//===------- X86ExpandPseudo.cpp - Expand pseudo instructions -------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains a pass that expands pseudo instructions into target // instructions to allow proper scheduling, if-conversion, other late // optimizations, or simply the encoding of the instructions. // //===----------------------------------------------------------------------===// #include "X86.h" #include "X86FrameLowering.h" #include "X86InstrBuilder.h" #include "X86InstrInfo.h" #include "X86MachineFunctionInfo.h" #include "X86Subtarget.h" #include "llvm/Analysis/EHPersonalities.h" #include "llvm/CodeGen/Passes.h" // For IDs of passes that are preserved. #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/IR/GlobalValue.h" using namespace llvm; #define DEBUG_TYPE "x86-pseudo" namespace { class X86ExpandPseudo : public MachineFunctionPass { public: static char ID; X86ExpandPseudo() : MachineFunctionPass(ID) {} void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesCFG(); AU.addPreservedID(MachineLoopInfoID); AU.addPreservedID(MachineDominatorsID); MachineFunctionPass::getAnalysisUsage(AU); } const X86Subtarget *STI; const X86InstrInfo *TII; const X86RegisterInfo *TRI; const X86FrameLowering *X86FL; bool runOnMachineFunction(MachineFunction &Fn) override; const char *getPassName() const override { return "X86 pseudo instruction expansion pass"; } private: bool ExpandMI(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI); bool ExpandMBB(MachineBasicBlock &MBB); }; char X86ExpandPseudo::ID = 0; } // End anonymous namespace. /// If \p MBBI is a pseudo instruction, this method expands /// it to the corresponding (sequence of) actual instruction(s). /// \returns true if \p MBBI has been expanded. bool X86ExpandPseudo::ExpandMI(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) { MachineInstr &MI = *MBBI; unsigned Opcode = MI.getOpcode(); DebugLoc DL = MBBI->getDebugLoc(); switch (Opcode) { default: return false; case X86::TCRETURNdi: case X86::TCRETURNri: case X86::TCRETURNmi: case X86::TCRETURNdi64: case X86::TCRETURNri64: case X86::TCRETURNmi64: { bool isMem = Opcode == X86::TCRETURNmi || Opcode == X86::TCRETURNmi64; MachineOperand &JumpTarget = MBBI->getOperand(0); MachineOperand &StackAdjust = MBBI->getOperand(isMem ? 5 : 1); assert(StackAdjust.isImm() && "Expecting immediate value."); // Adjust stack pointer. int StackAdj = StackAdjust.getImm(); if (StackAdj) { // Check for possible merge with preceding ADD instruction. StackAdj += X86FL->mergeSPUpdates(MBB, MBBI, true); X86FL->emitSPUpdate(MBB, MBBI, StackAdj, /*InEpilogue=*/true); } // Jump to label or value in register. bool IsWin64 = STI->isTargetWin64(); if (Opcode == X86::TCRETURNdi || Opcode == X86::TCRETURNdi64) { unsigned Op = (Opcode == X86::TCRETURNdi) ? X86::TAILJMPd : (IsWin64 ? X86::TAILJMPd64_REX : X86::TAILJMPd64); MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(Op)); if (JumpTarget.isGlobal()) MIB.addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset(), JumpTarget.getTargetFlags()); else { assert(JumpTarget.isSymbol()); MIB.addExternalSymbol(JumpTarget.getSymbolName(), JumpTarget.getTargetFlags()); } } else if (Opcode == X86::TCRETURNmi || Opcode == X86::TCRETURNmi64) { unsigned Op = (Opcode == X86::TCRETURNmi) ? X86::TAILJMPm : (IsWin64 ? X86::TAILJMPm64_REX : X86::TAILJMPm64); MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(Op)); for (unsigned i = 0; i != 5; ++i) MIB.addOperand(MBBI->getOperand(i)); } else if (Opcode == X86::TCRETURNri64) { BuildMI(MBB, MBBI, DL, TII->get(IsWin64 ? X86::TAILJMPr64_REX : X86::TAILJMPr64)) .addReg(JumpTarget.getReg(), RegState::Kill); } else { BuildMI(MBB, MBBI, DL, TII->get(X86::TAILJMPr)) .addReg(JumpTarget.getReg(), RegState::Kill); } MachineInstr *NewMI = std::prev(MBBI); NewMI->copyImplicitOps(*MBBI->getParent()->getParent(), MBBI); // Delete the pseudo instruction TCRETURN. MBB.erase(MBBI); return true; } case X86::EH_RETURN: case X86::EH_RETURN64: { MachineOperand &DestAddr = MBBI->getOperand(0); assert(DestAddr.isReg() && "Offset should be in register!"); const bool Uses64BitFramePtr = STI->isTarget64BitLP64() || STI->isTargetNaCl64(); unsigned StackPtr = TRI->getStackRegister(); BuildMI(MBB, MBBI, DL, TII->get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr), StackPtr) .addReg(DestAddr.getReg()); // The EH_RETURN pseudo is really removed during the MC Lowering. return true; } case X86::EH_RESTORE: { // Restore ESP and EBP, and optionally ESI if required. bool IsSEH = isAsynchronousEHPersonality(classifyEHPersonality( MBB.getParent()->getFunction()->getPersonalityFn())); X86FL->restoreWin32EHStackPointers(MBB, MBBI, DL, /*RestoreSP=*/IsSEH); MBBI->eraseFromParent(); return true; } } llvm_unreachable("Previous switch has a fallthrough?"); } /// Expand all pseudo instructions contained in \p MBB. /// \returns true if any expansion occurred for \p MBB. bool X86ExpandPseudo::ExpandMBB(MachineBasicBlock &MBB) { bool Modified = false; // MBBI may be invalidated by the expansion. MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); while (MBBI != E) { MachineBasicBlock::iterator NMBBI = std::next(MBBI); Modified |= ExpandMI(MBB, MBBI); MBBI = NMBBI; } return Modified; } bool X86ExpandPseudo::runOnMachineFunction(MachineFunction &MF) { STI = &static_cast(MF.getSubtarget()); TII = STI->getInstrInfo(); TRI = STI->getRegisterInfo(); X86FL = STI->getFrameLowering(); bool Modified = false; for (MachineBasicBlock &MBB : MF) Modified |= ExpandMBB(MBB); return Modified; } /// Returns an instance of the pseudo instruction expansion pass. FunctionPass *llvm::createX86ExpandPseudoPass() { return new X86ExpandPseudo(); }