diff options
Diffstat (limited to 'lib/Target/X86/X86SchedHaswell.td')
-rw-r--r-- | lib/Target/X86/X86SchedHaswell.td | 126 |
1 files changed, 126 insertions, 0 deletions
diff --git a/lib/Target/X86/X86SchedHaswell.td b/lib/Target/X86/X86SchedHaswell.td new file mode 100644 index 00000000000..b3eb460d3c3 --- /dev/null +++ b/lib/Target/X86/X86SchedHaswell.td @@ -0,0 +1,126 @@ +//=- X86SchedHaswell.td - X86 Haswell Scheduling -------------*- tablegen -*-=// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines the machine model for Haswell to support instruction +// scheduling and other instruction cost heuristics. +// +//===----------------------------------------------------------------------===// + +def HaswellModel : SchedMachineModel { + // All x86 instructions are modeled as a single micro-op, and HW can decode 4 + // instructions per cycle. + let IssueWidth = 4; + let MinLatency = 0; // 0 = Out-of-order execution. + let LoadLatency = 4; + let ILPWindow = 40; + let MispredictPenalty = 16; +} + +let SchedModel = HaswellModel in { + +// Haswell can issue micro-ops to 8 different ports in one cycle. + +// Ports 0, 1, 5, 6 and 7 handle all computation. +// Port 4 gets the data half of stores. Store data can be available later than +// the store address, but since we don't model the latency of stores, we can +// ignore that. +// Ports 2 and 3 are identical. They handle loads and the address half of +// stores. Port 7 can handle address calculations. +def HWPort0 : ProcResource<1>; +def HWPort1 : ProcResource<1>; +def HWPort2 : ProcResource<1>; +def HWPort3 : ProcResource<1>; +def HWPort4 : ProcResource<1>; +def HWPort5 : ProcResource<1>; +def HWPort6 : ProcResource<1>; +def HWPort7 : ProcResource<1>; + +// Many micro-ops are capable of issuing on multiple ports. +def HWPort23 : ProcResGroup<[HWPort2, HWPort3]>; +def HWPort237 : ProcResGroup<[HWPort2, HWPort3, HWPort7]>; +def HWPort05 : ProcResGroup<[HWPort0, HWPort5]>; +def HWPort056 : ProcResGroup<[HWPort0, HWPort5, HWPort6]>; +def HWPort15 : ProcResGroup<[HWPort1, HWPort5]>; +def HWPort015 : ProcResGroup<[HWPort0, HWPort1, HWPort5]>; +def HWPort0156: ProcResGroup<[HWPort0, HWPort1, HWPort5, HWPort6]>; + +// Integer division issued on port 0, but uses the non-pipelined divider. +def HWDivider : ProcResource<1> { let Buffered = 0; } + +// Loads are 4 cycles, so ReadAfterLd registers needn't be available until 4 +// cycles after the memory operand. +def : ReadAdvance<ReadAfterLd, 4>; + +// Many SchedWrites are defined in pairs with and without a folded load. +// Instructions with folded loads are usually micro-fused, so they only appear +// as two micro-ops when queued in the reservation station. +// This multiclass defines the resource usage for variants with and without +// folded loads. +multiclass HWWriteResPair<X86FoldableSchedWrite SchedRW, + ProcResourceKind ExePort, + int Lat> { + // Register variant is using a single cycle on ExePort. + def : WriteRes<SchedRW, [ExePort]> { let Latency = Lat; } + + // Memory variant also uses a cycle on port 2/3 and adds 4 cycles to the + // latency. + def : WriteRes<SchedRW.Folded, [HWPort23, ExePort]> { + let Latency = !add(Lat, 4); + } +} + +// A folded store needs a cycle on port 4 for the store data, but it does not +// need an extra port 2/3 cycle to recompute the address. +def : WriteRes<WriteRMW, [HWPort4]>; + +def : WriteRes<WriteStore, [HWPort237, HWPort4]>; +def : WriteRes<WriteLoad, [HWPort23]> { let Latency = 4; } +def : WriteRes<WriteMove, [HWPort0156]>; +def : WriteRes<WriteZero, []>; + +defm : HWWriteResPair<WriteALU, HWPort0156, 1>; +defm : HWWriteResPair<WriteIMul, HWPort1, 3>; +defm : HWWriteResPair<WriteShift, HWPort056, 1>; +defm : HWWriteResPair<WriteJump, HWPort5, 1>; + +// This is for simple LEAs with one or two input operands. +// The complex ones can only execute on port 1, and they require two cycles on +// the port to read all inputs. We don't model that. +def : WriteRes<WriteLEA, [HWPort15]>; + +// This is quite rough, latency depends on the dividend. +def : WriteRes<WriteIDiv, [HWPort0, HWDivider]> { + let Latency = 25; + let ResourceCycles = [1, 10]; +} +def : WriteRes<WriteIDivLd, [HWPort23, HWPort0, HWDivider]> { + let Latency = 29; + let ResourceCycles = [1, 1, 10]; +} + +// Scalar and vector floating point. +defm : HWWriteResPair<WriteFAdd, HWPort1, 3>; +defm : HWWriteResPair<WriteFMul, HWPort0, 5>; +defm : HWWriteResPair<WriteFDiv, HWPort0, 12>; // 10-14 cycles. +defm : HWWriteResPair<WriteFRcp, HWPort0, 5>; +defm : HWWriteResPair<WriteFSqrt, HWPort0, 15>; +defm : HWWriteResPair<WriteCvtF2I, HWPort1, 3>; +defm : HWWriteResPair<WriteCvtI2F, HWPort1, 4>; +defm : HWWriteResPair<WriteCvtF2F, HWPort1, 3>; + +// Vector integer operations. +defm : HWWriteResPair<WriteVecShift, HWPort05, 1>; +defm : HWWriteResPair<WriteVecLogic, HWPort015, 1>; +defm : HWWriteResPair<WriteVecALU, HWPort15, 1>; +defm : HWWriteResPair<WriteVecIMul, HWPort0, 5>; +defm : HWWriteResPair<WriteShuffle, HWPort15, 1>; + +def : WriteRes<WriteSystem, [HWPort0156]> { let Latency = 100; } +def : WriteRes<WriteMicrocoded, [HWPort0156]> { let Latency = 100; } +} // SchedModel |