpVal <= Low) {
if (CCMask == SystemZ::CCMASK_CMP_LT)
return SystemZ::CCMASK_TM_ALL_0;
if (CCMask == SystemZ::CCMASK_CMP_GE)
return SystemZ::CCMASK_TM_SOME_1;
}
if (EffectivelyUnsigned && CmpVal < Low) {
if (CCMask == SystemZ::CCMASK_CMP_LE)
return SystemZ::CCMASK_TM_ALL_0;
if (CCMask == SystemZ::CCMASK_CMP_GT)
return SystemZ::CCMASK_TM_SOME_1;
}
// Check for equality comparisons with the mask, or the equivalent.
if (CmpVal == Mask) {
if (CCMask == SystemZ::CCMASK_CMP_EQ)
return SystemZ::CCMASK_TM_ALL_1;
if (CCMask == SystemZ::CCMASK_CMP_NE)
return SystemZ::CCMASK_TM_SOME_0;
}
if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) {
if (CCMask == SystemZ::CCMASK_CMP_GT)
return SystemZ::CCMASK_TM_ALL_1;
if (CCMask == SystemZ::CCMASK_CMP_LE)
return SystemZ::CCMASK_TM_SOME_0;
}
if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) {
if (CCMask == SystemZ::CCMASK_CMP_GE)
return SystemZ::CCMASK_TM_ALL_1;
if (CCMask == SystemZ::CCMASK_CMP_LT)
return SystemZ::CCMASK_TM_SOME_0;
}
// Check for ordered comparisons with the top bit.
if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) {
if (CCMask == SystemZ::CCMASK_CMP_LE)
return SystemZ::CCMASK_TM_MSB_0;
if (CCMask == SystemZ::CCMASK_CMP_GT)
return SystemZ::CCMASK_TM_MSB_1;
}
if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) {
if (CCMask == SystemZ::CCMASK_CMP_LT)
return SystemZ::CCMASK_TM_MSB_0;
if (CCMask == SystemZ::CCMASK_CMP_GE)
return SystemZ::CCMASK_TM_MSB_1;
}
// If there are just two bits, we can do equality checks for Low and High
// as well.
if (Mask == Low + High) {
if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low)
return SystemZ::CCMASK_TM_MIXED_MSB_0;
if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low)
return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY;
if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High)
return SystemZ::CCMASK_TM_MIXED_MSB_1;
if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High)
return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY;
}
// Looks like we've exhausted our options.
return 0;
}
// See whether C can be implemented as a TEST UNDER MASK instruction.
// Update the arguments with the TM version if so.
static void adjustForTestUnderMask(SelectionDAG &DAG, Comparison &C) {
// Check that we have a comparison with a constant.
ConstantSDNode *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
if (!ConstOp1)
return;
uint64_t CmpVal = ConstOp1->getZExtValue();
// Check whether the nonconstant input is an AND with a constant mask.
Comparison NewC(C);
uint64_t MaskVal;
ConstantSDNode *Mask = 0;
if (C.Op0.getOpcode() == ISD::AND) {
NewC.Op0 = C.Op0.getOperand(0);
NewC.Op1 = C.Op0.getOperand(1);
Mask = dyn_cast<ConstantSDNode>(NewC.Op1);
if (!Mask)
return;
MaskVal = Mask->getZExtValue();
} else {
// There is no instruction to compare with a 64-bit immediate
// so use TMHH instead if possible. We need an unsigned ordered
// comparison with an i64 immediate.
if (NewC.Op0.getValueType() != MVT::i64 ||
NewC.CCMask == SystemZ::CCMASK_CMP_EQ ||
NewC.CCMask == SystemZ::CCMASK_CMP_NE ||
NewC.ICmpType == SystemZICMP::SignedOnly)
return;
// Convert LE and GT comparisons into LT and GE.
if (NewC.CCMask == SystemZ::CCMASK_CMP_LE ||
NewC.CCMask == SystemZ::CCMASK_CMP_GT) {
if (CmpVal == uint64_t(-1))
return;
CmpVal += 1;
NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ;
}
// If the low N bits of Op1 are zero than the low N bits of Op0 can
// be masked off without changing the result.
MaskVal = -(CmpVal & -CmpVal);
NewC.ICmpType = SystemZICMP::UnsignedOnly;
}
// Check whether the combination of mask, comparison value and comparison
// type are suitable.
unsigned BitSize = NewC.Op0.getValueType().getSizeInBits();
unsigned NewCCMask, ShiftVal;
if (NewC.ICmpType != SystemZICMP::SignedOnly &&
NewC.Op0.getOpcode() == ISD::SHL &&
isSimpleShift(NewC.Op0, ShiftVal) &&
(NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
MaskVal >> ShiftVal,
CmpVal >> ShiftVal,
SystemZICMP::Any))) {
NewC.Op0 = NewC.Op0.getOperand(0);
MaskVal >>= ShiftVal;
} else if (NewC.ICmpType != SystemZICMP::SignedOnly &&
NewC.Op0.getOpcode() == ISD::SRL &&
isSimpleShift(NewC.Op0, ShiftVal) &&
(NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
MaskVal << ShiftVal,
CmpVal << ShiftVal,
SystemZICMP::UnsignedOnly))) {
NewC.Op0 = NewC.Op0.getOperand(0);
MaskVal <<= ShiftVal;
} else {
NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal,
NewC.ICmpType);
if (!NewCCMask)
return;
}
// Go ahead and make the change.
C.Opcode = SystemZISD::TM;
C.Op0 = NewC.Op0;
if (Mask && Mask->getZExtValue() == MaskVal)
C.Op1 = SDValue(Mask, 0);
else
C.Op1 = DAG.getConstant(MaskVal, C.Op0.getValueType());
C.CCValid = SystemZ::CCMASK_TM;
C.CCMask = NewCCMask;
}
// Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1.
static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1,
ISD::CondCode Cond) {
Comparison C(CmpOp0, CmpOp1);
C.CCMask = CCMaskForCondCode(Cond);
if (C.Op0.getValueType().isFloatingPoint()) {
C.CCValid = SystemZ::CCMASK_FCMP;
C.Opcode = SystemZISD::FCMP;
adjustForFNeg(C);
} else {
C.CCValid = SystemZ::CCMASK_ICMP;
C.Opcode = SystemZISD::ICMP;
// Choose the type of comparison. Equality and inequality tests can
// use either signed or unsigned comparisons. The choice also doesn't
// matter if both sign bits are known to be clear. In those cases we
// want to give the main isel code the freedom to choose whichever
// form fits best.
if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
C.CCMask == SystemZ::CCMASK_CMP_NE ||
(DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1)))
C.ICmpType = SystemZICMP::Any;
else if (C.CCMask & SystemZ::CCMASK_CMP_UO)
C.ICmpType = SystemZICMP::UnsignedOnly;
else
C.ICmpType = SystemZICMP::SignedOnly;
C.CCMask &= ~SystemZ::CCMASK_CMP_UO;
adjustZeroCmp(DAG, C);
adjustSubwordCmp(DAG, C);
adjustForSubtraction(DAG, C);
adjustForLTGFR(C);
adjustICmpTruncate(DAG, C);
}
if (shouldSwapCmpOperands(C)) {
std::swap(C.Op0, C.Op1);
C.CCMask = reverseCCMask(C.CCMask);
}
adjustForTestUnderMask(DAG, C);
return C;
}
// Emit the comparison instruction described by C.
static SDValue emitCmp(SelectionDAG &DAG, SDLoc DL, Comparison &C) {
if (C.Opcode == SystemZISD::ICMP)
return DAG.getNode(SystemZISD::ICMP, DL, MVT::Glue, C.Op0, C.Op1,
DAG.getConstant(C.ICmpType, MVT::i32));
if (C.Opcode == SystemZISD::TM) {
bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) !=
bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1));
return DAG.getNode(SystemZISD::TM, DL, MVT::Glue, C.Op0, C.Op1,
DAG.getConstant(RegisterOnly, MVT::i32));
}
return DAG.getNode(C.Opcode, DL, MVT::Glue, C.Op0, C.Op1);
}
// Implement a 32-bit *MUL_LOHI operation by extending both operands to
// 64 bits. Extend is the extension type to use. Store the high part
// in Hi and the low part in Lo.
static void lowerMUL_LOHI32(SelectionDAG &DAG, SDLoc DL,
unsigned Extend, SDValue Op0, SDValue Op1,
SDValue &Hi, SDValue &Lo) {
Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0);
Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1);
SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1);
Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, DAG.getConstant(32, MVT::i64));
Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi);
Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
}
// Lower a binary operation that produces two VT results, one in each
// half of a GR128 pair. Op0 and Op1 are the VT operands to the operation,
// Extend extends Op0 to a GR128, and Opcode performs the GR128 operation
// on the extended Op0 and (unextended) Op1. Store the even register result
// in Even and the odd register result in Odd.
static void lowerGR128Binary(SelectionDAG &DAG, SDLoc DL, EVT VT,
unsigned Extend, unsigned Opcode,
SDValue Op0, SDValue Op1,
SDValue &Even, SDValue &Odd) {
SDNode *In128 = DAG.getMachineNode(Extend, DL, MVT::Untyped, Op0);
SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped,
SDValue(In128, 0), Op1);
bool Is32Bit = is32Bit(VT);
Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result);
Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result);
}
// Return an i32 value that is 1 if the CC value produced by Glue is
// in the mask CCMask and 0 otherwise. CC is known to have a value
// in CCValid, so other values can be ignored.
static SDValue emitSETCC(SelectionDAG &DAG, SDLoc DL, SDValue Glue,
unsigned CCValid, unsigned CCMask) {
IPMConversion Conversion = getIPMConversion(CCValid, CCMask);
SDValue Result = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue);
if (Conversion.XORValue)
Result = DAG.getNode(ISD::XOR, DL, MVT::i32, Result,
DAG.getConstant(Conversion.XORValue, MVT::i32));
if (Conversion.AddValue)
Result = DAG.getNode(ISD::ADD, DL, MVT::i32, Result,
DAG.getConstant(Conversion.AddValue, MVT::i32));
// The SHR/AND sequence should get optimized to an RISBG.
Result = DAG.getNode(ISD::SRL, DL, MVT::i32, Result,
DAG.getConstant(Conversion.Bit, MVT::i32));
if (Conversion.Bit != 31)
Result = DAG.getNode(ISD::AND, DL, MVT::i32, Result,
DAG.getConstant(1, MVT::i32));
return Result;
}
SDValue SystemZTargetLowering::lowerSETCC(SDValue Op,
SelectionDAG &DAG) const {
SDValue CmpOp0 = Op.getOperand(0);
SDValue CmpOp1 = Op.getOperand(1);
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
SDLoc DL(Op);
Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC));
SDValue Glue = emitCmp(DAG, DL, C);
return emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask);
}
SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
SDValue Chain = Op.getOperand(0);
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
SDValue CmpOp0 = Op.getOperand(2);
SDValue CmpOp1 = Op.getOperand(3);
SDValue Dest = Op.getOperand(4);
SDLoc DL(Op);
Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC));
SDValue Glue = emitCmp(DAG, DL, C);
return DAG.getNode(SystemZISD::BR_CCMASK, DL, Op.getValueType(),
Chain, DAG.getConstant(C.CCValid, MVT::i32),
DAG.getConstant(C.CCMask, MVT::i32), Dest, Glue);
}
// Return true if Pos is CmpOp and Neg is the negative of CmpOp,
// allowing Pos and Neg to be wider than CmpOp.
static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) {
return (Neg.getOpcode() == ISD::SUB &&
Neg.getOperand(0).getOpcode() == ISD::Constant &&
cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 &&
Neg.getOperand(1) == Pos &&
(Pos == CmpOp ||
(Pos.getOpcode() == ISD::SIGN_EXTEND &&
Pos.getOperand(0) == CmpOp)));
}
// Return the absolute or negative absolute of Op; IsNegative decides which.
static SDValue getAbsolute(SelectionDAG &DAG, SDLoc DL, SDValue Op,
bool IsNegative) {
Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op);
if (IsNegative)
Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(),
DAG.getConstant(0, Op.getValueType()), Op);
return Op;
}
SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
SelectionDAG &DAG) const {
SDValue CmpOp0 = Op.getOperand(0);
SDValue CmpOp1 = Op.getOperand(1);
SDValue TrueOp = Op.getOperand(2);
SDValue FalseOp = Op.getOperand(3);
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
SDLoc DL(Op);
Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC));
// Check for absolute and negative-absolute selections, including those
// where the comparison value is sign-extended (for LPGFR and LNGFR).
// This check supplements the one in DAGCombiner.
if (C.Opcode == SystemZISD::ICMP &&
C.CCMask != SystemZ::CCMASK_CMP_EQ &&
C.CCMask != SystemZ::CCMASK_CMP_NE &&
C.Op1.getOpcode() == ISD::Constant &&
cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
if (isAbsolute(C.Op0, TrueOp, FalseOp))
return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT);
if (isAbsolute(C.Op0, FalseOp, TrueOp))
return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT);
}
SDValue Glue = emitCmp(DAG, DL, C);
// Special case for handling -1/0 results. The shifts we use here
// should get optimized with the IPM conversion sequence.
ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp);
ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp);
if (TrueC && FalseC) {
int64_t TrueVal = TrueC->getSExtValue();
int64_t FalseVal = FalseC->getSExtValue();
if ((TrueVal == -1 && FalseVal == 0) || (TrueVal == 0 && FalseVal == -1)) {
// Invert the condition if we want -1 on false.
if (TrueVal == 0)
C.CCMask ^= C.CCValid;
SDValue Result = emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask);
EVT VT = Op.getValueType();
// Extend the result to VT. Upper bits are ignored.
if (!is32Bit(VT))
Result = DAG.getNode(ISD::ANY_EXTEND, DL, VT, Result);
// Sign-extend from the low bit.
SDValue ShAmt = DAG.getConstant(VT.getSizeInBits() - 1, MVT::i32);
SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, Result, ShAmt);
return DAG.getNode(ISD::SRA, DL, VT, Shl, ShAmt);
}
}
SmallVector<SDValue, 5> Ops;
Ops.push_back(TrueOp);
Ops.push_back(FalseOp);
Ops.push_back(DAG.getConstant(C.CCValid, MVT::i32));
Ops.push_back(DAG.getConstant(C.CCMask, MVT::i32));
Ops.push_back(Glue);
SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VTs, &Ops[0], Ops.size());
}
SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
SelectionDAG &DAG) const {
SDLoc DL(Node);
const GlobalValue *GV = Node->getGlobal();
int64_t Offset = Node->getOffset();
EVT PtrVT = getPointerTy();
Reloc::Model RM = TM.getRelocationModel();
CodeModel::Model CM = TM.getCodeModel();
SDValue Result;
if (Subtarget.isPC32DBLSymbol(GV, RM, CM)) {
// Assign anchors at 1<<12 byte boundaries.
uint64_t Anchor = Offset & ~uint64_t(0xfff);
Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor);
Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
// The offset can be folded into the address if it is aligned to a halfword.
Offset -= Anchor;
if (Offset != 0 && (Offset & 1) == 0) {
SDValue Full = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset);
Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result);
Offset = 0;
}
} else {
Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
MachinePointerInfo::getGOT(), false, false, false, 0);
}
// If there was a non-zero offset that we didn't fold, create an explicit
// addition for it.
if (Offset != 0)
Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
DAG.getConstant(Offset, PtrVT));
return Result;
}
SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
SelectionDAG &DAG) const {
SDLoc DL(Node);
const GlobalValue *GV = Node->getGlobal();
EVT PtrVT = getPointerTy();
TLSModel::Model model = TM.getTLSModel(GV);
if (model != TLSModel::LocalExec)
llvm_unreachable("only local-exec TLS mode supported");
// The high part of the thread pointer is in access register 0.
SDValue TPHi = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32,
DAG.getConstant(0, MVT::i32));
TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
// The low part of the thread pointer is in access register 1.
SDValue TPLo = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32,
DAG.getConstant(1, MVT::i32));
TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
// Merge them into a single 64-bit address.
SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
DAG.getConstant(32, PtrVT));
SDValue TP = DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
// Get the offset of GA from the thread pointer.
SystemZConstantPoolValue *CPV =
SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
// Force the offset into the constant pool and load it from there.
SDValue CPAddr = DAG.getConstantPool(CPV, PtrVT, 8);
SDValue Offset = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(),
CPAddr, MachinePointerInfo::getConstantPool(),
false, false, false, 0);
// Add the base and offset together.
return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
}
SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
SelectionDAG &DAG) const {
SDLoc DL(Node);
const BlockAddress *BA = Node->getBlockAddress();
int64_t Offset = Node->getOffset();
EVT PtrVT = getPointerTy();
SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
return Result;
}
SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
SelectionDAG &DAG) const {
SDLoc DL(JT);
EVT PtrVT = getPointerTy();
SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
// Use LARL to load the address of the table.
return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
}
SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
SelectionDAG &DAG) const {
SDLoc DL(CP);
EVT PtrVT = getPointerTy();
SDValue Result;
if (CP->isMachineConstantPoolEntry())
Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
CP->getAlignment());
else
Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
CP->getAlignment(), CP->getOffset());
// Use LARL to load the address of the constant pool entry.
return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
}
SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
SDValue In = Op.getOperand(0);
EVT InVT = In.getValueType();
EVT ResVT = Op.getValueType();
if (InVT == MVT::i32 && ResVT == MVT::f32) {
SDValue In64;
if (Subtarget.hasHighWord()) {
SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL,
MVT::i64);
In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
MVT::i64, SDValue(U64, 0), In);
} else {
In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64,
DAG.getConstant(32, MVT::i64));
}
SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64);
return DAG.getTargetExtractSubreg(SystemZ::subreg_h32,
DL, MVT::f32, Out64);
}
if (InVT == MVT::f32 && ResVT == MVT::i32) {
SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
MVT::f64, SDValue(U64, 0), In);
SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64);
if (Subtarget.hasHighWord())
return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL,
MVT::i32, Out64);
SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64,
DAG.getConstant(32, MVT::i64));
return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
}
llvm_unreachable("Unexpected bitcast combination");
}
SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
SystemZMachineFunctionInfo *FuncInfo =
MF.getInfo<SystemZMachineFunctionInfo>();
EVT PtrVT = getPointerTy();
SDValue Chain = Op.getOperand(0);
SDValue Addr = Op.getOperand(1);
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
SDLoc DL(Op);
// The initial values of each field.
const unsigned NumFields = 4;
SDValue Fields[NumFields] = {
DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), PtrVT),
DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), PtrVT),
DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
};
// Store each field into its respective slot.
SDValue MemOps[NumFields];
unsigned Offset = 0;
for (unsigned I = 0; I < NumFields; ++I) {
SDValue FieldAddr = Addr;
if (Offset != 0)
FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
DAG.getIntPtrConstant(Offset));
MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
MachinePointerInfo(SV, Offset),
false, false, 0);
Offset += 8;
}
return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps, NumFields);
}
SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
SelectionDAG &DAG) const {
SDValue Chain = Op.getOperand(0);
SDValue DstPtr = Op.getOperand(1);
SDValue SrcPtr = Op.getOperand(2);
const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
SDLoc DL(Op);
return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32),
/*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false,
MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
}
SDValue SystemZTargetLowering::
lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
SDValue Chain = Op.getOperand(0);
SDValue Size = Op.getOperand(1);
SDLoc DL(Op);
unsigned SPReg = getStackPointerRegisterToSaveRestore();
// Get a reference to the stack pointer.
SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
// Get the new stack pointer value.
SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, Size);
// Copy the new stack pointer back.
Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
// The allocated data lives above the 160 bytes allocated for the standard
// frame, plus any outgoing stack arguments. We don't know how much that
// amounts to yet, so emit a special ADJDYNALLOC placeholder.
SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
SDValue Ops[2] = { Result, Chain };
return DAG.getMergeValues(Ops, 2, DL);
}
SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op,
SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
SDLoc DL(Op);
SDValue Ops[2];
if (is32Bit(VT))
// Just do a normal 64-bit multiplication and extract the results.
// We define this so that it can be used for constant division.
lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0),
Op.getOperand(1), Ops[1], Ops[0]);
else {
// Do a full 128-bit multiplication based on UMUL_LOHI64:
//
// (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64)
//
// but using the fact that the upper halves are either all zeros
// or all ones:
//
// (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64)
//
// and grouping the right terms together since they are quicker than the
// multiplication:
//
// (ll * rl) - (((lh & rl) + (ll & rh)) << 64)
SDValue C63 = DAG.getConstant(63, MVT::i64);
SDValue LL = Op.getOperand(0);
SDValue RL = Op.getOperand(1);
SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63);
SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63);
// UMUL_LOHI64 returns the low result in the odd register and the high
// result in the even register. SMUL_LOHI is defined to return the
// low half first, so the results are in reverse order.
lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64,
LL, RL, Ops[1], Ops[0]);
SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH);
SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL);
SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL);
Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum);
}
return DAG.getMergeValues(Ops, 2, DL);
}
SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
SDLoc DL(Op);
SDValue Ops[2];
if (is32Bit(VT))
// Just do a normal 64-bit multiplication and extract the results.
// We define this so that it can be used for constant division.
lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0),
Op.getOperand(1), Ops[1], Ops[0]);
else
// UMUL_LOHI64 returns the low result in the odd register and the high
// result in the even register. UMUL_LOHI is defined to return the
// low half first, so the results are in reverse order.
lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64,
Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
return DAG.getMergeValues(Ops, 2, DL);
}
SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
SelectionDAG &DAG) const {
SDValue Op0 = Op.getOperand(0);
SDValue Op1 = Op.getOperand(1);
EVT VT = Op.getValueType();
SDLoc DL(Op);
unsigned Opcode;
// We use DSGF for 32-bit division.
if (is32Bit(VT)) {
Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
Opcode = SystemZISD::SDIVREM32;
} else if (DAG.ComputeNumSignBits(Op1) > 32) {
Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1);
Opcode = SystemZISD::SDIVREM32;
} else
Opcode = SystemZISD::SDIVREM64;
// DSG(F) takes a 64-bit dividend, so the even register in the GR128
// input is "don't care". The instruction returns the remainder in
// the even register and the quotient in the odd register.
SDValue Ops[2];
lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, Opcode,
Op0, Op1, Ops[1], Ops[0]);
return DAG.getMergeValues(Ops, 2, DL);
}
SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
SDLoc DL(Op);
// DL(G) uses a double-width dividend, so we need to clear the even
// register in the GR128 input. The instruction returns the remainder
// in the even register and the quotient in the odd register.
SDValue Ops[2];
if (is32Bit(VT))
lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_32, SystemZISD::UDIVREM32,
Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
else
lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_64, SystemZISD::UDIVREM64,
Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
return DAG.getMergeValues(Ops, 2, DL);
}
SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation");
// Get the known-zero masks for each operand.
SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) };
APInt KnownZero[2], KnownOne[2];
DAG.ComputeMaskedBits(Ops[0], KnownZero[0], KnownOne[0]);
DAG.ComputeMaskedBits(Ops[1], KnownZero[1], KnownOne[1]);
// See if the upper 32 bits of one operand and the lower 32 bits of the
// other are known zero. They are the low and high operands respectively.
uint64_t Masks[] = { KnownZero[0].getZExtValue(),
KnownZero[1].getZExtValue() };
unsigned High, Low;
if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
High = 1, Low = 0;
else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
High = 0, Low = 1;
else
return Op;
SDValue LowOp = Ops[Low];
SDValue HighOp = Ops[High];
// If the high part is a constant, we're better off using IILH.
if (HighOp.getOpcode() == ISD::Constant)
return Op;
// If the low part is a constant that is outside the range of LHI,
// then we're better off using IILF.
if (LowOp.getOpcode() == ISD::Constant) {
int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue());
if (!isInt<16>(Value))
return Op;
}
// Check whether the high part is an AND that doesn't change the
// high 32 bits and just masks out low bits. We can skip it if so.
if (HighOp.getOpcode() == ISD::AND &&
HighOp.getOperand(1).getOpcode() == ISD::Constant) {
SDValue HighOp0 = HighOp.getOperand(0);
uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue();
if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff))))
HighOp = HighOp0;
}
// Take advantage of the fact that all GR32 operations only change the
// low 32 bits by truncating Low to an i32 and inserting it directly
// using a subreg. The interesting cases are those where the truncation
// can be folded.
SDLoc DL(Op);
SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL,
MVT::i64, HighOp, Low32);
}
SDValue SystemZTargetLowering::lowerSIGN_EXTEND(SDValue Op,
SelectionDAG &DAG) const {
// Convert (sext (ashr (shl X, C1), C2)) to
// (ashr (shl (anyext X), C1'), C2')), since wider shifts are as
// cheap as narrower ones.
SDValue N0 = Op.getOperand(0);
EVT VT = Op.getValueType();
if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) {
ConstantSDNode *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1));
SDValue Inner = N0.getOperand(0);
if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) {
ConstantSDNode *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1));
if (ShlAmt) {
unsigned Extra = (VT.getSizeInBits() -
N0.getValueType().getSizeInBits());
unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra;
unsigned NewSraAmt = SraAmt->getZExtValue() + Extra;
EVT ShiftVT = N0.getOperand(1).getValueType();
SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT,
Inner.getOperand(0));
SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext,
DAG.getConstant(NewShlAmt, ShiftVT));
return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl,
DAG.getConstant(NewSraAmt, ShiftVT));
}
}
}
return SDValue();
}
// Op is an atomic load. Lower it into a normal volatile load.
SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op,
SelectionDAG &DAG) const {
AtomicSDNode *Node = cast<AtomicSDNode>(Op.getNode());
return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(),
Node->getChain(), Node->getBasePtr(),
Node->getMemoryVT(), Node->getMemOperand());
}
// Op is an atomic store. Lower it into a normal volatile store followed
// by a serialization.
SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op,
SelectionDAG &DAG) const {
AtomicSDNode *Node = cast<AtomicSDNode>(Op.getNode());
SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(),
Node->getBasePtr(), Node->getMemoryVT(),
Node->getMemOperand());
return SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op), MVT::Other,
Chain), 0);
}
// Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation. Lower the first
// two into the fullword ATOMIC_LOADW_* operation given by Opcode.
SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op,
SelectionDAG &DAG,
unsigned Opcode) const {
AtomicSDNode *Node = cast<AtomicSDNode>(Op.getNode());
// 32-bit operations need no code outside the main loop.
EVT NarrowVT = Node->getMemoryVT();
EVT WideVT = MVT::i32;
if (NarrowVT == WideVT)
return Op;
int64_t BitSize = NarrowVT.getSizeInBits();
SDValue ChainIn = Node->getChain();
SDValue Addr = Node->getBasePtr();
SDValue Src2 = Node->getVal();
MachineMemOperand *MMO = Node->getMemOperand();
SDLoc DL(Node);
EVT PtrVT = Addr.getValueType();
// Convert atomic subtracts of constants into additions.
if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Src2)) {
Opcode = SystemZISD::ATOMIC_LOADW_ADD;
Src2 = DAG.getConstant(-Const->getSExtValue(), Src2.getValueType());
}
// Get the address of the containing word.
SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
DAG.getConstant(-4, PtrVT));
// Get the number of bits that the word must be rotated left in order
// to bring the field to the top bits of a GR32.
SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
DAG.getConstant(3, PtrVT));
BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
// Get the complementing shift amount, for rotating a field in the top
// bits back to its proper position.
SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
DAG.getConstant(0, WideVT), BitShift);
// Extend the source operand to 32 bits and prepare it for the inner loop.
// ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
// operations require the source to be shifted in advance. (This shift
// can be folded if the source is constant.) For AND and NAND, the lower
// bits must be set, while for other opcodes they should be left clear.
if (Opcode != SystemZISD::ATOMIC_SWAPW)
Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
DAG.getConstant(32 - BitSize, WideVT));
if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
Opcode == SystemZISD::ATOMIC_LOADW_NAND)
Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
DAG.getConstant(uint32_t(-1) >> BitSize, WideVT));
// Construct the ATOMIC_LOADW_* node.
SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
DAG.getConstant(BitSize, WideVT) };
SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
array_lengthof(Ops),
NarrowVT, MMO);
// Rotate the result of the final CS so that the field is in the lower
// bits of a GR32, then truncate it.
SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
DAG.getConstant(BitSize, WideVT));
SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
return DAG.getMergeValues(RetOps, 2, DL);
}
// Op is an ATOMIC_LOAD_SUB operation. Lower 8- and 16-bit operations
// into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit
// operations into additions.
SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op,
SelectionDAG &DAG) const {
AtomicSDNode *Node = cast<AtomicSDNode>(Op.getNode());
EVT MemVT = Node->getMemoryVT();
if (MemVT == MVT::i32 || MemVT == MVT::i64) {
// A full-width operation.
assert(Op.getValueType() == MemVT && "Mismatched VTs");
SDValue Src2 = Node->getVal();
SDValue NegSrc2;
SDLoc DL(Src2);
if (ConstantSDNode *Op2 = dyn_cast<ConstantSDNode>(Src2)) {
// Use an addition if the operand is constant and either LAA(G) is
// available or the negative value is in the range of A(G)FHI.
int64_t Value = (-Op2->getAPIntValue()).getSExtValue();
if (isInt<32>(Value) || TM.getSubtargetImpl()->hasInterlockedAccess1())
NegSrc2 = DAG.getConstant(Value, MemVT);
} else if (TM.getSubtargetImpl()->hasInterlockedAccess1())
// Use LAA(G) if available.
NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, MemVT),
Src2);
if (NegSrc2.getNode())
return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT,
Node->getChain(), Node->getBasePtr(), NegSrc2,
Node->getMemOperand(), Node->getOrdering(),
Node->getSynchScope());
// Use the node as-is.
return Op;
}
return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
}
// Node is an 8- or 16-bit ATOMIC_CMP_SWAP operation. Lower the first two
// into a fullword ATOMIC_CMP_SWAPW operation.
SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
SelectionDAG &DAG) const {
AtomicSDNode *Node = cast<AtomicSDNode>(Op.getNode());
// We have native support for 32-bit compare and swap.
EVT NarrowVT = Node->getMemoryVT();
EVT WideVT = MVT::i32;
if (NarrowVT == WideVT)
return Op;
int64_t BitSize = NarrowVT.getSizeInBits();
SDValue ChainIn = Node->getOperand(0);
SDValue Addr = Node->getOperand(1);
SDValue CmpVal = Node->getOperand(2);
SDValue SwapVal = Node->getOperand(3);
MachineMemOperand *MMO = Node->getMemOperand();
SDLoc DL(Node);
EVT PtrVT = Addr.getValueType();
// Get the address of the containing word.
SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
DAG.getConstant(-4, PtrVT));
// Get the number of bits that the word must be rotated left in order
// to bring the field to the top bits of a GR32.
SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
DAG.getConstant(3, PtrVT));
BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
// Get the complementing shift amount, for rotating a field in the top
// bits back to its proper position.
SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
DAG.getConstant(0, WideVT), BitShift);
// Construct the ATOMIC_CMP_SWAPW node.
SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
NegBitShift, DAG.getConstant(BitSize, WideVT) };
SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
VTList, Ops, array_lengthof(Ops),
NarrowVT, MMO);
return AtomicOp;
}
SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op),
SystemZ::R15D, Op.getValueType());
}
SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
return DAG.getCopyToReg(Op.getOperand(0), SDLoc(Op),
SystemZ::R15D, Op.getOperand(1));
}
SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op,
SelectionDAG &DAG) const {
bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
if (!IsData)
// Just preserve the chain.
return Op.getOperand(0);
bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ;
MemIntrinsicSDNode *Node = cast<MemIntrinsicSDNode>(Op.getNode());
SDValue Ops[] = {
Op.getOperand(0),
DAG.getConstant(Code, MVT::i32),
Op.getOperand(1)
};
return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, SDLoc(Op),
Node->getVTList(), Ops, array_lengthof(Ops),
Node->getMemoryVT(), Node->getMemOperand());
}
SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
SelectionDAG &DAG) const {
switch (Op.getOpcode()) {
case ISD::BR_CC:
return lowerBR_CC(Op, DAG);
case ISD::SELECT_CC:
return lowerSELECT_CC(Op, DAG);
case ISD::SETCC:
return lowerSETCC(Op, DAG);
case ISD::GlobalAddress:
return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
case ISD::GlobalTLSAddress:
return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
case ISD::BlockAddress:
return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
case ISD::JumpTable:
return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
case ISD::ConstantPool:
return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
case ISD::BITCAST:
return lowerBITCAST(Op, DAG);
case ISD::VASTART:
return lowerVASTART(Op, DAG);
case ISD::VACOPY:
return lowerVACOPY(Op, DAG);
case ISD::DYNAMIC_STACKALLOC:
return lowerDYNAMIC_STACKALLOC(Op, DAG);
case ISD::SMUL_LOHI:
return lowerSMUL_LOHI(Op, DAG);
case ISD::UMUL_LOHI:
return lowerUMUL_LOHI(Op, DAG);
case ISD::SDIVREM:
return lowerSDIVREM(Op, DAG);
case ISD::UDIVREM:
return lowerUDIVREM(Op, DAG);
case ISD::OR:
return lowerOR(Op, DAG);
case ISD::SIGN_EXTEND:
return lowerSIGN_EXTEND(Op, DAG);
case ISD::ATOMIC_SWAP:
return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW);
case ISD::ATOMIC_STORE:
return lowerATOMIC_STORE(Op, DAG);
case ISD::ATOMIC_LOAD:
return lowerATOMIC_LOAD(Op, DAG);
case ISD::ATOMIC_LOAD_ADD:
return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
case ISD::ATOMIC_LOAD_SUB:
return lowerATOMIC_LOAD_SUB(Op, DAG);
case ISD::ATOMIC_LOAD_AND:
return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
case ISD::ATOMIC_LOAD_OR:
return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
case ISD::ATOMIC_LOAD_XOR:
return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
case ISD::ATOMIC_LOAD_NAND:
return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
case ISD::ATOMIC_LOAD_MIN:
return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
case ISD::ATOMIC_LOAD_MAX:
return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
case ISD::ATOMIC_LOAD_UMIN:
return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
case ISD::ATOMIC_LOAD_UMAX:
return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
case ISD::ATOMIC_CMP_SWAP:
return lowerATOMIC_CMP_SWAP(Op, DAG);
case ISD::STACKSAVE:
return lowerSTACKSAVE(Op, DAG);
case ISD::STACKRESTORE:
return lowerSTACKRESTORE(Op, DAG);
case ISD::PREFETCH:
return lowerPREFETCH(Op, DAG);
default:
llvm_unreachable("Unexpected node to lower");
}
}
const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
#define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
switch (Opcode) {
OPCODE(RET_FLAG);
OPCODE(CALL);
OPCODE(SIBCALL);
OPCODE(PCREL_WRAPPER);
OPCODE(PCREL_OFFSET);
OPCODE(IABS);
OPCODE(ICMP);
OPCODE(FCMP);
OPCODE(TM);
OPCODE(BR_CCMASK);
OPCODE(SELECT_CCMASK);
OPCODE(ADJDYNALLOC);
OPCODE(EXTRACT_ACCESS);
OPCODE(UMUL_LOHI64);
OPCODE(SDIVREM64);
OPCODE(UDIVREM32);
OPCODE(UDIVREM64);
OPCODE(MVC);
OPCODE(MVC_LOOP);
OPCODE(NC);
OPCODE(NC_LOOP);
OPCODE(OC);
OPCODE(OC_LOOP);
OPCODE(XC);
OPCODE(XC_LOOP);
OPCODE(CLC);
OPCODE(CLC_LOOP);
OPCODE(STRCMP);
OPCODE(STPCPY);
OPCODE(SEARCH_STRING);
OPCODE(IPM);
OPCODE(SERIALIZE);
OPCODE(ATOMIC_SWAPW);
OPCODE(ATOMIC_LOADW_ADD);
OPCODE(ATOMIC_LOADW_SUB);
OPCODE(ATOMIC_LOADW_AND);
OPCODE(ATOMIC_LOADW_OR);
OPCODE(ATOMIC_LOADW_XOR);
OPCODE(ATOMIC_LOADW_NAND);
OPCODE(ATOMIC_LOADW_MIN);
OPCODE(ATOMIC_LOADW_MAX);
OPCODE(ATOMIC_LOADW_UMIN);
OPCODE(ATOMIC_LOADW_UMAX);
OPCODE(ATOMIC_CMP_SWAPW);
OPCODE(PREFETCH);
}
return NULL;
#undef OPCODE
}
//===----------------------------------------------------------------------===//
// Custom insertion
//===----------------------------------------------------------------------===//
// Create a new basic block after MBB.
static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) {
MachineFunction &MF = *MBB->getParent();
MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock());
MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB);
return NewMBB;
}
// Split MBB after MI and return the new block (the one that contains
// instructions after MI).
static MachineBasicBlock *splitBlockAfter(MachineInstr *MI,
MachineBasicBlock *MBB) {
MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
NewMBB->splice(NewMBB->begin(), MBB,
std::next(MachineBasicBlock::iterator(MI)), MBB->end());
NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
return NewMBB;
}
// Split MBB before MI and return the new block (the one that contains MI).
static MachineBasicBlock *splitBlockBefore(MachineInstr *MI,
MachineBasicBlock *MBB) {
MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end());
NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
return NewMBB;
}
// Force base value Base into a register before MI. Return the register.
static unsigned forceReg(MachineInstr *MI, MachineOperand &Base,
const SystemZInstrInfo *TII) {
if (Base.isReg())
return Base.getReg();
MachineBasicBlock *MBB = MI->getParent();
MachineFunction &MF = *MBB->getParent();
MachineRegisterInfo &MRI = MF.getRegInfo();
unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LA), Reg)
.addOperand(Base).addImm(0).addReg(0);
return Reg;
}
// Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
MachineBasicBlock *
SystemZTargetLowering::emitSelect(MachineInstr *MI,
MachineBasicBlock *MBB) const {
const SystemZInstrInfo *TII = TM.getInstrInfo();
unsigned DestReg = MI->getOperand(0).getReg();
unsigned TrueReg = MI->getOperand(1).getReg();
unsigned FalseReg = MI->getOperand(2).getReg();
unsigned CCValid = MI->getOperand(3).getImm();
unsigned CCMask = MI->getOperand(4).getImm();
DebugLoc DL = MI->getDebugLoc();
MachineBasicBlock *StartMBB = MBB;
MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB);
MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
// StartMBB:
// BRC CCMask, JoinMBB
// # fallthrough to FalseMBB
MBB = StartMBB;
BuildMI(MBB, DL, TII->get(SystemZ::BRC))
.addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
MBB->addSuccessor(JoinMBB);
MBB->addSuccessor(FalseMBB);
// FalseMBB:
// # fallthrough to JoinMBB
MBB = FalseMBB;
MBB->addSuccessor(JoinMBB);
// JoinMBB:
// %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
// ...
MBB = JoinMBB;
BuildMI(*MBB, MI, DL, TII->get(SystemZ::PHI), DestReg)
.addReg(TrueReg).addMBB(StartMBB)
.addReg(FalseReg).addMBB(FalseMBB);
MI->eraseFromParent();
return JoinMBB;
}
// Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI.
// StoreOpcode is the store to use and Invert says whether the store should
// happen when the condition is false rather than true. If a STORE ON
// CONDITION is available, STOCOpcode is its opcode, otherwise it is 0.
MachineBasicBlock *
SystemZTargetLowering::emitCondStore(MachineInstr *MI,
MachineBasicBlock *MBB,
unsigned StoreOpcode, unsigned STOCOpcode,
bool Invert) const {
const SystemZInstrInfo *TII = TM.getInstrInfo();
unsigned SrcReg = MI->getOperand(0).getReg();
MachineOperand Base = MI->getOperand(1);
int64_t Disp = MI->getOperand(2).getImm();
unsigned IndexReg = MI->getOperand(3).getReg();
unsigned CCValid = MI->getOperand(4).getImm();
unsigned CCMask = MI->getOperand(5).getImm();
DebugLoc DL = MI->getDebugLoc();
StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp);
// Use STOCOpcode if possible. We could use different store patterns in
// order to avoid matching the index register, but the performance trade-offs
// might be more complicated in that case.
if (STOCOpcode && !IndexReg && TM.getSubtargetImpl()->hasLoadStoreOnCond()) {
if (Invert)
CCMask ^= CCValid;
BuildMI(*MBB, MI, DL, TII->get(STOCOpcode))
.addReg(SrcReg).addOperand(Base).addImm(Disp)
.addImm(CCValid).addImm(CCMask);
MI->eraseFromParent();
return MBB;
}
// Get the condition needed to branch around the store.
if (!Invert)
CCMask ^= CCValid;
MachineBasicBlock *StartMBB = MBB;
MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB);
MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
// StartMBB:
// BRC CCMask, JoinMBB
// # fallthrough to FalseMBB
MBB = StartMBB;
BuildMI(MBB, DL, TII->get(SystemZ::BRC))
.addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
MBB->addSuccessor(JoinMBB);
MBB->addSuccessor(FalseMBB);
// FalseMBB:
// store %SrcReg, %Disp(%Index,%Base)
// # fallthrough to JoinMBB
MBB = FalseMBB;
BuildMI(MBB, DL, TII->get(StoreOpcode))
.addReg(SrcReg).addOperand(Base).addImm(Disp).addReg(IndexReg);
MBB->addSuccessor(JoinMBB);
MI->eraseFromParent();
return JoinMBB;
}
// Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_*
// or ATOMIC_SWAP{,W} instruction MI. BinOpcode is the instruction that
// performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}.
// BitSize is the width of the field in bits, or 0 if this is a partword
// ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize
// is one of the operands. Invert says whether the field should be
// inverted after performing BinOpcode (e.g. for NAND).
MachineBasicBlock *
SystemZTargetLowering::emitAtomicLoadBinary(MachineInstr *MI,
MachineBasicBlock *MBB,
unsigned BinOpcode,
unsigned BitSize,
bool Invert) const {
const SystemZInstrInfo *TII = TM.getInstrInfo();
MachineFunction &MF = *MBB->getParent();
MachineRegisterInfo &MRI = MF.getRegInfo();
bool IsSubWord = (BitSize < 32);
// Extract the operands. Base can be a register or a frame index.
// Src2 can be a register or immediate.
unsigned Dest = MI->getOperand(0).getReg();
MachineOperand Base = earlyUseOperand(MI->getOperand(1));
int64_t Disp = MI->getOperand(2).getImm();
MachineOperand Src2 = earlyUseOperand(MI->getOperand(3));
unsigned BitShift = (IsSubWord ? MI->getOperand(4).getReg() : 0);
unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0);
DebugLoc DL = MI->getDebugLoc();
if (IsSubWord)
BitSize = MI->getOperand(6).getImm();
// Subword operations use 32-bit registers.
const TargetRegisterClass *RC = (BitSize <= 32 ?
&SystemZ::GR32BitRegClass :
&SystemZ::GR64BitRegClass);
unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG;
unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
// Get the right opcodes for the displacement.
LOpcode = TII->getOpcodeForOffset(LOpcode, Disp);
CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
assert(LOpcode && CSOpcode && "Displacement out of range");
// Create virtual registers for temporary results.
unsigned OrigVal = MRI.createVirtualRegister(RC);
unsigned OldVal = MRI.createVirtualRegister(RC);
unsigned NewVal = (BinOpcode || IsSubWord ?
MRI.createVirtualRegister(RC) : Src2.getReg());
unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
// Insert a basic block for the main loop.
MachineBasicBlock *StartMBB = MBB;
MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
// StartMBB:
// ...
// %OrigVal = L Disp(%Base)
// # fall through to LoopMMB
MBB = StartMBB;
BuildMI(MBB, DL, TII->get(LOpcode), OrigVal)
.addOperand(Base).addImm(Disp).addReg(0);
MBB->addSuccessor(LoopMBB);
// LoopMBB:
// %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
// %RotatedOldVal = RLL %OldVal, 0(%BitShift)
// %RotatedNewVal = OP %RotatedOldVal, %Src2
// %NewVal = RLL %RotatedNewVal, 0(%NegBitShift)
// %Dest = CS %OldVal, %NewVal, Disp(%Base)
// JNE LoopMBB
// # fall through to DoneMMB
MBB = LoopMBB;
BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
.addReg(OrigVal).addMBB(StartMBB)
.addReg(Dest).addMBB(LoopMBB);
if (IsSubWord)
BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
.addReg(OldVal).addReg(BitShift).addImm(0);
if (Invert) {
// Perform the operation normally and then invert every bit of the field.
unsigned Tmp = MRI.createVirtualRegister(RC);
BuildMI(MBB, DL, TII->get(BinOpcode), Tmp)
.addReg(RotatedOldVal).addOperand(Src2);
if (BitSize < 32)
// XILF with the upper BitSize bits set.
BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
.addReg(Tmp).addImm(uint32_t(~0 << (32 - BitSize)));
else if (BitSize == 32)
// XILF with every bit set.
BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
.addReg(Tmp).addImm(~uint32_t(0));
else {
// Use LCGR and add -1 to the result, which is more compact than
// an XILF, XILH pair.
unsigned Tmp2 = MRI.createVirtualRegister(RC);
BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp);
BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal)
.addReg(Tmp2).addImm(-1);
}
} else if (BinOpcode)
// A simply binary operation.
BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
.addReg(RotatedOldVal).addOperand(Src2);
else if (IsSubWord)
// Use RISBG to rotate Src2 into position and use it to replace the
// field in RotatedOldVal.
BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
.addReg(RotatedOldVal).addReg(Src2.getReg())
.addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
if (IsSubWord)
BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
.addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
.addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp);
BuildMI(MBB, DL, TII->get(SystemZ::BRC))
.addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
MBB->addSuccessor(LoopMBB);
MBB->addSuccessor(DoneMBB);
MI->eraseFromParent();
return DoneMBB;
}
// Implement EmitInstrWithCustomInserter for pseudo
// ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI. CompareOpcode is the
// instruction that should be used to compare the current field with the
// minimum or maximum value. KeepOldMask is the BRC condition-code mask
// for when the current field should be kept. BitSize is the width of
// the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction.
MachineBasicBlock *
SystemZTargetLowering::emitAtomicLoadMinMax(MachineInstr *MI,
MachineBasicBlock *MBB,
unsigned CompareOpcode,
unsigned KeepOldMask,
unsigned BitSize) const {
const SystemZInstrInfo *TII = TM.getInstrInfo();
MachineFunction &MF = *MBB->getParent();
MachineRegisterInfo &MRI = MF.getRegInfo();
bool IsSubWord = (BitSize < 32);
// Extract the operands. Base can be a register or a frame index.
unsigned Dest = MI->getOperand(0).getReg();
MachineOperand Base = earlyUseOperand(MI->getOperand(1));
int64_t Disp = MI->getOperand(2).getImm();
unsigned Src2 = MI->getOperand(3).getReg();
unsigned BitShift = (IsSubWord ? MI->getOperand(4).getReg() : 0);
unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0);
DebugLoc DL = MI->getDebugLoc();
if (IsSubWord)
BitSize = MI->getOperand(6).getImm();
// Subword operations use 32-bit registers.
const TargetRegisterClass *RC = (BitSize <= 32 ?
&SystemZ::GR32BitRegClass :
&SystemZ::GR64BitRegClass);
unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG;
unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
// Get the right opcodes for the displacement.
LOpcode = TII->getOpcodeForOffset(LOpcode, Disp);
CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
assert(LOpcode && CSOpcode && "Displacement out of range");
// Create virtual registers for temporary results.
unsigned OrigVal = MRI.createVirtualRegister(RC);
unsigned OldVal = MRI.createVirtualRegister(RC);
unsigned NewVal = MRI.createVirtualRegister(RC);
unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
unsigned RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2);
unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
// Insert 3 basic blocks for the loop.
MachineBasicBlock *StartMBB = MBB;
MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB);
MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB);
// StartMBB:
// ...
// %OrigVal = L Disp(%Base)
// # fall through to LoopMMB
MBB = StartMBB;
BuildMI(MBB, DL, TII->get(LOpcode), OrigVal)
.addOperand(Base).addImm(Disp).addReg(0);
MBB->addSuccessor(LoopMBB);
// LoopMBB:
// %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
// %RotatedOldVal = RLL %OldVal, 0(%BitShift)
// CompareOpcode %RotatedOldVal, %Src2
// BRC KeepOldMask, UpdateMBB
MBB = LoopMBB;
BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
.addReg(OrigVal).addMBB(StartMBB)
.addReg(Dest).addMBB(UpdateMBB);
if (IsSubWord)
BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
.addReg(OldVal).addReg(BitShift).addImm(0);
BuildMI(MBB, DL, TII->get(CompareOpcode))
.addReg(RotatedOldVal).addReg(Src2);
BuildMI(MBB, DL, TII->get(SystemZ::BRC))
.addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB);
MBB->addSuccessor(UpdateMBB);
MBB->addSuccessor(UseAltMBB);
// UseAltMBB:
// %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
// # fall through to UpdateMMB
MBB = UseAltMBB;
if (IsSubWord)
BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
.addReg(RotatedOldVal).addReg(Src2)
.addImm(32).addImm(31 + BitSize).addImm(0);
MBB->addSuccessor(UpdateMBB);
// UpdateMBB:
// %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
// [ %RotatedAltVal, UseAltMBB ]
// %NewVal = RLL %RotatedNewVal, 0(%NegBitShift)
// %Dest = CS %OldVal, %NewVal, Disp(%Base)
// JNE LoopMBB
// # fall through to DoneMMB
MBB = UpdateMBB;
BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
.addReg(RotatedOldVal).addMBB(LoopMBB)
.addReg(RotatedAltVal).addMBB(UseAltMBB);
if (IsSubWord)
BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
.addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
.addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp);
BuildMI(MBB, DL, TII->get(SystemZ::BRC))
.addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
MBB->addSuccessor(LoopMBB);
MBB->addSuccessor(DoneMBB);
MI->eraseFromParent();
return DoneMBB;
}
// Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW
// instruction MI.
MachineBasicBlock *
SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr *MI,
MachineBasicBlock *MBB) const {
const SystemZInstrInfo *TII = TM.getInstrInfo();
MachineFunction &MF = *MBB->getParent();
MachineRegisterInfo &MRI = MF.getRegInfo();
// Extract the operands. Base can be a register or a frame index.
unsigned Dest = MI->getOperand(0).getReg();
MachineOperand Base = earlyUseOperand(MI->getOperand(1));
int64_t Disp = MI->getOperand(2).getImm();
unsigned OrigCmpVal = MI->getOperand(3).getReg();
unsigned OrigSwapVal = MI->getOperand(4).getReg();
unsigned BitShift = MI->getOperand(5).getReg();
unsigned NegBitShift = MI->getOperand(6).getReg();
int64_t BitSize = MI->getOperand(7).getImm();
DebugLoc DL = MI->getDebugLoc();
const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
// Get the right opcodes for the displacement.
unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp);
unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
assert(LOpcode && CSOpcode && "Displacement out of range");
// Create virtual registers for temporary results.
unsigned OrigOldVal = MRI.createVirtualRegister(RC);
unsigned OldVal = MRI.createVirtualRegister(RC);
unsigned CmpVal = MRI.createVirtualRegister(RC);
unsigned SwapVal = MRI.createVirtualRegister(RC);
unsigned StoreVal = MRI.createVirtualRegister(RC);
unsigned RetryOldVal = MRI.createVirtualRegister(RC);
unsigned RetryCmpVal = MRI.createVirtualRegister(RC);
unsigned RetrySwapVal = MRI.createVirtualRegister(RC);
// Insert 2 basic blocks for the loop.
MachineBasicBlock *StartMBB = MBB;
MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
MachineBasicBlock *SetMBB = emitBlockAfter(LoopMBB);
// StartMBB:
// ...
// %OrigOldVal = L Disp(%Base)
// # fall through to LoopMMB
MBB = StartMBB;
BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
.addOperand(Base).addImm(Disp).addReg(0);
MBB->addSuccessor(LoopMBB);
// LoopMBB:
// %OldVal = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
// %CmpVal = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ]
// %SwapVal = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
// %Dest = RLL %OldVal, BitSize(%BitShift)
// ^^ The low BitSize bits contain the field
// of interest.
// %RetryCmpVal = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0
// ^^ Replace the upper 32-BitSize bits of the
// comparison value with those that we loaded,
// so that we can use a full word comparison.
// CR %Dest, %RetryCmpVal
// JNE DoneMBB
// # Fall through to SetMBB
MBB = LoopMBB;
BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
.addReg(OrigOldVal).addMBB(StartMBB)
.addReg(RetryOldVal).addMBB(SetMBB);
BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal)
.addReg(OrigCmpVal).addMBB(StartMBB)
.addReg(RetryCmpVal).addMBB(SetMBB);
BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
.addReg(OrigSwapVal).addMBB(StartMBB)
.addReg(RetrySwapVal).addMBB(SetMBB);
BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest)
.addReg(OldVal).addReg(BitShift).addImm(BitSize);
BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal)
.addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
BuildMI(MBB, DL, TII->get(SystemZ::CR))
.addReg(Dest).addReg(RetryCmpVal);
BuildMI(MBB, DL, TII->get(SystemZ::BRC))
.addImm(SystemZ::CCMASK_ICMP)
.addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB);
MBB->addSuccessor(DoneMBB);
MBB->addSuccessor(SetMBB);
// SetMBB:
// %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0
// ^^ Replace the upper 32-BitSize bits of the new
// value with those that we loaded.
// %StoreVal = RLL %RetrySwapVal, -BitSize(%NegBitShift)
// ^^ Rotate the new field to its proper position.
// %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base)
// JNE LoopMBB
// # fall through to ExitMMB
MBB = SetMBB;
BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
.addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
.addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
.addReg(OldVal).addReg(StoreVal).addOperand(Base).addImm(Disp);
BuildMI(MBB, DL, TII->get(SystemZ::BRC))
.addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
MBB->addSuccessor(LoopMBB);
MBB->addSuccessor(DoneMBB);
MI->eraseFromParent();
return DoneMBB;
}
// Emit an extension from a GR32 or GR64 to a GR128. ClearEven is true
// if the high register of the GR128 value must be cleared or false if
// it's "don't care". SubReg is subreg_l32 when extending a GR32
// and subreg_l64 when extending a GR64.
MachineBasicBlock *
SystemZTargetLowering::emitExt128(MachineInstr *MI,
MachineBasicBlock *MBB,
bool ClearEven, unsigned SubReg) const {
const SystemZInstrInfo *TII = TM.getInstrInfo();
MachineFunction &MF = *MBB->getParent();
MachineRegisterInfo &MRI = MF.getRegInfo();
DebugLoc DL = MI->getDebugLoc();
unsigned Dest = MI->getOperand(0).getReg();
unsigned Src = MI->getOperand(1).getReg();
unsigned In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
if (ClearEven) {
unsigned NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
unsigned Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
.addImm(0);
BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
.addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64);
In128 = NewIn128;
}
BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
.addReg(In128).addReg(Src).addImm(SubReg);
MI->eraseFromParent();
return MBB;
}
MachineBasicBlock *
SystemZTargetLowering::emitMemMemWrapper(MachineInstr *MI,
MachineBasicBlock *MBB,
unsigned Opcode) const {
const SystemZInstrInfo *TII = TM.getInstrInfo();
MachineFunction &MF = *MBB->getParent();
MachineRegisterInfo &MRI = MF.getRegInfo();
DebugLoc DL = MI->getDebugLoc();
MachineOperand DestBase = earlyUseOperand(MI->getOperand(0));
uint64_t DestDisp = MI->getOperand(1).getImm();
MachineOperand SrcBase = earlyUseOperand(MI->getOperand(2));
uint64_t SrcDisp = MI->getOperand(3).getImm();
uint64_t Length = MI->getOperand(4).getImm();
// When generating more than one CLC, all but the last will need to
// branch to the end when a difference is found.
MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ?
splitBlockAfter(MI, MBB) : 0);
// Check for the loop form, in which operand 5 is the trip count.
if (MI->getNumExplicitOperands() > 5) {
bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase);
uint64_t StartCountReg = MI->getOperand(5).getReg();
uint64_t StartSrcReg = forceReg(MI, SrcBase, TII);
uint64_t StartDestReg = (HaveSingleBase ? StartSrcReg :
forceReg(MI, DestBase, TII));
const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
uint64_t ThisSrcReg = MRI.createVirtualRegister(RC);
uint64_t ThisDestReg = (HaveSingleBase ? ThisSrcReg :
MRI.createVirtualRegister(RC));
uint64_t NextSrcReg = MRI.createVirtualRegister(RC);
uint64_t NextDestReg = (HaveSingleBase ? NextSrcReg :
MRI.createVirtualRegister(RC));
RC = &SystemZ::GR64BitRegClass;
uint64_t ThisCountReg = MRI.createVirtualRegister(RC);
uint64_t NextCountReg = MRI.createVirtualRegister(RC);
MachineBasicBlock *StartMBB = MBB;
MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB);
// StartMBB:
// # fall through to LoopMMB
MBB->addSuccessor(LoopMBB);
// LoopMBB:
// %ThisDestReg = phi [ %StartDestReg, StartMBB ],
// [ %NextDestReg, NextMBB ]
// %ThisSrcReg = phi [ %StartSrcReg, StartMBB ],
// [ %NextSrcReg, NextMBB ]
// %ThisCountReg = phi [ %StartCountReg, StartMBB ],
// [ %NextCountReg, NextMBB ]
// ( PFD 2, 768+DestDisp(%ThisDestReg) )
// Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg)
// ( JLH EndMBB )
//
// The prefetch is used only for MVC. The JLH is used only for CLC.
MBB = LoopMBB;
BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg)
.addReg(StartDestReg).addMBB(StartMBB)
.addReg(NextDestReg).addMBB(NextMBB);
if (!HaveSingleBase)
BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg)
.addReg(StartSrcReg).addMBB(StartMBB)
.addReg(NextSrcReg).addMBB(NextMBB);
BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg)
.addReg(StartCountReg).addMBB(StartMBB)
.addReg(NextCountReg).addMBB(NextMBB);
if (Opcode == SystemZ::MVC)
BuildMI(MBB, DL, TII->get(SystemZ::PFD))
.addImm(SystemZ::PFD_WRITE)
.addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0);
BuildMI(MBB, DL, TII->get(Opcode))
.addReg(ThisDestReg).addImm(DestDisp).addImm(256)
.addReg(ThisSrcReg).addImm(SrcDisp);
if (EndMBB) {
BuildMI(MBB, DL, TII->get(SystemZ::BRC))
.addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
.addMBB(EndMBB);
MBB->addSuccessor(EndMBB);
MBB->addSuccessor(NextMBB);
}
// NextMBB:
// %NextDestReg = LA 256(%ThisDestReg)
// %NextSrcReg = LA 256(%ThisSrcReg)
// %NextCountReg = AGHI %ThisCountReg, -1
// CGHI %NextCountReg, 0
// JLH LoopMBB
// # fall through to DoneMMB
//
// The AGHI, CGHI and JLH should be converted to BRCTG by later passes.
MBB = NextMBB;
BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg)
.addReg(ThisDestReg).addImm(256).addReg(0);
if (!HaveSingleBase)
BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg)
.addReg(ThisSrcReg).addImm(256).addReg(0);
BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg)
.addReg(ThisCountReg).addImm(-1);
BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
.addReg(NextCountReg).addImm(0);
BuildMI(MBB, DL, TII->get(SystemZ::BRC))
.addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
.addMBB(LoopMBB);
MBB->addSuccessor(LoopMBB);
MBB->addSuccessor(DoneMBB);
DestBase = MachineOperand::CreateReg(NextDestReg, false);
SrcBase = MachineOperand::CreateReg(NextSrcReg, false);
Length &= 255;
MBB = DoneMBB;
}
// Handle any remaining bytes with straight-line code.
while (Length > 0) {
uint64_t ThisLength = std::min(Length, uint64_t(256));
// The previous iteration might have created out-of-range displacements.
// Apply them using LAY if so.
if (!isUInt<12>(DestDisp)) {
unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LAY), Reg)
.addOperand(DestBase).addImm(DestDisp).addReg(0);
DestBase = MachineOperand::CreateReg(Reg, false);
DestDisp = 0;
}
if (!isUInt<12>(SrcDisp)) {
unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LAY), Reg)
.addOperand(SrcBase).addImm(SrcDisp).addReg(0);
SrcBase = MachineOperand::CreateReg(Reg, false);
SrcDisp = 0;
}
BuildMI(*MBB, MI, DL, TII->get(Opcode))
.addOperand(DestBase).addImm(DestDisp).addImm(ThisLength)
.addOperand(SrcBase).addImm(SrcDisp);
DestDisp += ThisLength;
SrcDisp += ThisLength;
Length -= ThisLength;
// If there's another CLC to go, branch to the end if a difference
// was found.
if (EndMBB && Length > 0) {
MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB);
BuildMI(MBB, DL, TII->get(SystemZ::BRC))
.addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
.addMBB(EndMBB);
MBB->addSuccessor(EndMBB);
MBB->addSuccessor(NextMBB);
MBB = NextMBB;
}
}
if (EndMBB) {
MBB->addSuccessor(EndMBB);
MBB = EndMBB;
MBB->addLiveIn(SystemZ::CC);
}
MI->eraseFromParent();
return MBB;
}
// Decompose string pseudo-instruction MI into a loop that continually performs
// Opcode until CC != 3.
MachineBasicBlock *
SystemZTargetLowering::emitStringWrapper(MachineInstr *MI,
MachineBasicBlock *MBB,
unsigned Opcode) const {
const SystemZInstrInfo *TII = TM.getInstrInfo();
MachineFunction &MF = *MBB->getParent();
MachineRegisterInfo &MRI = MF.getRegInfo();
DebugLoc DL = MI->getDebugLoc();
uint64_t End1Reg = MI->getOperand(0).getReg();
uint64_t Start1Reg = MI->getOperand(1).getReg();
uint64_t Start2Reg = MI->getOperand(2).getReg();
uint64_t CharReg = MI->getOperand(3).getReg();
const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass;
uint64_t This1Reg = MRI.createVirtualRegister(RC);
uint64_t This2Reg = MRI.createVirtualRegister(RC);
uint64_t End2Reg = MRI.createVirtualRegister(RC);
MachineBasicBlock *StartMBB = MBB;
MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
// StartMBB:
// # fall through to LoopMMB
MBB->addSuccessor(LoopMBB);
// LoopMBB:
// %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ]
// %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ]
// R0L = %CharReg
// %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L
// JO LoopMBB
// # fall through to DoneMMB
//
// The load of R0L can be hoisted by post-RA LICM.
MBB = LoopMBB;
BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg)
.addReg(Start1Reg).addMBB(StartMBB)
.addReg(End1Reg).addMBB(LoopMBB);
BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg)
.addReg(Start2Reg).addMBB(StartMBB)
.addReg(End2Reg).addMBB(LoopMBB);
BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg);
BuildMI(MBB, DL, TII->get(Opcode))
.addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define)
.addReg(This1Reg).addReg(This2Reg);
BuildMI(MBB, DL, TII->get(SystemZ::BRC))
.addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB);
MBB->addSuccessor(LoopMBB);
MBB->addSuccessor(DoneMBB);
DoneMBB->addLiveIn(SystemZ::CC);
MI->eraseFromParent();
return DoneMBB;
}
MachineBasicBlock *SystemZTargetLowering::
EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const {
switch (MI->getOpcode()) {
case SystemZ::Select32Mux:
case SystemZ::Select32:
case SystemZ::SelectF32:
case SystemZ::Select64:
case SystemZ::SelectF64:
case SystemZ::SelectF128:
return emitSelect(MI, MBB);
case SystemZ::CondStore8Mux:
return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false);
case SystemZ::CondStore8MuxInv:
return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true);
case SystemZ::CondStore16Mux:
return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false);
case SystemZ::CondStore16MuxInv:
return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true);
case SystemZ::CondStore8:
return emitCondStore(MI, MBB, SystemZ::STC, 0, false);
case SystemZ::CondStore8Inv:
return emitCondStore(MI, MBB, SystemZ::STC, 0, true);
case SystemZ::CondStore16:
return emitCondStore(MI, MBB, SystemZ::STH, 0, false);
case SystemZ::CondStore16Inv:
return emitCondStore(MI, MBB, SystemZ::STH, 0, true);
case SystemZ::CondStore32:
return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false);
case SystemZ::CondStore32Inv:
return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true);
case SystemZ::CondStore64:
return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false);
case SystemZ::CondStore64Inv:
return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true);
case SystemZ::CondStoreF32:
return emitCondStore(MI, MBB, SystemZ::STE, 0, false);
case SystemZ::CondStoreF32Inv:
return emitCondStore(MI, MBB, SystemZ::STE, 0, true);
case SystemZ::CondStoreF64:
return emitCondStore(MI, MBB, SystemZ::STD, 0, false);
case SystemZ::CondStoreF64Inv:
return emitCondStore(MI, MBB, SystemZ::STD, 0, true);
case SystemZ::AEXT128_64:
return emitExt128(MI, MBB, false, SystemZ::subreg_l64);
case SystemZ::ZEXT128_32:
return emitExt128(MI, MBB, true, SystemZ::subreg_l32);
case SystemZ::ZEXT128_64:
return emitExt128(MI, MBB, true, SystemZ::subreg_l64);
case SystemZ::ATOMIC_SWAPW:
return emitAtomicLoadBinary(MI, MBB, 0, 0);
case SystemZ::ATOMIC_SWAP_32:
return emitAtomicLoadBinary(MI, MBB, 0, 32);
case SystemZ::ATOMIC_SWAP_64:
return emitAtomicLoadBinary(MI, MBB, 0, 64);
case SystemZ::ATOMIC_LOADW_AR:
return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0);
case SystemZ::ATOMIC_LOADW_AFI:
return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0);
case SystemZ::ATOMIC_LOAD_AR:
return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32);
case SystemZ::ATOMIC_LOAD_AHI:
return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32);
case SystemZ::ATOMIC_LOAD_AFI:
return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32);
case SystemZ::ATOMIC_LOAD_AGR:
return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64);
case SystemZ::ATOMIC_LOAD_AGHI:
return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64);
case SystemZ::ATOMIC_LOAD_AGFI:
return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64);
case SystemZ::ATOMIC_LOADW_SR:
return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0);
case SystemZ::ATOMIC_LOAD_SR:
return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32);
case SystemZ::ATOMIC_LOAD_SGR:
return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64);
case SystemZ::ATOMIC_LOADW_NR:
return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0);
case SystemZ::ATOMIC_LOADW_NILH:
return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0);
case SystemZ::ATOMIC_LOAD_NR:
return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32);
case SystemZ::ATOMIC_LOAD_NILL:
return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32);
case SystemZ::ATOMIC_LOAD_NILH:
return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32);
case SystemZ::ATOMIC_LOAD_NILF:
return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32);
case SystemZ::ATOMIC_LOAD_NGR:
return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64);
case SystemZ::ATOMIC_LOAD_NILL64:
return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64);
case SystemZ::ATOMIC_LOAD_NILH64:
return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64);
case SystemZ::ATOMIC_LOAD_NIHL64:
return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64);
case SystemZ::ATOMIC_LOAD_NIHH64:
return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64);
case SystemZ::ATOMIC_LOAD_NILF64:
return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64);
case SystemZ::ATOMIC_LOAD_NIHF64:
return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64);
case SystemZ::ATOMIC_LOADW_OR:
return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0);
case SystemZ::ATOMIC_LOADW_OILH:
return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0);
case SystemZ::ATOMIC_LOAD_OR:
return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32);
case SystemZ::ATOMIC_LOAD_OILL:
return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32);
case SystemZ::ATOMIC_LOAD_OILH:
return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32);
case SystemZ::ATOMIC_LOAD_OILF:
return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32);
case SystemZ::ATOMIC_LOAD_OGR:
return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64);
case SystemZ::ATOMIC_LOAD_OILL64:
return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64);
case SystemZ::ATOMIC_LOAD_OILH64:
return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64);
case SystemZ::ATOMIC_LOAD_OIHL64:
return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64);
case SystemZ::ATOMIC_LOAD_OIHH64:
return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64);
case SystemZ::ATOMIC_LOAD_OILF64:
return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64);
case SystemZ::ATOMIC_LOAD_OIHF64:
return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64);
case SystemZ::ATOMIC_LOADW_XR:
return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0);
case SystemZ::ATOMIC_LOADW_XILF:
return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0);
case SystemZ::ATOMIC_LOAD_XR:
return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32);
case SystemZ::ATOMIC_LOAD_XILF:
return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32);
case SystemZ::ATOMIC_LOAD_XGR:
return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64);
case SystemZ::ATOMIC_LOAD_XILF64:
return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64);
case SystemZ::ATOMIC_LOAD_XIHF64:
return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64);
case SystemZ::ATOMIC_LOADW_NRi:
return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true);
case SystemZ::ATOMIC_LOADW_NILHi:
return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true);
case SystemZ::ATOMIC_LOAD_NRi:
return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true);
case SystemZ::ATOMIC_LOAD_NILLi:
return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true);
case SystemZ::ATOMIC_LOAD_NILHi:
return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true);
case SystemZ::ATOMIC_LOAD_NILFi:
return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true);
case SystemZ::ATOMIC_LOAD_NGRi:
return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true);
case SystemZ::ATOMIC_LOAD_NILL64i:
return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true);
case SystemZ::ATOMIC_LOAD_NILH64i:
return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true);
case SystemZ::ATOMIC_LOAD_NIHL64i:
return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true);
case SystemZ::ATOMIC_LOAD_NIHH64i:
return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true);
case SystemZ::ATOMIC_LOAD_NILF64i:
return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true);
case SystemZ::ATOMIC_LOAD_NIHF64i:
return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true);
case SystemZ::ATOMIC_LOADW_MIN:
return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
SystemZ::CCMASK_CMP_LE, 0);
case SystemZ::ATOMIC_LOAD_MIN_32:
return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
SystemZ::CCMASK_CMP_LE, 32);
case SystemZ::ATOMIC_LOAD_MIN_64:
return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
SystemZ::CCMASK_CMP_LE, 64);
case SystemZ::ATOMIC_LOADW_MAX:
return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
SystemZ::CCMASK_CMP_GE, 0);
case SystemZ::ATOMIC_LOAD_MAX_32:
return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
SystemZ::CCMASK_CMP_GE, 32);
case SystemZ::ATOMIC_LOAD_MAX_64:
return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
SystemZ::CCMASK_CMP_GE, 64);
case SystemZ::ATOMIC_LOADW_UMIN:
return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
SystemZ::CCMASK_CMP_LE, 0);
case SystemZ::ATOMIC_LOAD_UMIN_32:
return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
SystemZ::CCMASK_CMP_LE, 32);
case SystemZ::ATOMIC_LOAD_UMIN_64:
return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
SystemZ::CCMASK_CMP_LE, 64);
case SystemZ::ATOMIC_LOADW_UMAX:
return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
SystemZ::CCMASK_CMP_GE, 0);
case SystemZ::ATOMIC_LOAD_UMAX_32:
return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
SystemZ::CCMASK_CMP_GE, 32);
case SystemZ::ATOMIC_LOAD_UMAX_64:
return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
SystemZ::CCMASK_CMP_GE, 64);
case SystemZ::ATOMIC_CMP_SWAPW:
return emitAtomicCmpSwapW(MI, MBB);
case SystemZ::MVCSequence:
case SystemZ::MVCLoop:
return emitMemMemWrapper(MI, MBB, SystemZ::MVC);
case SystemZ::NCSequence:
case SystemZ::NCLoop:
return emitMemMemWrapper(MI, MBB, SystemZ::NC);
case SystemZ::OCSequence:
case SystemZ::OCLoop:
return emitMemMemWrapper(MI, MBB, SystemZ::OC);
case SystemZ::XCSequence:
case SystemZ::XCLoop:
return emitMemMemWrapper(MI, MBB, SystemZ::XC);
case SystemZ::CLCSequence:
case SystemZ::CLCLoop:
return emitMemMemWrapper(MI, MBB, SystemZ::CLC);
case SystemZ::CLSTLoop:
return emitStringWrapper(MI, MBB, SystemZ::CLST);
case SystemZ::MVSTLoop:
return emitStringWrapper(MI, MBB, SystemZ::MVST);
case SystemZ::SRSTLoop:
return emitStringWrapper(MI, MBB, SystemZ::SRST);
default:
llvm_unreachable("Unexpected instr type to insert");
}
}
|