diff options
Diffstat (limited to 'lib/Transforms')
-rw-r--r-- | lib/Transforms/Utils/PromoteMemoryToRegister.cpp | 704 |
1 files changed, 360 insertions, 344 deletions
diff --git a/lib/Transforms/Utils/PromoteMemoryToRegister.cpp b/lib/Transforms/Utils/PromoteMemoryToRegister.cpp index b3de0194342..e985bf6b57f 100644 --- a/lib/Transforms/Utils/PromoteMemoryToRegister.cpp +++ b/lib/Transforms/Utils/PromoteMemoryToRegister.cpp @@ -62,7 +62,7 @@ bool llvm::isAllocaPromotable(const AllocaInst *AI) { // Only allow direct and non-volatile loads and stores... for (Value::const_use_iterator UI = AI->use_begin(), UE = AI->use_end(); - UI != UE; ++UI) { // Loop over all of the uses of the alloca + UI != UE; ++UI) { // Loop over all of the uses of the alloca const User *U = *UI; if (const LoadInst *LI = dyn_cast<LoadInst>(U)) { // Note that atomic loads can be transformed; atomic semantics do @@ -71,7 +71,7 @@ bool llvm::isAllocaPromotable(const AllocaInst *AI) { return false; } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) { if (SI->getOperand(0) == AI) - return false; // Don't allow a store OF the AI, only INTO the AI. + return false; // Don't allow a store OF the AI, only INTO the AI. // Note that atomic stores can be transformed; atomic semantics do // not have any meaning for a local alloca. if (SI->isVolatile()) @@ -101,239 +101,238 @@ bool llvm::isAllocaPromotable(const AllocaInst *AI) { } namespace { - struct AllocaInfo; - - // Data package used by RenamePass() - class RenamePassData { - public: - typedef std::vector<Value *> ValVector; - - RenamePassData() : BB(NULL), Pred(NULL), Values() {} - RenamePassData(BasicBlock *B, BasicBlock *P, - const ValVector &V) : BB(B), Pred(P), Values(V) {} - BasicBlock *BB; - BasicBlock *Pred; - ValVector Values; - - void swap(RenamePassData &RHS) { - std::swap(BB, RHS.BB); - std::swap(Pred, RHS.Pred); - Values.swap(RHS.Values); - } - }; - /// \brief This assigns and keeps a per-bb relative ordering of load/store - /// instructions in the block that directly load or store an alloca. +struct AllocaInfo; + +// Data package used by RenamePass() +class RenamePassData { +public: + typedef std::vector<Value *> ValVector; + + RenamePassData() : BB(NULL), Pred(NULL), Values() {} + RenamePassData(BasicBlock *B, BasicBlock *P, const ValVector &V) + : BB(B), Pred(P), Values(V) {} + BasicBlock *BB; + BasicBlock *Pred; + ValVector Values; + + void swap(RenamePassData &RHS) { + std::swap(BB, RHS.BB); + std::swap(Pred, RHS.Pred); + Values.swap(RHS.Values); + } +}; + +/// \brief This assigns and keeps a per-bb relative ordering of load/store +/// instructions in the block that directly load or store an alloca. +/// +/// This functionality is important because it avoids scanning large basic +/// blocks multiple times when promoting many allocas in the same block. +class LargeBlockInfo { + /// \brief For each instruction that we track, keep the index of the + /// instruction. /// - /// This functionality is important because it avoids scanning large basic - /// blocks multiple times when promoting many allocas in the same block. - class LargeBlockInfo { - /// \brief For each instruction that we track, keep the index of the - /// instruction. - /// - /// The index starts out as the number of the instruction from the start of - /// the block. - DenseMap<const Instruction *, unsigned> InstNumbers; - public: - - /// This code only looks at accesses to allocas. - static bool isInterestingInstruction(const Instruction *I) { - return (isa<LoadInst>(I) && isa<AllocaInst>(I->getOperand(0))) || - (isa<StoreInst>(I) && isa<AllocaInst>(I->getOperand(1))); - } - - /// Get or calculate the index of the specified instruction. - unsigned getInstructionIndex(const Instruction *I) { - assert(isInterestingInstruction(I) && - "Not a load/store to/from an alloca?"); - - // If we already have this instruction number, return it. - DenseMap<const Instruction *, unsigned>::iterator It = InstNumbers.find(I); - if (It != InstNumbers.end()) return It->second; - - // Scan the whole block to get the instruction. This accumulates - // information for every interesting instruction in the block, in order to - // avoid gratuitus rescans. - const BasicBlock *BB = I->getParent(); - unsigned InstNo = 0; - for (BasicBlock::const_iterator BBI = BB->begin(), E = BB->end(); - BBI != E; ++BBI) - if (isInterestingInstruction(BBI)) - InstNumbers[BBI] = InstNo++; - It = InstNumbers.find(I); - - assert(It != InstNumbers.end() && "Didn't insert instruction?"); + /// The index starts out as the number of the instruction from the start of + /// the block. + DenseMap<const Instruction *, unsigned> InstNumbers; + +public: + + /// This code only looks at accesses to allocas. + static bool isInterestingInstruction(const Instruction *I) { + return (isa<LoadInst>(I) && isa<AllocaInst>(I->getOperand(0))) || + (isa<StoreInst>(I) && isa<AllocaInst>(I->getOperand(1))); + } + + /// Get or calculate the index of the specified instruction. + unsigned getInstructionIndex(const Instruction *I) { + assert(isInterestingInstruction(I) && + "Not a load/store to/from an alloca?"); + + // If we already have this instruction number, return it. + DenseMap<const Instruction *, unsigned>::iterator It = InstNumbers.find(I); + if (It != InstNumbers.end()) return It->second; - } - - void deleteValue(const Instruction *I) { - InstNumbers.erase(I); - } - - void clear() { - InstNumbers.clear(); - } - }; - - struct PromoteMem2Reg { - /// The alloca instructions being promoted. - std::vector<AllocaInst*> Allocas; - DominatorTree &DT; - DIBuilder *DIB; - - /// An AliasSetTracker object to update. If null, don't update it. - AliasSetTracker *AST; - - /// Reverse mapping of Allocas. - DenseMap<AllocaInst*, unsigned> AllocaLookup; - - /// \brief The PhiNodes we're adding. - /// - /// That map is used to simplify some Phi nodes as we iterate over it, so - /// it should have deterministic iterators. We could use a MapVector, but - /// since we already maintain a map from BasicBlock* to a stable numbering - /// (BBNumbers), the DenseMap is more efficient (also supports removal). - DenseMap<std::pair<unsigned, unsigned>, PHINode*> NewPhiNodes; - - /// For each PHI node, keep track of which entry in Allocas it corresponds - /// to. - DenseMap<PHINode*, unsigned> PhiToAllocaMap; - - /// If we are updating an AliasSetTracker, then for each alloca that is of - /// pointer type, we keep track of what to copyValue to the inserted PHI - /// nodes here. - std::vector<Value*> PointerAllocaValues; - - /// For each alloca, we keep track of the dbg.declare intrinsic that - /// describes it, if any, so that we can convert it to a dbg.value - /// intrinsic if the alloca gets promoted. - SmallVector<DbgDeclareInst*, 8> AllocaDbgDeclares; - - /// The set of basic blocks the renamer has already visited. - /// - SmallPtrSet<BasicBlock*, 16> Visited; - - /// Contains a stable numbering of basic blocks to avoid non-determinstic - /// behavior. - DenseMap<BasicBlock*, unsigned> BBNumbers; - - /// Maps DomTreeNodes to their level in the dominator tree. - DenseMap<DomTreeNode*, unsigned> DomLevels; - - /// Lazily compute the number of predecessors a block has. - DenseMap<const BasicBlock*, unsigned> BBNumPreds; - public: - PromoteMem2Reg(const std::vector<AllocaInst*> &A, DominatorTree &dt, - AliasSetTracker *ast) + + // Scan the whole block to get the instruction. This accumulates + // information for every interesting instruction in the block, in order to + // avoid gratuitus rescans. + const BasicBlock *BB = I->getParent(); + unsigned InstNo = 0; + for (BasicBlock::const_iterator BBI = BB->begin(), E = BB->end(); BBI != E; + ++BBI) + if (isInterestingInstruction(BBI)) + InstNumbers[BBI] = InstNo++; + It = InstNumbers.find(I); + + assert(It != InstNumbers.end() && "Didn't insert instruction?"); + return It->second; + } + + void deleteValue(const Instruction *I) { InstNumbers.erase(I); } + + void clear() { InstNumbers.clear(); } +}; + +struct PromoteMem2Reg { + /// The alloca instructions being promoted. + std::vector<AllocaInst *> Allocas; + DominatorTree &DT; + DIBuilder *DIB; + + /// An AliasSetTracker object to update. If null, don't update it. + AliasSetTracker *AST; + + /// Reverse mapping of Allocas. + DenseMap<AllocaInst *, unsigned> AllocaLookup; + + /// \brief The PhiNodes we're adding. + /// + /// That map is used to simplify some Phi nodes as we iterate over it, so + /// it should have deterministic iterators. We could use a MapVector, but + /// since we already maintain a map from BasicBlock* to a stable numbering + /// (BBNumbers), the DenseMap is more efficient (also supports removal). + DenseMap<std::pair<unsigned, unsigned>, PHINode *> NewPhiNodes; + + /// For each PHI node, keep track of which entry in Allocas it corresponds + /// to. + DenseMap<PHINode *, unsigned> PhiToAllocaMap; + + /// If we are updating an AliasSetTracker, then for each alloca that is of + /// pointer type, we keep track of what to copyValue to the inserted PHI + /// nodes here. + std::vector<Value *> PointerAllocaValues; + + /// For each alloca, we keep track of the dbg.declare intrinsic that + /// describes it, if any, so that we can convert it to a dbg.value + /// intrinsic if the alloca gets promoted. + SmallVector<DbgDeclareInst *, 8> AllocaDbgDeclares; + + /// The set of basic blocks the renamer has already visited. + /// + SmallPtrSet<BasicBlock *, 16> Visited; + + /// Contains a stable numbering of basic blocks to avoid non-determinstic + /// behavior. + DenseMap<BasicBlock *, unsigned> BBNumbers; + + /// Maps DomTreeNodes to their level in the dominator tree. + DenseMap<DomTreeNode *, unsigned> DomLevels; + + /// Lazily compute the number of predecessors a block has. + DenseMap<const BasicBlock *, unsigned> BBNumPreds; + +public: + PromoteMem2Reg(const std::vector<AllocaInst *> &A, DominatorTree &dt, + AliasSetTracker *ast) : Allocas(A), DT(dt), DIB(0), AST(ast) {} - ~PromoteMem2Reg() { - delete DIB; - } + ~PromoteMem2Reg() { delete DIB; } - void run(); + void run(); - /// Return true if BB1 dominates BB2 using the DominatorTree. - bool dominates(BasicBlock *BB1, BasicBlock *BB2) const { - return DT.dominates(BB1, BB2); - } + /// Return true if BB1 dominates BB2 using the DominatorTree. + bool dominates(BasicBlock *BB1, BasicBlock *BB2) const { + return DT.dominates(BB1, BB2); + } - private: - void RemoveFromAllocasList(unsigned &AllocaIdx) { - Allocas[AllocaIdx] = Allocas.back(); - Allocas.pop_back(); - --AllocaIdx; - } +private: + void RemoveFromAllocasList(unsigned &AllocaIdx) { + Allocas[AllocaIdx] = Allocas.back(); + Allocas.pop_back(); + --AllocaIdx; + } - unsigned getNumPreds(const BasicBlock *BB) { - unsigned &NP = BBNumPreds[BB]; - if (NP == 0) - NP = std::distance(pred_begin(BB), pred_end(BB))+1; - return NP-1; - } + unsigned getNumPreds(const BasicBlock *BB) { + unsigned &NP = BBNumPreds[BB]; + if (NP == 0) + NP = std::distance(pred_begin(BB), pred_end(BB)) + 1; + return NP - 1; + } - void DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum, - AllocaInfo &Info); - void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info, - const SmallPtrSet<BasicBlock*, 32> &DefBlocks, - SmallPtrSet<BasicBlock*, 32> &LiveInBlocks); - - void RewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info, - LargeBlockInfo &LBI); - void PromoteSingleBlockAlloca(AllocaInst *AI, AllocaInfo &Info, - LargeBlockInfo &LBI); - - void RenamePass(BasicBlock *BB, BasicBlock *Pred, - RenamePassData::ValVector &IncVals, - std::vector<RenamePassData> &Worklist); - bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version); - }; - - struct AllocaInfo { - SmallVector<BasicBlock*, 32> DefiningBlocks; - SmallVector<BasicBlock*, 32> UsingBlocks; - - StoreInst *OnlyStore; - BasicBlock *OnlyBlock; - bool OnlyUsedInOneBlock; - - Value *AllocaPointerVal; - DbgDeclareInst *DbgDeclare; - - void clear() { - DefiningBlocks.clear(); - UsingBlocks.clear(); - OnlyStore = 0; - OnlyBlock = 0; - OnlyUsedInOneBlock = true; - AllocaPointerVal = 0; - DbgDeclare = 0; - } - - /// Scan the uses of the specified alloca, filling in the AllocaInfo used - /// by the rest of the pass to reason about the uses of this alloca. - void AnalyzeAlloca(AllocaInst *AI) { - clear(); - - // As we scan the uses of the alloca instruction, keep track of stores, - // and decide whether all of the loads and stores to the alloca are within - // the same basic block. - for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); - UI != E;) { - Instruction *User = cast<Instruction>(*UI++); - - if (StoreInst *SI = dyn_cast<StoreInst>(User)) { - // Remember the basic blocks which define new values for the alloca - DefiningBlocks.push_back(SI->getParent()); - AllocaPointerVal = SI->getOperand(0); - OnlyStore = SI; - } else { - LoadInst *LI = cast<LoadInst>(User); - // Otherwise it must be a load instruction, keep track of variable - // reads. - UsingBlocks.push_back(LI->getParent()); - AllocaPointerVal = LI; - } - - if (OnlyUsedInOneBlock) { - if (OnlyBlock == 0) - OnlyBlock = User->getParent(); - else if (OnlyBlock != User->getParent()) - OnlyUsedInOneBlock = false; - } + void DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum, + AllocaInfo &Info); + void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info, + const SmallPtrSet<BasicBlock *, 32> &DefBlocks, + SmallPtrSet<BasicBlock *, 32> &LiveInBlocks); + + void RewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info, + LargeBlockInfo &LBI); + void PromoteSingleBlockAlloca(AllocaInst *AI, AllocaInfo &Info, + LargeBlockInfo &LBI); + + void RenamePass(BasicBlock *BB, BasicBlock *Pred, + RenamePassData::ValVector &IncVals, + std::vector<RenamePassData> &Worklist); + bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version); +}; + +struct AllocaInfo { + SmallVector<BasicBlock *, 32> DefiningBlocks; + SmallVector<BasicBlock *, 32> UsingBlocks; + + StoreInst *OnlyStore; + BasicBlock *OnlyBlock; + bool OnlyUsedInOneBlock; + + Value *AllocaPointerVal; + DbgDeclareInst *DbgDeclare; + + void clear() { + DefiningBlocks.clear(); + UsingBlocks.clear(); + OnlyStore = 0; + OnlyBlock = 0; + OnlyUsedInOneBlock = true; + AllocaPointerVal = 0; + DbgDeclare = 0; + } + + /// Scan the uses of the specified alloca, filling in the AllocaInfo used + /// by the rest of the pass to reason about the uses of this alloca. + void AnalyzeAlloca(AllocaInst *AI) { + clear(); + + // As we scan the uses of the alloca instruction, keep track of stores, + // and decide whether all of the loads and stores to the alloca are within + // the same basic block. + for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); + UI != E;) { + Instruction *User = cast<Instruction>(*UI++); + + if (StoreInst *SI = dyn_cast<StoreInst>(User)) { + // Remember the basic blocks which define new values for the alloca + DefiningBlocks.push_back(SI->getParent()); + AllocaPointerVal = SI->getOperand(0); + OnlyStore = SI; + } else { + LoadInst *LI = cast<LoadInst>(User); + // Otherwise it must be a load instruction, keep track of variable + // reads. + UsingBlocks.push_back(LI->getParent()); + AllocaPointerVal = LI; + } + + if (OnlyUsedInOneBlock) { + if (OnlyBlock == 0) + OnlyBlock = User->getParent(); + else if (OnlyBlock != User->getParent()) + OnlyUsedInOneBlock = false; } - - DbgDeclare = FindAllocaDbgDeclare(AI); } - }; - typedef std::pair<DomTreeNode*, unsigned> DomTreeNodePair; + DbgDeclare = FindAllocaDbgDeclare(AI); + } +}; - struct DomTreeNodeCompare { - bool operator()(const DomTreeNodePair &LHS, const DomTreeNodePair &RHS) { - return LHS.second < RHS.second; - } - }; -} // end of anonymous namespace +typedef std::pair<DomTreeNode *, unsigned> DomTreeNodePair; + +struct DomTreeNodeCompare { + bool operator()(const DomTreeNodePair &LHS, const DomTreeNodePair &RHS) { + return LHS.second < RHS.second; + } +}; + +} // end of anonymous namespace static void removeLifetimeIntrinsicUsers(AllocaInst *AI) { // Knowing that this alloca is promotable, we know that it's safe to kill all @@ -364,7 +363,8 @@ static void removeLifetimeIntrinsicUsers(AllocaInst *AI) { void PromoteMem2Reg::run() { Function &F = *DT.getRoot()->getParent(); - if (AST) PointerAllocaValues.resize(Allocas.size()); + if (AST) + PointerAllocaValues.resize(Allocas.size()); AllocaDbgDeclares.resize(Allocas.size()); AllocaInfo Info; @@ -373,8 +373,7 @@ void PromoteMem2Reg::run() { for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) { AllocaInst *AI = Allocas[AllocaNum]; - assert(isAllocaPromotable(AI) && - "Cannot promote non-promotable alloca!"); + assert(isAllocaPromotable(AI) && "Cannot promote non-promotable alloca!"); assert(AI->getParent()->getParent() == &F && "All allocas should be in the same function, which is same as DF!"); @@ -382,7 +381,8 @@ void PromoteMem2Reg::run() { if (AI->use_empty()) { // If there are no uses of the alloca, just delete it now. - if (AST) AST->deleteValue(AI); + if (AST) + AST->deleteValue(AI); AI->eraseFromParent(); // Remove the alloca from the Allocas list, since it has been processed @@ -390,7 +390,7 @@ void PromoteMem2Reg::run() { ++NumDeadAlloca; continue; } - + // Calculate the set of read and write-locations for each alloca. This is // analogous to finding the 'uses' and 'definitions' of each variable. Info.AnalyzeAlloca(AI); @@ -402,7 +402,7 @@ void PromoteMem2Reg::run() { // Finally, after the scan, check to see if the store is all that is left. if (Info.UsingBlocks.empty()) { - // Record debuginfo for the store and remove the declaration's + // Record debuginfo for the store and remove the declaration's // debuginfo. if (DbgDeclareInst *DDI = Info.DbgDeclare) { if (!DIB) @@ -414,27 +414,28 @@ void PromoteMem2Reg::run() { Info.OnlyStore->eraseFromParent(); LBI.deleteValue(Info.OnlyStore); - if (AST) AST->deleteValue(AI); + if (AST) + AST->deleteValue(AI); AI->eraseFromParent(); LBI.deleteValue(AI); - + // The alloca has been processed, move on. RemoveFromAllocasList(AllocaNum); - + ++NumSingleStore; continue; } } - + // If the alloca is only read and written in one basic block, just perform a // linear sweep over the block to eliminate it. if (Info.OnlyUsedInOneBlock) { PromoteSingleBlockAlloca(AI, Info, LBI); - + // Finally, after the scan, check to see if the stores are all that is // left. if (Info.UsingBlocks.empty()) { - + // Remove the (now dead) stores and alloca. while (!AI->use_empty()) { StoreInst *SI = cast<StoreInst>(AI->use_back()); @@ -447,14 +448,15 @@ void PromoteMem2Reg::run() { SI->eraseFromParent(); LBI.deleteValue(SI); } - - if (AST) AST->deleteValue(AI); + + if (AST) + AST->deleteValue(AI); AI->eraseFromParent(); LBI.deleteValue(AI); - + // The alloca has been processed, move on. RemoveFromAllocasList(AllocaNum); - + // The alloca's debuginfo can be removed as well. if (DbgDeclareInst *DDI = Info.DbgDeclare) DDI->eraseFromParent(); @@ -466,7 +468,7 @@ void PromoteMem2Reg::run() { // If we haven't computed dominator tree levels, do so now. if (DomLevels.empty()) { - SmallVector<DomTreeNode*, 32> Worklist; + SmallVector<DomTreeNode *, 32> Worklist; DomTreeNode *Root = DT.getRootNode(); DomLevels[Root] = 0; @@ -495,10 +497,11 @@ void PromoteMem2Reg::run() { // stored into the alloca. if (AST) PointerAllocaValues[AllocaNum] = Info.AllocaPointerVal; - + // Remember the dbg.declare intrinsic describing this alloca, if any. - if (Info.DbgDeclare) AllocaDbgDeclares[AllocaNum] = Info.DbgDeclare; - + if (Info.DbgDeclare) + AllocaDbgDeclares[AllocaNum] = Info.DbgDeclare; + // Keep the reverse mapping of the 'Allocas' array for the rename pass. AllocaLookup[Allocas[AllocaNum]] = AllocaNum; @@ -513,8 +516,7 @@ void PromoteMem2Reg::run() { return; // All of the allocas must have been trivial! LBI.clear(); - - + // Set the incoming values for the basic block to be null values for all of // the alloca's. We do this in case there is a load of a value that has not // been stored yet. In this case, it will get this null value. @@ -535,7 +537,7 @@ void PromoteMem2Reg::run() { // RenamePass may add new worklist entries. RenamePass(RPD.BB, RPD.Pred, RPD.Values, RenamePassWorkList); } while (!RenamePassWorkList.empty()); - + // The renamer uses the Visited set to avoid infinite loops. Clear it now. Visited.clear(); @@ -548,7 +550,8 @@ void PromoteMem2Reg::run() { // tree. Just delete the users now. if (!A->use_empty()) A->replaceAllUsesWith(UndefValue::get(A->getType())); - if (AST) AST->deleteValue(A); + if (AST) + AST->deleteValue(A); A->eraseFromParent(); } @@ -564,13 +567,15 @@ void PromoteMem2Reg::run() { bool EliminatedAPHI = true; while (EliminatedAPHI) { EliminatedAPHI = false; - + // Iterating over NewPhiNodes is deterministic, so it is safe to try to // simplify and RAUW them as we go. If it was not, we could add uses to // the values we replace with in a non deterministic order, thus creating // non deterministic def->use chains. - for (DenseMap<std::pair<unsigned, unsigned>, PHINode*>::iterator I = - NewPhiNodes.begin(), E = NewPhiNodes.end(); I != E;) { + for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator + I = NewPhiNodes.begin(), + E = NewPhiNodes.end(); + I != E;) { PHINode *PN = I->second; // If this PHI node merges one value and/or undefs, get the value. @@ -586,15 +591,17 @@ void PromoteMem2Reg::run() { ++I; } } - + // At this point, the renamer has added entries to PHI nodes for all reachable // code. Unfortunately, there may be unreachable blocks which the renamer // hasn't traversed. If this is the case, the PHI nodes may not // have incoming values for all predecessors. Loop over all PHI nodes we have // created, inserting undef values if they are missing any incoming values. // - for (DenseMap<std::pair<unsigned, unsigned>, PHINode*>::iterator I = - NewPhiNodes.begin(), E = NewPhiNodes.end(); I != E; ++I) { + for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator + I = NewPhiNodes.begin(), + E = NewPhiNodes.end(); + I != E; ++I) { // We want to do this once per basic block. As such, only process a block // when we find the PHI that is the first entry in the block. PHINode *SomePHI = I->second; @@ -609,21 +616,20 @@ void PromoteMem2Reg::run() { continue; // Get the preds for BB. - SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB)); - + SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); + // Ok, now we know that all of the PHI nodes are missing entries for some // basic blocks. Start by sorting the incoming predecessors for efficient // access. std::sort(Preds.begin(), Preds.end()); - + // Now we loop through all BB's which have entries in SomePHI and remove // them from the Preds list. for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) { // Do a log(n) search of the Preds list for the entry we want. - SmallVectorImpl<BasicBlock *>::iterator EntIt = - std::lower_bound(Preds.begin(), Preds.end(), - SomePHI->getIncomingBlock(i)); - assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i)&& + SmallVectorImpl<BasicBlock *>::iterator EntIt = std::lower_bound( + Preds.begin(), Preds.end(), SomePHI->getIncomingBlock(i)); + assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i) && "PHI node has entry for a block which is not a predecessor!"); // Remove the entry @@ -643,40 +649,41 @@ void PromoteMem2Reg::run() { SomePHI->addIncoming(UndefVal, Preds[pred]); } } - + NewPhiNodes.clear(); } - /// \brief Determine which blocks the value is live in. /// /// These are blocks which lead to uses. Knowing this allows us to avoid /// inserting PHI nodes into blocks which don't lead to uses (thus, the /// inserted phi nodes would be dead). -void PromoteMem2Reg:: -ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info, - const SmallPtrSet<BasicBlock*, 32> &DefBlocks, - SmallPtrSet<BasicBlock*, 32> &LiveInBlocks) { - +void PromoteMem2Reg::ComputeLiveInBlocks( + AllocaInst *AI, AllocaInfo &Info, + const SmallPtrSet<BasicBlock *, 32> &DefBlocks, + SmallPtrSet<BasicBlock *, 32> &LiveInBlocks) { + // To determine liveness, we must iterate through the predecessors of blocks // where the def is live. Blocks are added to the worklist if we need to // check their predecessors. Start with all the using blocks. - SmallVector<BasicBlock*, 64> LiveInBlockWorklist(Info.UsingBlocks.begin(), - Info.UsingBlocks.end()); - + SmallVector<BasicBlock *, 64> LiveInBlockWorklist(Info.UsingBlocks.begin(), + Info.UsingBlocks.end()); + // If any of the using blocks is also a definition block, check to see if the // definition occurs before or after the use. If it happens before the use, // the value isn't really live-in. for (unsigned i = 0, e = LiveInBlockWorklist.size(); i != e; ++i) { BasicBlock *BB = LiveInBlockWorklist[i]; - if (!DefBlocks.count(BB)) continue; - + if (!DefBlocks.count(BB)) + continue; + // Okay, this is a block that both uses and defines the value. If the first // reference to the alloca is a def (store), then we know it isn't live-in. - for (BasicBlock::iterator I = BB->begin(); ; ++I) { + for (BasicBlock::iterator I = BB->begin();; ++I) { if (StoreInst *SI = dyn_cast<StoreInst>(I)) { - if (SI->getOperand(1) != AI) continue; - + if (SI->getOperand(1) != AI) + continue; + // We found a store to the alloca before a load. The alloca is not // actually live-in here. LiveInBlockWorklist[i] = LiveInBlockWorklist.back(); @@ -684,37 +691,38 @@ ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info, --i, --e; break; } - + if (LoadInst *LI = dyn_cast<LoadInst>(I)) { - if (LI->getOperand(0) != AI) continue; - + if (LI->getOperand(0) != AI) + continue; + // Okay, we found a load before a store to the alloca. It is actually // live into this block. break; } } } - + // Now that we have a set of blocks where the phi is live-in, recursively add // their predecessors until we find the full region the value is live. while (!LiveInBlockWorklist.empty()) { BasicBlock *BB = LiveInBlockWorklist.pop_back_val(); - + // The block really is live in here, insert it into the set. If already in // the set, then it has already been processed. if (!LiveInBlocks.insert(BB)) continue; - + // Since the value is live into BB, it is either defined in a predecessor or // live into it to. Add the preds to the worklist unless they are a // defining block. for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { BasicBlock *P = *PI; - + // The value is not live into a predecessor if it defines the value. if (DefBlocks.count(P)) continue; - + // Otherwise it is, add to the worklist. LiveInBlockWorklist.push_back(P); } @@ -728,29 +736,31 @@ ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info, void PromoteMem2Reg::DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum, AllocaInfo &Info) { // Unique the set of defining blocks for efficient lookup. - SmallPtrSet<BasicBlock*, 32> DefBlocks; + SmallPtrSet<BasicBlock *, 32> DefBlocks; DefBlocks.insert(Info.DefiningBlocks.begin(), Info.DefiningBlocks.end()); // Determine which blocks the value is live in. These are blocks which lead // to uses. - SmallPtrSet<BasicBlock*, 32> LiveInBlocks; + SmallPtrSet<BasicBlock *, 32> LiveInBlocks; ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks); // Use a priority queue keyed on dominator tree level so that inserted nodes // are handled from the bottom of the dominator tree upwards. - typedef std::priority_queue<DomTreeNodePair, SmallVector<DomTreeNodePair, 32>, + typedef std::priority_queue<DomTreeNodePair, + SmallVector<DomTreeNodePair, 32>, DomTreeNodeCompare> IDFPriorityQueue; IDFPriorityQueue PQ; - for (SmallPtrSet<BasicBlock*, 32>::const_iterator I = DefBlocks.begin(), - E = DefBlocks.end(); I != E; ++I) { + for (SmallPtrSet<BasicBlock *, 32>::const_iterator I = DefBlocks.begin(), + E = DefBlocks.end(); + I != E; ++I) { if (DomTreeNode *Node = DT.getNode(*I)) PQ.push(std::make_pair(Node, DomLevels[Node])); } - SmallVector<std::pair<unsigned, BasicBlock*>, 32> DFBlocks; - SmallPtrSet<DomTreeNode*, 32> Visited; - SmallVector<DomTreeNode*, 32> Worklist; + SmallVector<std::pair<unsigned, BasicBlock *>, 32> DFBlocks; + SmallPtrSet<DomTreeNode *, 32> Visited; + SmallVector<DomTreeNode *, 32> Worklist; while (!PQ.empty()) { DomTreeNodePair RootPair = PQ.top(); PQ.pop(); @@ -812,8 +822,7 @@ void PromoteMem2Reg::DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum, /// If there is only a single store to this value, replace any loads of it that /// are directly dominated by the definition with the value stored. -void PromoteMem2Reg::RewriteSingleStoreAlloca(AllocaInst *AI, - AllocaInfo &Info, +void PromoteMem2Reg::RewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info, LargeBlockInfo &LBI) { StoreInst *OnlyStore = Info.OnlyStore; bool StoringGlobalVal = !isa<Instruction>(OnlyStore->getOperand(0)); @@ -822,20 +831,20 @@ void PromoteMem2Reg::RewriteSingleStoreAlloca(AllocaInst *AI, // Clear out UsingBlocks. We will reconstruct it here if needed. Info.UsingBlocks.clear(); - - for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E; ) { + + for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E;) { Instruction *UserInst = cast<Instruction>(*UI++); if (!isa<LoadInst>(UserInst)) { assert(UserInst == OnlyStore && "Should only have load/stores"); continue; } LoadInst *LI = cast<LoadInst>(UserInst); - + // Okay, if we have a load from the alloca, we want to replace it with the // only value stored to the alloca. We can do this if the value is // dominated by the store. If not, we use the rest of the mem2reg machinery // to insert the phi nodes as needed. - if (!StoringGlobalVal) { // Non-instructions are always dominated. + if (!StoringGlobalVal) { // Non-instructions are always dominated. if (LI->getParent() == StoreBB) { // If we have a use that is in the same block as the store, compare the // indices of the two instructions to see which one came first. If the @@ -848,7 +857,7 @@ void PromoteMem2Reg::RewriteSingleStoreAlloca(AllocaInst *AI, Info.UsingBlocks.push_back(StoreBB); continue; } - + } else if (LI->getParent() != StoreBB && !dominates(StoreBB, LI->getParent())) { // If the load and store are in different blocks, use BB dominance to @@ -858,7 +867,7 @@ void PromoteMem2Reg::RewriteSingleStoreAlloca(AllocaInst *AI, continue; } } - + // Otherwise, we *can* safely rewrite this load. Value *ReplVal = OnlyStore->getOperand(0); // If the replacement value is the load, this must occur in unreachable @@ -874,15 +883,13 @@ void PromoteMem2Reg::RewriteSingleStoreAlloca(AllocaInst *AI, } namespace { - /// This is a helper predicate used to search by the first element of a pair. struct StoreIndexSearchPredicate { - bool operator()(const std::pair<unsigned, StoreInst*> &LHS, - const std::pair<unsigned, StoreInst*> &RHS) { + bool operator()(const std::pair<unsigned, StoreInst *> &LHS, + const std::pair<unsigned, StoreInst *> &RHS) { return LHS.first < RHS.first; } }; - } /// Many allocas are only used within a single basic block. If this is the @@ -904,22 +911,22 @@ void PromoteMem2Reg::PromoteSingleBlockAlloca(AllocaInst *AI, AllocaInfo &Info, // this code is optimized assuming that large blocks happen. This does not // significantly pessimize the small block case. This uses LargeBlockInfo to // make it efficient to get the index of various operations in the block. - + // Clear out UsingBlocks. We will reconstruct it here if needed. Info.UsingBlocks.clear(); - + // Walk the use-def list of the alloca, getting the locations of all stores. - typedef SmallVector<std::pair<unsigned, StoreInst*>, 64> StoresByIndexTy; + typedef SmallVector<std::pair<unsigned, StoreInst *>, 64> StoresByIndexTy; StoresByIndexTy StoresByIndex; - - for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); - UI != E; ++UI) + + for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E; + ++UI) if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) StoresByIndex.push_back(std::make_pair(LBI.getInstructionIndex(SI), SI)); // If there are no stores to the alloca, just replace any loads with undef. if (StoresByIndex.empty()) { - for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E;) + for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E;) if (LoadInst *LI = dyn_cast<LoadInst>(*UI++)) { LI->replaceAllUsesWith(UndefValue::get(LI->getType())); if (AST && LI->getType()->isPointerTy()) @@ -929,32 +936,33 @@ void PromoteMem2Reg::PromoteSingleBlockAlloca(AllocaInst *AI, AllocaInfo &Info, } return; } - + // Sort the stores by their index, making it efficient to do a lookup with a // binary search. std::sort(StoresByIndex.begin(), StoresByIndex.end()); - + // Walk all of the loads from this alloca, replacing them with the nearest // store above them, if any. for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E;) { LoadInst *LI = dyn_cast<LoadInst>(*UI++); - if (!LI) continue; - + if (!LI) + continue; + unsigned LoadIdx = LBI.getInstructionIndex(LI); - - // Find the nearest store that has a lower than this load. - StoresByIndexTy::iterator I = - std::lower_bound(StoresByIndex.begin(), StoresByIndex.end(), - std::pair<unsigned, StoreInst*>(LoadIdx, static_cast<StoreInst*>(0)), - StoreIndexSearchPredicate()); - + + // Find the nearest store that has a lower than this load. + StoresByIndexTy::iterator I = std::lower_bound( + StoresByIndex.begin(), StoresByIndex.end(), + std::pair<unsigned, StoreInst *>(LoadIdx, static_cast<StoreInst *>(0)), + StoreIndexSearchPredicate()); + // If there is no store before this load, then we can't promote this load. if (I == StoresByIndex.begin()) { // Can't handle this load, bail out. Info.UsingBlocks.push_back(LI->getParent()); continue; } - + // Otherwise, there was a store before this load, the load takes its value. --I; LI->replaceAllUsesWith(I->second->getOperand(0)); @@ -974,12 +982,13 @@ bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo, PHINode *&PN = NewPhiNodes[std::make_pair(BBNumbers[BB], AllocaNo)]; // If the BB already has a phi node added for the i'th alloca then we're done! - if (PN) return false; + if (PN) + return false; // Create a PhiNode using the dereferenced type... and add the phi-node to the // BasicBlock. PN = PHINode::Create(Allocas[AllocaNo]->getAllocatedType(), getNumPreds(BB), - Allocas[AllocaNo]->getName() + "." + Twine(Version++), + Allocas[AllocaNo]->getName() + "." + Twine(Version++), BB->begin()); ++NumPHIInsert; PhiToAllocaMap[PN] = AllocaNo; @@ -1012,48 +1021,52 @@ NextIteration: // inserted by this pass of mem2reg will have the same number of incoming // operands so far. Remember this count. unsigned NewPHINumOperands = APN->getNumOperands(); - + unsigned NumEdges = 0; for (succ_iterator I = succ_begin(Pred), E = succ_end(Pred); I != E; ++I) if (*I == BB) ++NumEdges; assert(NumEdges && "Must be at least one edge from Pred to BB!"); - + // Add entries for all the phis. BasicBlock::iterator PNI = BB->begin(); do { unsigned AllocaNo = PhiToAllocaMap[APN]; - + // Add N incoming values to the PHI node. for (unsigned i = 0; i != NumEdges; ++i) APN->addIncoming(IncomingVals[AllocaNo], Pred); - + // The currently active variable for this block is now the PHI. IncomingVals[AllocaNo] = APN; - + // Get the next phi node. ++PNI; APN = dyn_cast<PHINode>(PNI); - if (APN == 0) break; - + if (APN == 0) + break; + // Verify that it is missing entries. If not, it is not being inserted // by this mem2reg invocation so we want to ignore it. } while (APN->getNumOperands() == NewPHINumOperands); } } - + // Don't revisit blocks. - if (!Visited.insert(BB)) return; + if (!Visited.insert(BB)) + return; - for (BasicBlock::iterator II = BB->begin(); !isa<TerminatorInst>(II); ) { + for (BasicBlock::iterator II = BB->begin(); !isa<TerminatorInst>(II);) { Instruction *I = II++; // get the instruction, increment iterator if (LoadInst *LI = dyn_cast<LoadInst>(I)) { AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand()); - if (!Src) continue; - - DenseMap<AllocaInst*, unsigned>::iterator AI = AllocaLookup.find(Src); - if (AI == AllocaLookup.end()) continue; + if (!Src) + continue; + + DenseMap<AllocaInst *, unsigned>::iterator AI = AllocaLookup.find(Src); + if (AI == AllocaLookup.end()) + continue; Value *V = IncomingVals[AI->second]; @@ -1066,12 +1079,13 @@ NextIteration: // Delete this instruction and mark the name as the current holder of the // value AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand()); - if (!Dest) continue; - + if (!Dest) + continue; + DenseMap<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest); if (ai == AllocaLookup.end()) continue; - + // what value were we writing? IncomingVals[ai->second] = SI->getOperand(0); // Record debuginfo for the store before removing it. @@ -1086,10 +1100,11 @@ NextIteration: // 'Recurse' to our successors. succ_iterator I = succ_begin(BB), E = succ_end(BB); - if (I == E) return; + if (I == E) + return; // Keep track of the successors so we don't visit the same successor twice - SmallPtrSet<BasicBlock*, 8> VisitedSuccs; + SmallPtrSet<BasicBlock *, 8> VisitedSuccs; // Handle the first successor without using the worklist. VisitedSuccs.insert(*I); @@ -1104,10 +1119,11 @@ NextIteration: goto NextIteration; } -void llvm::PromoteMemToReg(const std::vector<AllocaInst*> &Allocas, +void llvm::PromoteMemToReg(const std::vector<AllocaInst *> &Allocas, DominatorTree &DT, AliasSetTracker *AST) { // If there is nothing to do, bail out... - if (Allocas.empty()) return; + if (Allocas.empty()) + return; PromoteMem2Reg(Allocas, DT, AST).run(); } |