1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
|
//===-- AArch64AsmBackend.cpp - AArch64 Assembler Backend -----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "AArch64.h"
#include "AArch64RegisterInfo.h"
#include "MCTargetDesc/AArch64FixupKinds.h"
#include "llvm/ADT/Triple.h"
#include "llvm/MC/MCAsmBackend.h"
#include "llvm/MC/MCDirectives.h"
#include "llvm/MC/MCELFObjectWriter.h"
#include "llvm/MC/MCFixupKindInfo.h"
#include "llvm/MC/MCObjectWriter.h"
#include "llvm/MC/MCSectionELF.h"
#include "llvm/MC/MCSectionMachO.h"
#include "llvm/MC/MCValue.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MachO.h"
using namespace llvm;
namespace {
class AArch64AsmBackend : public MCAsmBackend {
static const unsigned PCRelFlagVal =
MCFixupKindInfo::FKF_IsAlignedDownTo32Bits | MCFixupKindInfo::FKF_IsPCRel;
public:
AArch64AsmBackend(const Target &T) : MCAsmBackend() {}
unsigned getNumFixupKinds() const override {
return AArch64::NumTargetFixupKinds;
}
const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const override {
const static MCFixupKindInfo Infos[AArch64::NumTargetFixupKinds] = {
// This table *must* be in the order that the fixup_* kinds are defined in
// AArch64FixupKinds.h.
//
// Name Offset (bits) Size (bits) Flags
{ "fixup_aarch64_pcrel_adr_imm21", 0, 32, PCRelFlagVal },
{ "fixup_aarch64_pcrel_adrp_imm21", 0, 32, PCRelFlagVal },
{ "fixup_aarch64_add_imm12", 10, 12, 0 },
{ "fixup_aarch64_ldst_imm12_scale1", 10, 12, 0 },
{ "fixup_aarch64_ldst_imm12_scale2", 10, 12, 0 },
{ "fixup_aarch64_ldst_imm12_scale4", 10, 12, 0 },
{ "fixup_aarch64_ldst_imm12_scale8", 10, 12, 0 },
{ "fixup_aarch64_ldst_imm12_scale16", 10, 12, 0 },
{ "fixup_aarch64_ldr_pcrel_imm19", 5, 19, PCRelFlagVal },
{ "fixup_aarch64_movw", 5, 16, 0 },
{ "fixup_aarch64_pcrel_branch14", 5, 14, PCRelFlagVal },
{ "fixup_aarch64_pcrel_branch19", 5, 19, PCRelFlagVal },
{ "fixup_aarch64_pcrel_branch26", 0, 26, PCRelFlagVal },
{ "fixup_aarch64_pcrel_call26", 0, 26, PCRelFlagVal },
{ "fixup_aarch64_tlsdesc_call", 0, 0, 0 }
};
if (Kind < FirstTargetFixupKind)
return MCAsmBackend::getFixupKindInfo(Kind);
assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
"Invalid kind!");
return Infos[Kind - FirstTargetFixupKind];
}
void applyFixup(const MCFixup &Fixup, char *Data, unsigned DataSize,
uint64_t Value, bool IsPCRel) const override;
bool mayNeedRelaxation(const MCInst &Inst) const override;
bool fixupNeedsRelaxation(const MCFixup &Fixup, uint64_t Value,
const MCRelaxableFragment *DF,
const MCAsmLayout &Layout) const override;
void relaxInstruction(const MCInst &Inst, MCInst &Res) const override;
bool writeNopData(uint64_t Count, MCObjectWriter *OW) const override;
void HandleAssemblerFlag(MCAssemblerFlag Flag) {}
unsigned getPointerSize() const { return 8; }
};
} // end anonymous namespace
/// \brief The number of bytes the fixup may change.
static unsigned getFixupKindNumBytes(unsigned Kind) {
switch (Kind) {
default:
llvm_unreachable("Unknown fixup kind!");
case AArch64::fixup_aarch64_tlsdesc_call:
return 0;
case FK_Data_1:
return 1;
case FK_Data_2:
case AArch64::fixup_aarch64_movw:
return 2;
case AArch64::fixup_aarch64_pcrel_branch14:
case AArch64::fixup_aarch64_add_imm12:
case AArch64::fixup_aarch64_ldst_imm12_scale1:
case AArch64::fixup_aarch64_ldst_imm12_scale2:
case AArch64::fixup_aarch64_ldst_imm12_scale4:
case AArch64::fixup_aarch64_ldst_imm12_scale8:
case AArch64::fixup_aarch64_ldst_imm12_scale16:
case AArch64::fixup_aarch64_ldr_pcrel_imm19:
case AArch64::fixup_aarch64_pcrel_branch19:
return 3;
case AArch64::fixup_aarch64_pcrel_adr_imm21:
case AArch64::fixup_aarch64_pcrel_adrp_imm21:
case AArch64::fixup_aarch64_pcrel_branch26:
case AArch64::fixup_aarch64_pcrel_call26:
case FK_Data_4:
return 4;
case FK_Data_8:
return 8;
}
}
static unsigned AdrImmBits(unsigned Value) {
unsigned lo2 = Value & 0x3;
unsigned hi19 = (Value & 0x1ffffc) >> 2;
return (hi19 << 5) | (lo2 << 29);
}
static uint64_t adjustFixupValue(unsigned Kind, uint64_t Value) {
int64_t SignedValue = static_cast<int64_t>(Value);
switch (Kind) {
default:
llvm_unreachable("Unknown fixup kind!");
case AArch64::fixup_aarch64_pcrel_adr_imm21:
if (SignedValue > 2097151 || SignedValue < -2097152)
report_fatal_error("fixup value out of range");
return AdrImmBits(Value & 0x1fffffULL);
case AArch64::fixup_aarch64_pcrel_adrp_imm21:
return AdrImmBits((Value & 0x1fffff000ULL) >> 12);
case AArch64::fixup_aarch64_ldr_pcrel_imm19:
case AArch64::fixup_aarch64_pcrel_branch19:
// Signed 21-bit immediate
if (SignedValue > 2097151 || SignedValue < -2097152)
report_fatal_error("fixup value out of range");
// Low two bits are not encoded.
return (Value >> 2) & 0x7ffff;
case AArch64::fixup_aarch64_add_imm12:
case AArch64::fixup_aarch64_ldst_imm12_scale1:
// Unsigned 12-bit immediate
if (Value >= 0x1000)
report_fatal_error("invalid imm12 fixup value");
return Value;
case AArch64::fixup_aarch64_ldst_imm12_scale2:
// Unsigned 12-bit immediate which gets multiplied by 2
if (Value & 1 || Value >= 0x2000)
report_fatal_error("invalid imm12 fixup value");
return Value >> 1;
case AArch64::fixup_aarch64_ldst_imm12_scale4:
// Unsigned 12-bit immediate which gets multiplied by 4
if (Value & 3 || Value >= 0x4000)
report_fatal_error("invalid imm12 fixup value");
return Value >> 2;
case AArch64::fixup_aarch64_ldst_imm12_scale8:
// Unsigned 12-bit immediate which gets multiplied by 8
if (Value & 7 || Value >= 0x8000)
report_fatal_error("invalid imm12 fixup value");
return Value >> 3;
case AArch64::fixup_aarch64_ldst_imm12_scale16:
// Unsigned 12-bit immediate which gets multiplied by 16
if (Value & 15 || Value >= 0x10000)
report_fatal_error("invalid imm12 fixup value");
return Value >> 4;
case AArch64::fixup_aarch64_movw:
report_fatal_error("no resolvable MOVZ/MOVK fixups supported yet");
return Value;
case AArch64::fixup_aarch64_pcrel_branch14:
// Signed 16-bit immediate
if (SignedValue > 32767 || SignedValue < -32768)
report_fatal_error("fixup value out of range");
// Low two bits are not encoded (4-byte alignment assumed).
if (Value & 0x3)
report_fatal_error("fixup not sufficiently aligned");
return (Value >> 2) & 0x3fff;
case AArch64::fixup_aarch64_pcrel_branch26:
case AArch64::fixup_aarch64_pcrel_call26:
// Signed 28-bit immediate
if (SignedValue > 134217727 || SignedValue < -134217728)
report_fatal_error("fixup value out of range");
// Low two bits are not encoded (4-byte alignment assumed).
if (Value & 0x3)
report_fatal_error("fixup not sufficiently aligned");
return (Value >> 2) & 0x3ffffff;
case FK_Data_1:
case FK_Data_2:
case FK_Data_4:
case FK_Data_8:
return Value;
}
}
void AArch64AsmBackend::applyFixup(const MCFixup &Fixup, char *Data,
unsigned DataSize, uint64_t Value,
bool IsPCRel) const {
unsigned NumBytes = getFixupKindNumBytes(Fixup.getKind());
if (!Value)
return; // Doesn't change encoding.
MCFixupKindInfo Info = getFixupKindInfo(Fixup.getKind());
// Apply any target-specific value adjustments.
Value = adjustFixupValue(Fixup.getKind(), Value);
// Shift the value into position.
Value <<= Info.TargetOffset;
unsigned Offset = Fixup.getOffset();
assert(Offset + NumBytes <= DataSize && "Invalid fixup offset!");
// For each byte of the fragment that the fixup touches, mask in the
// bits from the fixup value.
for (unsigned i = 0; i != NumBytes; ++i)
Data[Offset + i] |= uint8_t((Value >> (i * 8)) & 0xff);
}
bool AArch64AsmBackend::mayNeedRelaxation(const MCInst &Inst) const {
return false;
}
bool AArch64AsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup,
uint64_t Value,
const MCRelaxableFragment *DF,
const MCAsmLayout &Layout) const {
// FIXME: This isn't correct for AArch64. Just moving the "generic" logic
// into the targets for now.
//
// Relax if the value is too big for a (signed) i8.
return int64_t(Value) != int64_t(int8_t(Value));
}
void AArch64AsmBackend::relaxInstruction(const MCInst &Inst,
MCInst &Res) const {
llvm_unreachable("AArch64AsmBackend::relaxInstruction() unimplemented");
}
bool AArch64AsmBackend::writeNopData(uint64_t Count, MCObjectWriter *OW) const {
// If the count is not 4-byte aligned, we must be writing data into the text
// section (otherwise we have unaligned instructions, and thus have far
// bigger problems), so just write zeros instead.
OW->WriteZeros(Count % 4);
// We are properly aligned, so write NOPs as requested.
Count /= 4;
for (uint64_t i = 0; i != Count; ++i)
OW->Write32(0xd503201f);
return true;
}
namespace {
namespace CU {
/// \brief Compact unwind encoding values.
enum CompactUnwindEncodings {
/// \brief A "frameless" leaf function, where no non-volatile registers are
/// saved. The return remains in LR throughout the function.
UNWIND_AArch64_MODE_FRAMELESS = 0x02000000,
/// \brief No compact unwind encoding available. Instead the low 23-bits of
/// the compact unwind encoding is the offset of the DWARF FDE in the
/// __eh_frame section. This mode is never used in object files. It is only
/// generated by the linker in final linked images, which have only DWARF info
/// for a function.
UNWIND_AArch64_MODE_DWARF = 0x03000000,
/// \brief This is a standard arm64 prologue where FP/LR are immediately
/// pushed on the stack, then SP is copied to FP. If there are any
/// non-volatile register saved, they are copied into the stack fame in pairs
/// in a contiguous ranger right below the saved FP/LR pair. Any subset of the
/// five X pairs and four D pairs can be saved, but the memory layout must be
/// in register number order.
UNWIND_AArch64_MODE_FRAME = 0x04000000,
/// \brief Frame register pair encodings.
UNWIND_AArch64_FRAME_X19_X20_PAIR = 0x00000001,
UNWIND_AArch64_FRAME_X21_X22_PAIR = 0x00000002,
UNWIND_AArch64_FRAME_X23_X24_PAIR = 0x00000004,
UNWIND_AArch64_FRAME_X25_X26_PAIR = 0x00000008,
UNWIND_AArch64_FRAME_X27_X28_PAIR = 0x00000010,
UNWIND_AArch64_FRAME_D8_D9_PAIR = 0x00000100,
UNWIND_AArch64_FRAME_D10_D11_PAIR = 0x00000200,
UNWIND_AArch64_FRAME_D12_D13_PAIR = 0x00000400,
UNWIND_AArch64_FRAME_D14_D15_PAIR = 0x00000800
};
} // end CU namespace
// FIXME: This should be in a separate file.
class DarwinAArch64AsmBackend : public AArch64AsmBackend {
const MCRegisterInfo &MRI;
/// \brief Encode compact unwind stack adjustment for frameless functions.
/// See UNWIND_AArch64_FRAMELESS_STACK_SIZE_MASK in compact_unwind_encoding.h.
/// The stack size always needs to be 16 byte aligned.
uint32_t encodeStackAdjustment(uint32_t StackSize) const {
return (StackSize / 16) << 12;
}
public:
DarwinAArch64AsmBackend(const Target &T, const MCRegisterInfo &MRI)
: AArch64AsmBackend(T), MRI(MRI) {}
MCObjectWriter *createObjectWriter(raw_pwrite_stream &OS) const override {
return createAArch64MachObjectWriter(OS, MachO::CPU_TYPE_ARM64,
MachO::CPU_SUBTYPE_ARM64_ALL);
}
/// \brief Generate the compact unwind encoding from the CFI directives.
uint32_t generateCompactUnwindEncoding(
ArrayRef<MCCFIInstruction> Instrs) const override {
if (Instrs.empty())
return CU::UNWIND_AArch64_MODE_FRAMELESS;
bool HasFP = false;
unsigned StackSize = 0;
uint32_t CompactUnwindEncoding = 0;
for (size_t i = 0, e = Instrs.size(); i != e; ++i) {
const MCCFIInstruction &Inst = Instrs[i];
switch (Inst.getOperation()) {
default:
// Cannot handle this directive: bail out.
return CU::UNWIND_AArch64_MODE_DWARF;
case MCCFIInstruction::OpDefCfa: {
// Defines a frame pointer.
assert(getXRegFromWReg(MRI.getLLVMRegNum(Inst.getRegister(), true)) ==
AArch64::FP &&
"Invalid frame pointer!");
assert(i + 2 < e && "Insufficient CFI instructions to define a frame!");
const MCCFIInstruction &LRPush = Instrs[++i];
assert(LRPush.getOperation() == MCCFIInstruction::OpOffset &&
"Link register not pushed!");
const MCCFIInstruction &FPPush = Instrs[++i];
assert(FPPush.getOperation() == MCCFIInstruction::OpOffset &&
"Frame pointer not pushed!");
unsigned LRReg = MRI.getLLVMRegNum(LRPush.getRegister(), true);
unsigned FPReg = MRI.getLLVMRegNum(FPPush.getRegister(), true);
LRReg = getXRegFromWReg(LRReg);
FPReg = getXRegFromWReg(FPReg);
assert(LRReg == AArch64::LR && FPReg == AArch64::FP &&
"Pushing invalid registers for frame!");
// Indicate that the function has a frame.
CompactUnwindEncoding |= CU::UNWIND_AArch64_MODE_FRAME;
HasFP = true;
break;
}
case MCCFIInstruction::OpDefCfaOffset: {
assert(StackSize == 0 && "We already have the CFA offset!");
StackSize = std::abs(Inst.getOffset());
break;
}
case MCCFIInstruction::OpOffset: {
// Registers are saved in pairs. We expect there to be two consecutive
// `.cfi_offset' instructions with the appropriate registers specified.
unsigned Reg1 = MRI.getLLVMRegNum(Inst.getRegister(), true);
if (i + 1 == e)
return CU::UNWIND_AArch64_MODE_DWARF;
const MCCFIInstruction &Inst2 = Instrs[++i];
if (Inst2.getOperation() != MCCFIInstruction::OpOffset)
return CU::UNWIND_AArch64_MODE_DWARF;
unsigned Reg2 = MRI.getLLVMRegNum(Inst2.getRegister(), true);
// N.B. The encodings must be in register number order, and the X
// registers before the D registers.
// X19/X20 pair = 0x00000001,
// X21/X22 pair = 0x00000002,
// X23/X24 pair = 0x00000004,
// X25/X26 pair = 0x00000008,
// X27/X28 pair = 0x00000010
Reg1 = getXRegFromWReg(Reg1);
Reg2 = getXRegFromWReg(Reg2);
if (Reg1 == AArch64::X19 && Reg2 == AArch64::X20 &&
(CompactUnwindEncoding & 0xF1E) == 0)
CompactUnwindEncoding |= CU::UNWIND_AArch64_FRAME_X19_X20_PAIR;
else if (Reg1 == AArch64::X21 && Reg2 == AArch64::X22 &&
(CompactUnwindEncoding & 0xF1C) == 0)
CompactUnwindEncoding |= CU::UNWIND_AArch64_FRAME_X21_X22_PAIR;
else if (Reg1 == AArch64::X23 && Reg2 == AArch64::X24 &&
(CompactUnwindEncoding & 0xF18) == 0)
CompactUnwindEncoding |= CU::UNWIND_AArch64_FRAME_X23_X24_PAIR;
else if (Reg1 == AArch64::X25 && Reg2 == AArch64::X26 &&
(CompactUnwindEncoding & 0xF10) == 0)
CompactUnwindEncoding |= CU::UNWIND_AArch64_FRAME_X25_X26_PAIR;
else if (Reg1 == AArch64::X27 && Reg2 == AArch64::X28 &&
(CompactUnwindEncoding & 0xF00) == 0)
CompactUnwindEncoding |= CU::UNWIND_AArch64_FRAME_X27_X28_PAIR;
else {
Reg1 = getDRegFromBReg(Reg1);
Reg2 = getDRegFromBReg(Reg2);
// D8/D9 pair = 0x00000100,
// D10/D11 pair = 0x00000200,
// D12/D13 pair = 0x00000400,
// D14/D15 pair = 0x00000800
if (Reg1 == AArch64::D8 && Reg2 == AArch64::D9 &&
(CompactUnwindEncoding & 0xE00) == 0)
CompactUnwindEncoding |= CU::UNWIND_AArch64_FRAME_D8_D9_PAIR;
else if (Reg1 == AArch64::D10 && Reg2 == AArch64::D11 &&
(CompactUnwindEncoding & 0xC00) == 0)
CompactUnwindEncoding |= CU::UNWIND_AArch64_FRAME_D10_D11_PAIR;
else if (Reg1 == AArch64::D12 && Reg2 == AArch64::D13 &&
(CompactUnwindEncoding & 0x800) == 0)
CompactUnwindEncoding |= CU::UNWIND_AArch64_FRAME_D12_D13_PAIR;
else if (Reg1 == AArch64::D14 && Reg2 == AArch64::D15)
CompactUnwindEncoding |= CU::UNWIND_AArch64_FRAME_D14_D15_PAIR;
else
// A pair was pushed which we cannot handle.
return CU::UNWIND_AArch64_MODE_DWARF;
}
break;
}
}
}
if (!HasFP) {
// With compact unwind info we can only represent stack adjustments of up
// to 65520 bytes.
if (StackSize > 65520)
return CU::UNWIND_AArch64_MODE_DWARF;
CompactUnwindEncoding |= CU::UNWIND_AArch64_MODE_FRAMELESS;
CompactUnwindEncoding |= encodeStackAdjustment(StackSize);
}
return CompactUnwindEncoding;
}
};
} // end anonymous namespace
namespace {
class ELFAArch64AsmBackend : public AArch64AsmBackend {
public:
uint8_t OSABI;
bool IsLittleEndian;
ELFAArch64AsmBackend(const Target &T, uint8_t OSABI, bool IsLittleEndian)
: AArch64AsmBackend(T), OSABI(OSABI), IsLittleEndian(IsLittleEndian) {}
MCObjectWriter *createObjectWriter(raw_pwrite_stream &OS) const override {
return createAArch64ELFObjectWriter(OS, OSABI, IsLittleEndian);
}
void processFixupValue(const MCAssembler &Asm, const MCAsmLayout &Layout,
const MCFixup &Fixup, const MCFragment *DF,
const MCValue &Target, uint64_t &Value,
bool &IsResolved) override;
void applyFixup(const MCFixup &Fixup, char *Data, unsigned DataSize,
uint64_t Value, bool IsPCRel) const override;
};
void ELFAArch64AsmBackend::processFixupValue(
const MCAssembler &Asm, const MCAsmLayout &Layout, const MCFixup &Fixup,
const MCFragment *DF, const MCValue &Target, uint64_t &Value,
bool &IsResolved) {
// The ADRP instruction adds some multiple of 0x1000 to the current PC &
// ~0xfff. This means that the required offset to reach a symbol can vary by
// up to one step depending on where the ADRP is in memory. For example:
//
// ADRP x0, there
// there:
//
// If the ADRP occurs at address 0xffc then "there" will be at 0x1000 and
// we'll need that as an offset. At any other address "there" will be in the
// same page as the ADRP and the instruction should encode 0x0. Assuming the
// section isn't 0x1000-aligned, we therefore need to delegate this decision
// to the linker -- a relocation!
if ((uint32_t)Fixup.getKind() == AArch64::fixup_aarch64_pcrel_adrp_imm21)
IsResolved = false;
}
// Returns whether this fixup is based on an address in the .eh_frame section,
// and therefore should be byte swapped.
// FIXME: Should be replaced with something more principled.
static bool isByteSwappedFixup(const MCExpr *E) {
MCValue Val;
if (!E->EvaluateAsRelocatable(Val, nullptr, nullptr))
return false;
if (!Val.getSymA() || Val.getSymA()->getSymbol().isUndefined())
return false;
const MCSectionELF *SecELF =
dyn_cast<MCSectionELF>(&Val.getSymA()->getSymbol().getSection());
return SecELF->getSectionName() == ".eh_frame";
}
void ELFAArch64AsmBackend::applyFixup(const MCFixup &Fixup, char *Data,
unsigned DataSize, uint64_t Value,
bool IsPCRel) const {
// store fixups in .eh_frame section in big endian order
if (!IsLittleEndian && Fixup.getKind() == FK_Data_4) {
if (isByteSwappedFixup(Fixup.getValue()))
Value = ByteSwap_32(unsigned(Value));
}
AArch64AsmBackend::applyFixup (Fixup, Data, DataSize, Value, IsPCRel);
}
}
MCAsmBackend *llvm::createAArch64leAsmBackend(const Target &T,
const MCRegisterInfo &MRI,
StringRef TT, StringRef CPU) {
Triple TheTriple(TT);
if (TheTriple.isOSDarwin())
return new DarwinAArch64AsmBackend(T, MRI);
assert(TheTriple.isOSBinFormatELF() && "Expect either MachO or ELF target");
uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
return new ELFAArch64AsmBackend(T, OSABI, /*IsLittleEndian=*/true);
}
MCAsmBackend *llvm::createAArch64beAsmBackend(const Target &T,
const MCRegisterInfo &MRI,
StringRef TT, StringRef CPU) {
Triple TheTriple(TT);
assert(TheTriple.isOSBinFormatELF() &&
"Big endian is only supported for ELF targets!");
uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
return new ELFAArch64AsmBackend(T, OSABI,
/*IsLittleEndian=*/false);
}
|