/* * Copyright © 2017 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "common/gen_decoder.h" #include "gen_disasm.h" #include "util/macros.h" #include void gen_batch_decode_ctx_init(struct gen_batch_decode_ctx *ctx, const struct gen_device_info *devinfo, FILE *fp, enum gen_batch_decode_flags flags, const char *xml_path, struct gen_batch_decode_bo (*get_bo)(void *, uint64_t), unsigned (*get_state_size)(void *, uint32_t), void *user_data) { memset(ctx, 0, sizeof(*ctx)); ctx->get_bo = get_bo; ctx->get_state_size = get_state_size; ctx->user_data = user_data; ctx->fp = fp; ctx->flags = flags; ctx->max_vbo_decoded_lines = -1; /* No limit! */ ctx->engine = I915_ENGINE_CLASS_RENDER; if (xml_path == NULL) ctx->spec = gen_spec_load(devinfo); else ctx->spec = gen_spec_load_from_path(devinfo, xml_path); ctx->disasm = gen_disasm_create(devinfo); } void gen_batch_decode_ctx_finish(struct gen_batch_decode_ctx *ctx) { gen_spec_destroy(ctx->spec); gen_disasm_destroy(ctx->disasm); } #define CSI "\e[" #define RED_COLOR CSI "31m" #define BLUE_HEADER CSI "0;44m" #define GREEN_HEADER CSI "1;42m" #define NORMAL CSI "0m" static void ctx_print_group(struct gen_batch_decode_ctx *ctx, struct gen_group *group, uint64_t address, const void *map) { gen_print_group(ctx->fp, group, address, map, 0, (ctx->flags & GEN_BATCH_DECODE_IN_COLOR) != 0); } static struct gen_batch_decode_bo ctx_get_bo(struct gen_batch_decode_ctx *ctx, uint64_t addr) { if (gen_spec_get_gen(ctx->spec) >= gen_make_gen(8,0)) { /* On Broadwell and above, we have 48-bit addresses which consume two * dwords. Some packets require that these get stored in a "canonical * form" which means that bit 47 is sign-extended through the upper * bits. In order to correctly handle those aub dumps, we need to mask * off the top 16 bits. */ addr &= (~0ull >> 16); } struct gen_batch_decode_bo bo = ctx->get_bo(ctx->user_data, addr); if (gen_spec_get_gen(ctx->spec) >= gen_make_gen(8,0)) bo.addr &= (~0ull >> 16); /* We may actually have an offset into the bo */ if (bo.map != NULL) { assert(bo.addr <= addr); uint64_t offset = addr - bo.addr; bo.map += offset; bo.addr += offset; bo.size -= offset; } return bo; } static int update_count(struct gen_batch_decode_ctx *ctx, uint32_t offset_from_dsba, unsigned element_dwords, unsigned guess) { unsigned size = 0; if (ctx->get_state_size) size = ctx->get_state_size(ctx->user_data, offset_from_dsba); if (size > 0) return size / (sizeof(uint32_t) * element_dwords); /* In the absence of any information, just guess arbitrarily. */ return guess; } static void ctx_disassemble_program(struct gen_batch_decode_ctx *ctx, uint32_t ksp, const char *type) { uint64_t addr = ctx->instruction_base + ksp; struct gen_batch_decode_bo bo = ctx_get_bo(ctx, addr); if (!bo.map) return; fprintf(ctx->fp, "\nReferenced %s:\n", type); gen_disasm_disassemble(ctx->disasm, bo.map, 0, ctx->fp); } /* Heuristic to determine whether a uint32_t is probably actually a float * (http://stackoverflow.com/a/2953466) */ static bool probably_float(uint32_t bits) { int exp = ((bits & 0x7f800000U) >> 23) - 127; uint32_t mant = bits & 0x007fffff; /* +- 0.0 */ if (exp == -127 && mant == 0) return true; /* +- 1 billionth to 1 billion */ if (-30 <= exp && exp <= 30) return true; /* some value with only a few binary digits */ if ((mant & 0x0000ffff) == 0) return true; return false; } static void ctx_print_buffer(struct gen_batch_decode_ctx *ctx, struct gen_batch_decode_bo bo, uint32_t read_length, uint32_t pitch, int max_lines) { const uint32_t *dw_end = bo.map + MIN2(bo.size, read_length); int column_count = 0, line_count = -1; for (const uint32_t *dw = bo.map; dw < dw_end; dw++) { if (column_count * 4 == pitch || column_count == 8) { fprintf(ctx->fp, "\n"); column_count = 0; line_count++; if (max_lines >= 0 && line_count >= max_lines) break; } fprintf(ctx->fp, column_count == 0 ? " " : " "); if ((ctx->flags & GEN_BATCH_DECODE_FLOATS) && probably_float(*dw)) fprintf(ctx->fp, " %8.2f", *(float *) dw); else fprintf(ctx->fp, " 0x%08x", *dw); column_count++; } fprintf(ctx->fp, "\n"); } static struct gen_group * gen_ctx_find_instruction(struct gen_batch_decode_ctx *ctx, const uint32_t *p) { return gen_spec_find_instruction(ctx->spec, ctx->engine, p); } static void handle_state_base_address(struct gen_batch_decode_ctx *ctx, const uint32_t *p) { struct gen_group *inst = gen_ctx_find_instruction(ctx, p); struct gen_field_iterator iter; gen_field_iterator_init(&iter, inst, p, 0, false); uint64_t surface_base = 0, dynamic_base = 0, instruction_base = 0; bool surface_modify = 0, dynamic_modify = 0, instruction_modify = 0; while (gen_field_iterator_next(&iter)) { if (strcmp(iter.name, "Surface State Base Address") == 0) { surface_base = iter.raw_value; } else if (strcmp(iter.name, "Dynamic State Base Address") == 0) { dynamic_base = iter.raw_value; } else if (strcmp(iter.name, "Instruction Base Address") == 0) { instruction_base = iter.raw_value; } else if (strcmp(iter.name, "Surface State Base Address Modify Enable") == 0) { surface_modify = iter.raw_value; } else if (strcmp(iter.name, "Dynamic State Base Address Modify Enable") == 0) { dynamic_modify = iter.raw_value; } else if (strcmp(iter.name, "Instruction Base Address Modify Enable") == 0) { instruction_modify = iter.raw_value; } } if (dynamic_modify) ctx->dynamic_base = dynamic_base; if (surface_modify) ctx->surface_base = surface_base; if (instruction_modify) ctx->instruction_base = instruction_base; } static void dump_binding_table(struct gen_batch_decode_ctx *ctx, uint32_t offset, int count) { struct gen_group *strct = gen_spec_find_struct(ctx->spec, "RENDER_SURFACE_STATE"); if (strct == NULL) { fprintf(ctx->fp, "did not find RENDER_SURFACE_STATE info\n"); return; } if (count < 0) count = update_count(ctx, offset, 1, 8); if (offset % 32 != 0 || offset >= UINT16_MAX) { fprintf(ctx->fp, " invalid binding table pointer\n"); return; } struct gen_batch_decode_bo bind_bo = ctx_get_bo(ctx, ctx->surface_base + offset); if (bind_bo.map == NULL) { fprintf(ctx->fp, " binding table unavailable\n"); return; } const uint32_t *pointers = bind_bo.map; for (int i = 0; i < count; i++) { if (pointers[i] == 0) continue; uint64_t addr = ctx->surface_base + pointers[i]; struct gen_batch_decode_bo bo = ctx_get_bo(ctx, addr); uint32_t size = strct->dw_length * 4; if (pointers[i] % 32 != 0 || addr < bo.addr || addr + size >= bo.addr + bo.size) { fprintf(ctx->fp, "pointer %u: 0x%08x \n", i, pointers[i]); continue; } fprintf(ctx->fp, "pointer %u: 0x%08x\n", i, pointers[i]); ctx_print_group(ctx, strct, addr, bo.map + (addr - bo.addr)); } } static void dump_samplers(struct gen_batch_decode_ctx *ctx, uint32_t offset, int count) { struct gen_group *strct = gen_spec_find_struct(ctx->spec, "SAMPLER_STATE"); if (count < 0) count = update_count(ctx, offset, strct->dw_length, 4); uint64_t state_addr = ctx->dynamic_base + offset; struct gen_batch_decode_bo bo = ctx_get_bo(ctx, state_addr); const void *state_map = bo.map; if (state_map == NULL) { fprintf(ctx->fp, " samplers unavailable\n"); return; } if (offset % 32 != 0 || state_addr - bo.addr >= bo.size) { fprintf(ctx->fp, " invalid sampler state pointer\n"); return; } for (int i = 0; i < count; i++) { fprintf(ctx->fp, "sampler state %d\n", i); ctx_print_group(ctx, strct, state_addr, state_map); state_addr += 16; state_map += 16; } } static void handle_media_interface_descriptor_load(struct gen_batch_decode_ctx *ctx, const uint32_t *p) { struct gen_group *inst = gen_ctx_find_instruction(ctx, p); struct gen_group *desc = gen_spec_find_struct(ctx->spec, "INTERFACE_DESCRIPTOR_DATA"); struct gen_field_iterator iter; gen_field_iterator_init(&iter, inst, p, 0, false); uint32_t descriptor_offset = 0; int descriptor_count = 0; while (gen_field_iterator_next(&iter)) { if (strcmp(iter.name, "Interface Descriptor Data Start Address") == 0) { descriptor_offset = strtol(iter.value, NULL, 16); } else if (strcmp(iter.name, "Interface Descriptor Total Length") == 0) { descriptor_count = strtol(iter.value, NULL, 16) / (desc->dw_length * 4); } } uint64_t desc_addr = ctx->dynamic_base + descriptor_offset; struct gen_batch_decode_bo bo = ctx_get_bo(ctx, desc_addr); const void *desc_map = bo.map; if (desc_map == NULL) { fprintf(ctx->fp, " interface descriptors unavailable\n"); return; } for (int i = 0; i < descriptor_count; i++) { fprintf(ctx->fp, "descriptor %d: %08x\n", i, descriptor_offset); ctx_print_group(ctx, desc, desc_addr, desc_map); gen_field_iterator_init(&iter, desc, desc_map, 0, false); uint64_t ksp = 0; uint32_t sampler_offset = 0, sampler_count = 0; uint32_t binding_table_offset = 0, binding_entry_count = 0; while (gen_field_iterator_next(&iter)) { if (strcmp(iter.name, "Kernel Start Pointer") == 0) { ksp = strtoll(iter.value, NULL, 16); } else if (strcmp(iter.name, "Sampler State Pointer") == 0) { sampler_offset = strtol(iter.value, NULL, 16); } else if (strcmp(iter.name, "Sampler Count") == 0) { sampler_count = strtol(iter.value, NULL, 10); } else if (strcmp(iter.name, "Binding Table Pointer") == 0) { binding_table_offset = strtol(iter.value, NULL, 16); } else if (strcmp(iter.name, "Binding Table Entry Count") == 0) { binding_entry_count = strtol(iter.value, NULL, 10); } } ctx_disassemble_program(ctx, ksp, "compute shader"); printf("\n"); dump_samplers(ctx, sampler_offset, sampler_count); dump_binding_table(ctx, binding_table_offset, binding_entry_count); desc_map += desc->dw_length; desc_addr += desc->dw_length * 4; } } static void handle_3dstate_vertex_buffers(struct gen_batch_decode_ctx *ctx, const uint32_t *p) { struct gen_group *inst = gen_ctx_find_instruction(ctx, p); struct gen_group *vbs = gen_spec_find_struct(ctx->spec, "VERTEX_BUFFER_STATE"); struct gen_batch_decode_bo vb = {}; uint32_t vb_size = 0; int index = -1; int pitch = -1; bool ready = false; struct gen_field_iterator iter; gen_field_iterator_init(&iter, inst, p, 0, false); while (gen_field_iterator_next(&iter)) { if (iter.struct_desc != vbs) continue; struct gen_field_iterator vbs_iter; gen_field_iterator_init(&vbs_iter, vbs, &iter.p[iter.start_bit / 32], 0, false); while (gen_field_iterator_next(&vbs_iter)) { if (strcmp(vbs_iter.name, "Vertex Buffer Index") == 0) { index = vbs_iter.raw_value; } else if (strcmp(vbs_iter.name, "Buffer Pitch") == 0) { pitch = vbs_iter.raw_value; } else if (strcmp(vbs_iter.name, "Buffer Starting Address") == 0) { vb = ctx_get_bo(ctx, vbs_iter.raw_value); } else if (strcmp(vbs_iter.name, "Buffer Size") == 0) { vb_size = vbs_iter.raw_value; ready = true; } else if (strcmp(vbs_iter.name, "End Address") == 0) { if (vb.map && vbs_iter.raw_value >= vb.addr) vb_size = vbs_iter.raw_value - vb.addr; else vb_size = 0; ready = true; } if (!ready) continue; fprintf(ctx->fp, "vertex buffer %d, size %d\n", index, vb_size); if (vb.map == NULL) { fprintf(ctx->fp, " buffer contents unavailable\n"); continue; } if (vb.map == 0 || vb_size == 0) continue; ctx_print_buffer(ctx, vb, vb_size, pitch, ctx->max_vbo_decoded_lines); vb.map = NULL; vb_size = 0; index = -1; pitch = -1; ready = false; } } } static void handle_3dstate_index_buffer(struct gen_batch_decode_ctx *ctx, const uint32_t *p) { struct gen_group *inst = gen_ctx_find_instruction(ctx, p); struct gen_batch_decode_bo ib = {}; uint32_t ib_size = 0; uint32_t format = 0; struct gen_field_iterator iter; gen_field_iterator_init(&iter, inst, p, 0, false); while (gen_field_iterator_next(&iter)) { if (strcmp(iter.name, "Index Format") == 0) { format = iter.raw_value; } else if (strcmp(iter.name, "Buffer Starting Address") == 0) { ib = ctx_get_bo(ctx, iter.raw_value); } else if (strcmp(iter.name, "Buffer Size") == 0) { ib_size = iter.raw_value; } } if (ib.map == NULL) { fprintf(ctx->fp, " buffer contents unavailable\n"); return; } const void *m = ib.map; const void *ib_end = ib.map + MIN2(ib.size, ib_size); for (int i = 0; m < ib_end && i < 10; i++) { switch (format) { case 0: fprintf(ctx->fp, "%3d ", *(uint8_t *)m); m += 1; break; case 1: fprintf(ctx->fp, "%3d ", *(uint16_t *)m); m += 2; break; case 2: fprintf(ctx->fp, "%3d ", *(uint32_t *)m); m += 4; break; } } if (m < ib_end) fprintf(ctx->fp, "..."); fprintf(ctx->fp, "\n"); } static void decode_single_ksp(struct gen_batch_decode_ctx *ctx, const uint32_t *p) { struct gen_group *inst = gen_ctx_find_instruction(ctx, p); uint64_t ksp = 0; bool is_simd8 = false; /* vertex shaders on Gen8+ only */ bool is_enabled = true; struct gen_field_iterator iter; gen_field_iterator_init(&iter, inst, p, 0, false); while (gen_field_iterator_next(&iter)) { if (strcmp(iter.name, "Kernel Start Pointer") == 0) { ksp = iter.raw_value; } else if (strcmp(iter.name, "SIMD8 Dispatch Enable") == 0) { is_simd8 = iter.raw_value; } else if (strcmp(iter.name, "Dispatch Mode") == 0) { is_simd8 = strcmp(iter.value, "SIMD8") == 0; } else if (strcmp(iter.name, "Dispatch Enable") == 0) { is_simd8 = strcmp(iter.value, "SIMD8") == 0; } else if (strcmp(iter.name, "Enable") == 0) { is_enabled = iter.raw_value; } } const char *type = strcmp(inst->name, "VS_STATE") == 0 ? "vertex shader" : strcmp(inst->name, "GS_STATE") == 0 ? "geometry shader" : strcmp(inst->name, "SF_STATE") == 0 ? "strips and fans shader" : strcmp(inst->name, "CLIP_STATE") == 0 ? "clip shader" : strcmp(inst->name, "3DSTATE_DS") == 0 ? "tessellation evaluation shader" : strcmp(inst->name, "3DSTATE_HS") == 0 ? "tessellation control shader" : strcmp(inst->name, "3DSTATE_VS") == 0 ? (is_simd8 ? "SIMD8 vertex shader" : "vec4 vertex shader") : strcmp(inst->name, "3DSTATE_GS") == 0 ? (is_simd8 ? "SIMD8 geometry shader" : "vec4 geometry shader") : NULL; if (is_enabled) { ctx_disassemble_program(ctx, ksp, type); printf("\n"); } } static void decode_ps_kernels(struct gen_batch_decode_ctx *ctx, const uint32_t *p) { struct gen_group *inst = gen_ctx_find_instruction(ctx, p); uint64_t ksp[3] = {0, 0, 0}; bool enabled[3] = {false, false, false}; struct gen_field_iterator iter; gen_field_iterator_init(&iter, inst, p, 0, false); while (gen_field_iterator_next(&iter)) { if (strncmp(iter.name, "Kernel Start Pointer ", strlen("Kernel Start Pointer ")) == 0) { int idx = iter.name[strlen("Kernel Start Pointer ")] - '0'; ksp[idx] = strtol(iter.value, NULL, 16); } else if (strcmp(iter.name, "8 Pixel Dispatch Enable") == 0) { enabled[0] = strcmp(iter.value, "true") == 0; } else if (strcmp(iter.name, "16 Pixel Dispatch Enable") == 0) { enabled[1] = strcmp(iter.value, "true") == 0; } else if (strcmp(iter.name, "32 Pixel Dispatch Enable") == 0) { enabled[2] = strcmp(iter.value, "true") == 0; } } /* Reorder KSPs to be [8, 16, 32] instead of the hardware order. */ if (enabled[0] + enabled[1] + enabled[2] == 1) { if (enabled[1]) { ksp[1] = ksp[0]; ksp[0] = 0; } else if (enabled[2]) { ksp[2] = ksp[0]; ksp[0] = 0; } } else { uint64_t tmp = ksp[1]; ksp[1] = ksp[2]; ksp[2] = tmp; } if (enabled[0]) ctx_disassemble_program(ctx, ksp[0], "SIMD8 fragment shader"); if (enabled[1]) ctx_disassemble_program(ctx, ksp[1], "SIMD16 fragment shader"); if (enabled[2]) ctx_disassemble_program(ctx, ksp[2], "SIMD32 fragment shader"); fprintf(ctx->fp, "\n"); } static void decode_3dstate_constant(struct gen_batch_decode_ctx *ctx, const uint32_t *p) { struct gen_group *inst = gen_ctx_find_instruction(ctx, p); struct gen_group *body = gen_spec_find_struct(ctx->spec, "3DSTATE_CONSTANT_BODY"); uint32_t read_length[4] = {0}; uint64_t read_addr[4]; struct gen_field_iterator outer; gen_field_iterator_init(&outer, inst, p, 0, false); while (gen_field_iterator_next(&outer)) { if (outer.struct_desc != body) continue; struct gen_field_iterator iter; gen_field_iterator_init(&iter, body, &outer.p[outer.start_bit / 32], 0, false); while (gen_field_iterator_next(&iter)) { int idx; if (sscanf(iter.name, "Read Length[%d]", &idx) == 1) { read_length[idx] = iter.raw_value; } else if (sscanf(iter.name, "Buffer[%d]", &idx) == 1) { read_addr[idx] = iter.raw_value; } } for (int i = 0; i < 4; i++) { if (read_length[i] == 0) continue; struct gen_batch_decode_bo buffer = ctx_get_bo(ctx, read_addr[i]); if (!buffer.map) { fprintf(ctx->fp, "constant buffer %d unavailable\n", i); continue; } unsigned size = read_length[i] * 32; fprintf(ctx->fp, "constant buffer %d, size %u\n", i, size); ctx_print_buffer(ctx, buffer, size, 0, -1); } } } static void decode_3dstate_binding_table_pointers(struct gen_batch_decode_ctx *ctx, const uint32_t *p) { dump_binding_table(ctx, p[1], -1); } static void decode_3dstate_sampler_state_pointers(struct gen_batch_decode_ctx *ctx, const uint32_t *p) { dump_samplers(ctx, p[1], -1); } static void decode_3dstate_sampler_state_pointers_gen6(struct gen_batch_decode_ctx *ctx, const uint32_t *p) { dump_samplers(ctx, p[1], -1); dump_samplers(ctx, p[2], -1); dump_samplers(ctx, p[3], -1); } static bool str_ends_with(const char *str, const char *end) { int offset = strlen(str) - strlen(end); if (offset < 0) return false; return strcmp(str + offset, end) == 0; } static void decode_dynamic_state_pointers(struct gen_batch_decode_ctx *ctx, const char *struct_type, const uint32_t *p, int count) { struct gen_group *inst = gen_ctx_find_instruction(ctx, p); uint32_t state_offset = 0; struct gen_field_iterator iter; gen_field_iterator_init(&iter, inst, p, 0, false); while (gen_field_iterator_next(&iter)) { if (str_ends_with(iter.name, "Pointer")) { state_offset = iter.raw_value; break; } } uint64_t state_addr = ctx->dynamic_base + state_offset; struct gen_batch_decode_bo bo = ctx_get_bo(ctx, state_addr); const void *state_map = bo.map; if (state_map == NULL) { fprintf(ctx->fp, " dynamic %s state unavailable\n", struct_type); return; } struct gen_group *state = gen_spec_find_struct(ctx->spec, struct_type); if (strcmp(struct_type, "BLEND_STATE") == 0) { /* Blend states are different from the others because they have a header * struct called BLEND_STATE which is followed by a variable number of * BLEND_STATE_ENTRY structs. */ fprintf(ctx->fp, "%s\n", struct_type); ctx_print_group(ctx, state, state_addr, state_map); state_addr += state->dw_length * 4; state_map += state->dw_length * 4; struct_type = "BLEND_STATE_ENTRY"; state = gen_spec_find_struct(ctx->spec, struct_type); } for (int i = 0; i < count; i++) { fprintf(ctx->fp, "%s %d\n", struct_type, i); ctx_print_group(ctx, state, state_addr, state_map); state_addr += state->dw_length * 4; state_map += state->dw_length * 4; } } static void decode_3dstate_viewport_state_pointers_cc(struct gen_batch_decode_ctx *ctx, const uint32_t *p) { decode_dynamic_state_pointers(ctx, "CC_VIEWPORT", p, 4); } static void decode_3dstate_viewport_state_pointers_sf_clip(struct gen_batch_decode_ctx *ctx, const uint32_t *p) { decode_dynamic_state_pointers(ctx, "SF_CLIP_VIEWPORT", p, 4); } static void decode_3dstate_blend_state_pointers(struct gen_batch_decode_ctx *ctx, const uint32_t *p) { decode_dynamic_state_pointers(ctx, "BLEND_STATE", p, 1); } static void decode_3dstate_cc_state_pointers(struct gen_batch_decode_ctx *ctx, const uint32_t *p) { decode_dynamic_state_pointers(ctx, "COLOR_CALC_STATE", p, 1); } static void decode_3dstate_scissor_state_pointers(struct gen_batch_decode_ctx *ctx, const uint32_t *p) { decode_dynamic_state_pointers(ctx, "SCISSOR_RECT", p, 1); } static void decode_load_register_imm(struct gen_batch_decode_ctx *ctx, const uint32_t *p) { struct gen_group *reg = gen_spec_find_register(ctx->spec, p[1]); if (reg != NULL) { fprintf(ctx->fp, "register %s (0x%x): 0x%x\n", reg->name, reg->register_offset, p[2]); ctx_print_group(ctx, reg, reg->register_offset, &p[2]); } } struct custom_decoder { const char *cmd_name; void (*decode)(struct gen_batch_decode_ctx *ctx, const uint32_t *p); } custom_decoders[] = { { "STATE_BASE_ADDRESS", handle_state_base_address }, { "MEDIA_INTERFACE_DESCRIPTOR_LOAD", handle_media_interface_descriptor_load }, { "3DSTATE_VERTEX_BUFFERS", handle_3dstate_vertex_buffers }, { "3DSTATE_INDEX_BUFFER", handle_3dstate_index_buffer }, { "3DSTATE_VS", decode_single_ksp }, { "3DSTATE_GS", decode_single_ksp }, { "3DSTATE_DS", decode_single_ksp }, { "3DSTATE_HS", decode_single_ksp }, { "3DSTATE_PS", decode_ps_kernels }, { "3DSTATE_CONSTANT_VS", decode_3dstate_constant }, { "3DSTATE_CONSTANT_GS", decode_3dstate_constant }, { "3DSTATE_CONSTANT_PS", decode_3dstate_constant }, { "3DSTATE_CONSTANT_HS", decode_3dstate_constant }, { "3DSTATE_CONSTANT_DS", decode_3dstate_constant }, { "3DSTATE_BINDING_TABLE_POINTERS_VS", decode_3dstate_binding_table_pointers }, { "3DSTATE_BINDING_TABLE_POINTERS_HS", decode_3dstate_binding_table_pointers }, { "3DSTATE_BINDING_TABLE_POINTERS_DS", decode_3dstate_binding_table_pointers }, { "3DSTATE_BINDING_TABLE_POINTERS_GS", decode_3dstate_binding_table_pointers }, { "3DSTATE_BINDING_TABLE_POINTERS_PS", decode_3dstate_binding_table_pointers }, { "3DSTATE_SAMPLER_STATE_POINTERS_VS", decode_3dstate_sampler_state_pointers }, { "3DSTATE_SAMPLER_STATE_POINTERS_HS", decode_3dstate_sampler_state_pointers }, { "3DSTATE_SAMPLER_STATE_POINTERS_DS", decode_3dstate_sampler_state_pointers }, { "3DSTATE_SAMPLER_STATE_POINTERS_GS", decode_3dstate_sampler_state_pointers }, { "3DSTATE_SAMPLER_STATE_POINTERS_PS", decode_3dstate_sampler_state_pointers }, { "3DSTATE_SAMPLER_STATE_POINTERS", decode_3dstate_sampler_state_pointers_gen6 }, { "3DSTATE_VIEWPORT_STATE_POINTERS_CC", decode_3dstate_viewport_state_pointers_cc }, { "3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP", decode_3dstate_viewport_state_pointers_sf_clip }, { "3DSTATE_BLEND_STATE_POINTERS", decode_3dstate_blend_state_pointers }, { "3DSTATE_CC_STATE_POINTERS", decode_3dstate_cc_state_pointers }, { "3DSTATE_SCISSOR_STATE_POINTERS", decode_3dstate_scissor_state_pointers }, { "MI_LOAD_REGISTER_IMM", decode_load_register_imm } }; void gen_print_batch(struct gen_batch_decode_ctx *ctx, const uint32_t *batch, uint32_t batch_size, uint64_t batch_addr) { const uint32_t *p, *end = batch + batch_size / sizeof(uint32_t); int length; struct gen_group *inst; for (p = batch; p < end; p += length) { inst = gen_ctx_find_instruction(ctx, p); length = gen_group_get_length(inst, p); assert(inst == NULL || length > 0); length = MAX2(1, length); const char *reset_color = ctx->flags & GEN_BATCH_DECODE_IN_COLOR ? NORMAL : ""; uint64_t offset; if (ctx->flags & GEN_BATCH_DECODE_OFFSETS) offset = batch_addr + ((char *)p - (char *)batch); else offset = 0; if (inst == NULL) { fprintf(ctx->fp, "%s0x%08"PRIx64": unknown instruction %08x%s\n", (ctx->flags & GEN_BATCH_DECODE_IN_COLOR) ? RED_COLOR : "", offset, p[0], reset_color); continue; } const char *color; const char *inst_name = gen_group_get_name(inst); if (ctx->flags & GEN_BATCH_DECODE_IN_COLOR) { reset_color = NORMAL; if (ctx->flags & GEN_BATCH_DECODE_FULL) { if (strcmp(inst_name, "MI_BATCH_BUFFER_START") == 0 || strcmp(inst_name, "MI_BATCH_BUFFER_END") == 0) color = GREEN_HEADER; else color = BLUE_HEADER; } else { color = NORMAL; } } else { color = ""; reset_color = ""; } fprintf(ctx->fp, "%s0x%08"PRIx64": 0x%08x: %-80s%s\n", color, offset, p[0], inst_name, reset_color); if (ctx->flags & GEN_BATCH_DECODE_FULL) { ctx_print_group(ctx, inst, offset, p); for (int i = 0; i < ARRAY_SIZE(custom_decoders); i++) { if (strcmp(inst_name, custom_decoders[i].cmd_name) == 0) { custom_decoders[i].decode(ctx, p); break; } } } if (strcmp(inst_name, "MI_BATCH_BUFFER_START") == 0) { struct gen_batch_decode_bo next_batch = {}; bool second_level; struct gen_field_iterator iter; gen_field_iterator_init(&iter, inst, p, 0, false); while (gen_field_iterator_next(&iter)) { if (strcmp(iter.name, "Batch Buffer Start Address") == 0) { next_batch = ctx_get_bo(ctx, iter.raw_value); } else if (strcmp(iter.name, "Second Level Batch Buffer") == 0) { second_level = iter.raw_value; } } if (next_batch.map == NULL) { fprintf(ctx->fp, "Secondary batch at 0x%08"PRIx64" unavailable\n", next_batch.addr); } else { gen_print_batch(ctx, next_batch.map, next_batch.size, next_batch.addr); } if (second_level) { /* MI_BATCH_BUFFER_START with "2nd Level Batch Buffer" set acts * like a subroutine call. Commands that come afterwards get * processed once the 2nd level batch buffer returns with * MI_BATCH_BUFFER_END. */ continue; } else { /* MI_BATCH_BUFFER_START with "2nd Level Batch Buffer" unset acts * like a goto. Nothing after it will ever get processed. In * order to prevent the recursion from growing, we just reset the * loop and continue; */ break; } } else if (strcmp(inst_name, "MI_BATCH_BUFFER_END") == 0) { break; } } }