/* * fs/f2fs/segment.c * * Copyright (c) 2012 Samsung Electronics Co., Ltd. * http://www.samsung.com/ * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include "f2fs.h" #include "segment.h" #include "node.h" #include "trace.h" #include #define __reverse_ffz(x) __reverse_ffs(~(x)) static struct kmem_cache *discard_entry_slab; static struct kmem_cache *bio_entry_slab; static struct kmem_cache *sit_entry_set_slab; static struct kmem_cache *inmem_entry_slab; static unsigned long __reverse_ulong(unsigned char *str) { unsigned long tmp = 0; int shift = 24, idx = 0; #if BITS_PER_LONG == 64 shift = 56; #endif while (shift >= 0) { tmp |= (unsigned long)str[idx++] << shift; shift -= BITS_PER_BYTE; } return tmp; } /* * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since * MSB and LSB are reversed in a byte by f2fs_set_bit. */ static inline unsigned long __reverse_ffs(unsigned long word) { int num = 0; #if BITS_PER_LONG == 64 if ((word & 0xffffffff00000000UL) == 0) num += 32; else word >>= 32; #endif if ((word & 0xffff0000) == 0) num += 16; else word >>= 16; if ((word & 0xff00) == 0) num += 8; else word >>= 8; if ((word & 0xf0) == 0) num += 4; else word >>= 4; if ((word & 0xc) == 0) num += 2; else word >>= 2; if ((word & 0x2) == 0) num += 1; return num; } /* * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because * f2fs_set_bit makes MSB and LSB reversed in a byte. * @size must be integral times of unsigned long. * Example: * MSB <--> LSB * f2fs_set_bit(0, bitmap) => 1000 0000 * f2fs_set_bit(7, bitmap) => 0000 0001 */ static unsigned long __find_rev_next_bit(const unsigned long *addr, unsigned long size, unsigned long offset) { const unsigned long *p = addr + BIT_WORD(offset); unsigned long result = size; unsigned long tmp; if (offset >= size) return size; size -= (offset & ~(BITS_PER_LONG - 1)); offset %= BITS_PER_LONG; while (1) { if (*p == 0) goto pass; tmp = __reverse_ulong((unsigned char *)p); tmp &= ~0UL >> offset; if (size < BITS_PER_LONG) tmp &= (~0UL << (BITS_PER_LONG - size)); if (tmp) goto found; pass: if (size <= BITS_PER_LONG) break; size -= BITS_PER_LONG; offset = 0; p++; } return result; found: return result - size + __reverse_ffs(tmp); } static unsigned long __find_rev_next_zero_bit(const unsigned long *addr, unsigned long size, unsigned long offset) { const unsigned long *p = addr + BIT_WORD(offset); unsigned long result = size; unsigned long tmp; if (offset >= size) return size; size -= (offset & ~(BITS_PER_LONG - 1)); offset %= BITS_PER_LONG; while (1) { if (*p == ~0UL) goto pass; tmp = __reverse_ulong((unsigned char *)p); if (offset) tmp |= ~0UL << (BITS_PER_LONG - offset); if (size < BITS_PER_LONG) tmp |= ~0UL >> size; if (tmp != ~0UL) goto found; pass: if (size <= BITS_PER_LONG) break; size -= BITS_PER_LONG; offset = 0; p++; } return result; found: return result - size + __reverse_ffz(tmp); } void register_inmem_page(struct inode *inode, struct page *page) { struct f2fs_inode_info *fi = F2FS_I(inode); struct inmem_pages *new; f2fs_trace_pid(page); set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE); SetPagePrivate(page); new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS); /* add atomic page indices to the list */ new->page = page; INIT_LIST_HEAD(&new->list); /* increase reference count with clean state */ mutex_lock(&fi->inmem_lock); get_page(page); list_add_tail(&new->list, &fi->inmem_pages); inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); mutex_unlock(&fi->inmem_lock); trace_f2fs_register_inmem_page(page, INMEM); } static int __revoke_inmem_pages(struct inode *inode, struct list_head *head, bool drop, bool recover) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct inmem_pages *cur, *tmp; int err = 0; list_for_each_entry_safe(cur, tmp, head, list) { struct page *page = cur->page; if (drop) trace_f2fs_commit_inmem_page(page, INMEM_DROP); lock_page(page); if (recover) { struct dnode_of_data dn; struct node_info ni; trace_f2fs_commit_inmem_page(page, INMEM_REVOKE); set_new_dnode(&dn, inode, NULL, NULL, 0); if (get_dnode_of_data(&dn, page->index, LOOKUP_NODE)) { err = -EAGAIN; goto next; } get_node_info(sbi, dn.nid, &ni); f2fs_replace_block(sbi, &dn, dn.data_blkaddr, cur->old_addr, ni.version, true, true); f2fs_put_dnode(&dn); } next: /* we don't need to invalidate this in the sccessful status */ if (drop || recover) ClearPageUptodate(page); set_page_private(page, 0); ClearPagePrivate(page); f2fs_put_page(page, 1); list_del(&cur->list); kmem_cache_free(inmem_entry_slab, cur); dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); } return err; } void drop_inmem_pages(struct inode *inode) { struct f2fs_inode_info *fi = F2FS_I(inode); clear_inode_flag(inode, FI_ATOMIC_FILE); mutex_lock(&fi->inmem_lock); __revoke_inmem_pages(inode, &fi->inmem_pages, true, false); mutex_unlock(&fi->inmem_lock); } static int __commit_inmem_pages(struct inode *inode, struct list_head *revoke_list) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct f2fs_inode_info *fi = F2FS_I(inode); struct inmem_pages *cur, *tmp; struct f2fs_io_info fio = { .sbi = sbi, .type = DATA, .op = REQ_OP_WRITE, .op_flags = WRITE_SYNC | REQ_PRIO, .encrypted_page = NULL, }; bool submit_bio = false; int err = 0; list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) { struct page *page = cur->page; lock_page(page); if (page->mapping == inode->i_mapping) { trace_f2fs_commit_inmem_page(page, INMEM); set_page_dirty(page); f2fs_wait_on_page_writeback(page, DATA, true); if (clear_page_dirty_for_io(page)) { inode_dec_dirty_pages(inode); remove_dirty_inode(inode); } fio.page = page; err = do_write_data_page(&fio); if (err) { unlock_page(page); break; } /* record old blkaddr for revoking */ cur->old_addr = fio.old_blkaddr; clear_cold_data(page); submit_bio = true; } unlock_page(page); list_move_tail(&cur->list, revoke_list); } if (submit_bio) f2fs_submit_merged_bio_cond(sbi, inode, NULL, 0, DATA, WRITE); if (!err) __revoke_inmem_pages(inode, revoke_list, false, false); return err; } int commit_inmem_pages(struct inode *inode) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct f2fs_inode_info *fi = F2FS_I(inode); struct list_head revoke_list; int err; INIT_LIST_HEAD(&revoke_list); f2fs_balance_fs(sbi, true); f2fs_lock_op(sbi); mutex_lock(&fi->inmem_lock); err = __commit_inmem_pages(inode, &revoke_list); if (err) { int ret; /* * try to revoke all committed pages, but still we could fail * due to no memory or other reason, if that happened, EAGAIN * will be returned, which means in such case, transaction is * already not integrity, caller should use journal to do the * recovery or rewrite & commit last transaction. For other * error number, revoking was done by filesystem itself. */ ret = __revoke_inmem_pages(inode, &revoke_list, false, true); if (ret) err = ret; /* drop all uncommitted pages */ __revoke_inmem_pages(inode, &fi->inmem_pages, true, false); } mutex_unlock(&fi->inmem_lock); f2fs_unlock_op(sbi); return err; } /* * This function balances dirty node and dentry pages. * In addition, it controls garbage collection. */ void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need) { #ifdef CONFIG_F2FS_FAULT_INJECTION if (time_to_inject(sbi, FAULT_CHECKPOINT)) f2fs_stop_checkpoint(sbi, false); #endif if (!need) return; /* balance_fs_bg is able to be pending */ if (excess_cached_nats(sbi)) f2fs_balance_fs_bg(sbi); /* * We should do GC or end up with checkpoint, if there are so many dirty * dir/node pages without enough free segments. */ if (has_not_enough_free_secs(sbi, 0, 0)) { mutex_lock(&sbi->gc_mutex); f2fs_gc(sbi, false); } } void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi) { /* try to shrink extent cache when there is no enough memory */ if (!available_free_memory(sbi, EXTENT_CACHE)) f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER); /* check the # of cached NAT entries */ if (!available_free_memory(sbi, NAT_ENTRIES)) try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK); if (!available_free_memory(sbi, FREE_NIDS)) try_to_free_nids(sbi, MAX_FREE_NIDS); else build_free_nids(sbi, false); /* checkpoint is the only way to shrink partial cached entries */ if (!available_free_memory(sbi, NAT_ENTRIES) || !available_free_memory(sbi, INO_ENTRIES) || excess_prefree_segs(sbi) || excess_dirty_nats(sbi) || (is_idle(sbi) && f2fs_time_over(sbi, CP_TIME))) { if (test_opt(sbi, DATA_FLUSH)) { struct blk_plug plug; blk_start_plug(&plug); sync_dirty_inodes(sbi, FILE_INODE); blk_finish_plug(&plug); } f2fs_sync_fs(sbi->sb, true); stat_inc_bg_cp_count(sbi->stat_info); } } static int __submit_flush_wait(struct block_device *bdev) { struct bio *bio = f2fs_bio_alloc(0); int ret; bio_set_op_attrs(bio, REQ_OP_WRITE, WRITE_FLUSH); bio->bi_bdev = bdev; ret = submit_bio_wait(bio); bio_put(bio); return ret; } static int submit_flush_wait(struct f2fs_sb_info *sbi) { int ret = __submit_flush_wait(sbi->sb->s_bdev); int i; if (sbi->s_ndevs && !ret) { for (i = 1; i < sbi->s_ndevs; i++) { ret = __submit_flush_wait(FDEV(i).bdev); if (ret) break; } } return ret; } static int issue_flush_thread(void *data) { struct f2fs_sb_info *sbi = data; struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info; wait_queue_head_t *q = &fcc->flush_wait_queue; repeat: if (kthread_should_stop()) return 0; if (!llist_empty(&fcc->issue_list)) { struct flush_cmd *cmd, *next; int ret; fcc->dispatch_list = llist_del_all(&fcc->issue_list); fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list); ret = submit_flush_wait(sbi); llist_for_each_entry_safe(cmd, next, fcc->dispatch_list, llnode) { cmd->ret = ret; complete(&cmd->wait); } fcc->dispatch_list = NULL; } wait_event_interruptible(*q, kthread_should_stop() || !llist_empty(&fcc->issue_list)); goto repeat; } int f2fs_issue_flush(struct f2fs_sb_info *sbi) { struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info; struct flush_cmd cmd; trace_f2fs_issue_flush(sbi->sb, test_opt(sbi, NOBARRIER), test_opt(sbi, FLUSH_MERGE)); if (test_opt(sbi, NOBARRIER)) return 0; if (!test_opt(sbi, FLUSH_MERGE) || !atomic_read(&fcc->submit_flush)) { int ret; atomic_inc(&fcc->submit_flush); ret = submit_flush_wait(sbi); atomic_dec(&fcc->submit_flush); return ret; } init_completion(&cmd.wait); atomic_inc(&fcc->submit_flush); llist_add(&cmd.llnode, &fcc->issue_list); if (!fcc->dispatch_list) wake_up(&fcc->flush_wait_queue); wait_for_completion(&cmd.wait); atomic_dec(&fcc->submit_flush); return cmd.ret; } int create_flush_cmd_control(struct f2fs_sb_info *sbi) { dev_t dev = sbi->sb->s_bdev->bd_dev; struct flush_cmd_control *fcc; int err = 0; fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL); if (!fcc) return -ENOMEM; atomic_set(&fcc->submit_flush, 0); init_waitqueue_head(&fcc->flush_wait_queue); init_llist_head(&fcc->issue_list); SM_I(sbi)->cmd_control_info = fcc; fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi, "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev)); if (IS_ERR(fcc->f2fs_issue_flush)) { err = PTR_ERR(fcc->f2fs_issue_flush); kfree(fcc); SM_I(sbi)->cmd_control_info = NULL; return err; } return err; } void destroy_flush_cmd_control(struct f2fs_sb_info *sbi) { struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info; if (fcc && fcc->f2fs_issue_flush) kthread_stop(fcc->f2fs_issue_flush); kfree(fcc); SM_I(sbi)->cmd_control_info = NULL; } static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, enum dirty_type dirty_type) { struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); /* need not be added */ if (IS_CURSEG(sbi, segno)) return; if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type])) dirty_i->nr_dirty[dirty_type]++; if (dirty_type == DIRTY) { struct seg_entry *sentry = get_seg_entry(sbi, segno); enum dirty_type t = sentry->type; if (unlikely(t >= DIRTY)) { f2fs_bug_on(sbi, 1); return; } if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t])) dirty_i->nr_dirty[t]++; } } static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, enum dirty_type dirty_type) { struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type])) dirty_i->nr_dirty[dirty_type]--; if (dirty_type == DIRTY) { struct seg_entry *sentry = get_seg_entry(sbi, segno); enum dirty_type t = sentry->type; if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t])) dirty_i->nr_dirty[t]--; if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0) clear_bit(GET_SECNO(sbi, segno), dirty_i->victim_secmap); } } /* * Should not occur error such as -ENOMEM. * Adding dirty entry into seglist is not critical operation. * If a given segment is one of current working segments, it won't be added. */ static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno) { struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); unsigned short valid_blocks; if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno)) return; mutex_lock(&dirty_i->seglist_lock); valid_blocks = get_valid_blocks(sbi, segno, 0); if (valid_blocks == 0) { __locate_dirty_segment(sbi, segno, PRE); __remove_dirty_segment(sbi, segno, DIRTY); } else if (valid_blocks < sbi->blocks_per_seg) { __locate_dirty_segment(sbi, segno, DIRTY); } else { /* Recovery routine with SSR needs this */ __remove_dirty_segment(sbi, segno, DIRTY); } mutex_unlock(&dirty_i->seglist_lock); } static struct bio_entry *__add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio) { struct list_head *wait_list = &(SM_I(sbi)->wait_list); struct bio_entry *be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS); INIT_LIST_HEAD(&be->list); be->bio = bio; init_completion(&be->event); list_add_tail(&be->list, wait_list); return be; } void f2fs_wait_all_discard_bio(struct f2fs_sb_info *sbi) { struct list_head *wait_list = &(SM_I(sbi)->wait_list); struct bio_entry *be, *tmp; list_for_each_entry_safe(be, tmp, wait_list, list) { struct bio *bio = be->bio; int err; wait_for_completion_io(&be->event); err = be->error; if (err == -EOPNOTSUPP) err = 0; if (err) f2fs_msg(sbi->sb, KERN_INFO, "Issue discard failed, ret: %d", err); bio_put(bio); list_del(&be->list); kmem_cache_free(bio_entry_slab, be); } } static void f2fs_submit_bio_wait_endio(struct bio *bio) { struct bio_entry *be = (struct bio_entry *)bio->bi_private; be->error = bio->bi_error; complete(&be->event); } /* this function is copied from blkdev_issue_discard from block/blk-lib.c */ static int __f2fs_issue_discard_async(struct f2fs_sb_info *sbi, struct block_device *bdev, block_t blkstart, block_t blklen) { struct bio *bio = NULL; int err; trace_f2fs_issue_discard(sbi->sb, blkstart, blklen); if (sbi->s_ndevs) { int devi = f2fs_target_device_index(sbi, blkstart); blkstart -= FDEV(devi).start_blk; } err = __blkdev_issue_discard(bdev, SECTOR_FROM_BLOCK(blkstart), SECTOR_FROM_BLOCK(blklen), GFP_NOFS, 0, &bio); if (!err && bio) { struct bio_entry *be = __add_bio_entry(sbi, bio); bio->bi_private = be; bio->bi_end_io = f2fs_submit_bio_wait_endio; bio->bi_opf |= REQ_SYNC; submit_bio(bio); } return err; } #ifdef CONFIG_BLK_DEV_ZONED static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi, struct block_device *bdev, block_t blkstart, block_t blklen) { sector_t nr_sects = SECTOR_FROM_BLOCK(blklen); sector_t sector; int devi = 0; if (sbi->s_ndevs) { devi = f2fs_target_device_index(sbi, blkstart); blkstart -= FDEV(devi).start_blk; } sector = SECTOR_FROM_BLOCK(blkstart); if (sector % bdev_zone_size(bdev) || nr_sects != bdev_zone_size(bdev)) { f2fs_msg(sbi->sb, KERN_INFO, "(%d) %s: Unaligned discard attempted (block %x + %x)", devi, sbi->s_ndevs ? FDEV(devi).path: "", blkstart, blklen); return -EIO; } /* * We need to know the type of the zone: for conventional zones, * use regular discard if the drive supports it. For sequential * zones, reset the zone write pointer. */ switch (get_blkz_type(sbi, bdev, blkstart)) { case BLK_ZONE_TYPE_CONVENTIONAL: if (!blk_queue_discard(bdev_get_queue(bdev))) return 0; return __f2fs_issue_discard_async(sbi, bdev, blkstart, blklen); case BLK_ZONE_TYPE_SEQWRITE_REQ: case BLK_ZONE_TYPE_SEQWRITE_PREF: trace_f2fs_issue_reset_zone(sbi->sb, blkstart); return blkdev_reset_zones(bdev, sector, nr_sects, GFP_NOFS); default: /* Unknown zone type: broken device ? */ return -EIO; } } #endif static int __issue_discard_async(struct f2fs_sb_info *sbi, struct block_device *bdev, block_t blkstart, block_t blklen) { #ifdef CONFIG_BLK_DEV_ZONED if (f2fs_sb_mounted_blkzoned(sbi->sb) && bdev_zoned_model(bdev) != BLK_ZONED_NONE) return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen); #endif return __f2fs_issue_discard_async(sbi, bdev, blkstart, blklen); } static int f2fs_issue_discard(struct f2fs_sb_info *sbi, block_t blkstart, block_t blklen) { sector_t start = blkstart, len = 0; struct block_device *bdev; struct seg_entry *se; unsigned int offset; block_t i; int err = 0; bdev = f2fs_target_device(sbi, blkstart, NULL); for (i = blkstart; i < blkstart + blklen; i++, len++) { if (i != start) { struct block_device *bdev2 = f2fs_target_device(sbi, i, NULL); if (bdev2 != bdev) { err = __issue_discard_async(sbi, bdev, start, len); if (err) return err; bdev = bdev2; start = i; len = 0; } } se = get_seg_entry(sbi, GET_SEGNO(sbi, i)); offset = GET_BLKOFF_FROM_SEG0(sbi, i); if (!f2fs_test_and_set_bit(offset, se->discard_map)) sbi->discard_blks--; } if (len) err = __issue_discard_async(sbi, bdev, start, len); return err; } static void __add_discard_entry(struct f2fs_sb_info *sbi, struct cp_control *cpc, struct seg_entry *se, unsigned int start, unsigned int end) { struct list_head *head = &SM_I(sbi)->discard_list; struct discard_entry *new, *last; if (!list_empty(head)) { last = list_last_entry(head, struct discard_entry, list); if (START_BLOCK(sbi, cpc->trim_start) + start == last->blkaddr + last->len) { last->len += end - start; goto done; } } new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS); INIT_LIST_HEAD(&new->list); new->blkaddr = START_BLOCK(sbi, cpc->trim_start) + start; new->len = end - start; list_add_tail(&new->list, head); done: SM_I(sbi)->nr_discards += end - start; } static void add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc) { int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); int max_blocks = sbi->blocks_per_seg; struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start); unsigned long *cur_map = (unsigned long *)se->cur_valid_map; unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; unsigned long *discard_map = (unsigned long *)se->discard_map; unsigned long *dmap = SIT_I(sbi)->tmp_map; unsigned int start = 0, end = -1; bool force = (cpc->reason == CP_DISCARD); int i; if (se->valid_blocks == max_blocks || !f2fs_discard_en(sbi)) return; if (!force) { if (!test_opt(sbi, DISCARD) || !se->valid_blocks || SM_I(sbi)->nr_discards >= SM_I(sbi)->max_discards) return; } /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */ for (i = 0; i < entries; i++) dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] : (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i]; while (force || SM_I(sbi)->nr_discards <= SM_I(sbi)->max_discards) { start = __find_rev_next_bit(dmap, max_blocks, end + 1); if (start >= max_blocks) break; end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1); if (force && start && end != max_blocks && (end - start) < cpc->trim_minlen) continue; __add_discard_entry(sbi, cpc, se, start, end); } } void release_discard_addrs(struct f2fs_sb_info *sbi) { struct list_head *head = &(SM_I(sbi)->discard_list); struct discard_entry *entry, *this; /* drop caches */ list_for_each_entry_safe(entry, this, head, list) { list_del(&entry->list); kmem_cache_free(discard_entry_slab, entry); } } /* * Should call clear_prefree_segments after checkpoint is done. */ static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi) { struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); unsigned int segno; mutex_lock(&dirty_i->seglist_lock); for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi)) __set_test_and_free(sbi, segno); mutex_unlock(&dirty_i->seglist_lock); } void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc) { struct list_head *head = &(SM_I(sbi)->discard_list); struct discard_entry *entry, *this; struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); struct blk_plug plug; unsigned long *prefree_map = dirty_i->dirty_segmap[PRE]; unsigned int start = 0, end = -1; unsigned int secno, start_segno; bool force = (cpc->reason == CP_DISCARD); blk_start_plug(&plug); mutex_lock(&dirty_i->seglist_lock); while (1) { int i; start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1); if (start >= MAIN_SEGS(sbi)) break; end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi), start + 1); for (i = start; i < end; i++) clear_bit(i, prefree_map); dirty_i->nr_dirty[PRE] -= end - start; if (force || !test_opt(sbi, DISCARD)) continue; if (!test_opt(sbi, LFS) || sbi->segs_per_sec == 1) { f2fs_issue_discard(sbi, START_BLOCK(sbi, start), (end - start) << sbi->log_blocks_per_seg); continue; } next: secno = GET_SECNO(sbi, start); start_segno = secno * sbi->segs_per_sec; if (!IS_CURSEC(sbi, secno) && !get_valid_blocks(sbi, start, sbi->segs_per_sec)) f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno), sbi->segs_per_sec << sbi->log_blocks_per_seg); start = start_segno + sbi->segs_per_sec; if (start < end) goto next; } mutex_unlock(&dirty_i->seglist_lock); /* send small discards */ list_for_each_entry_safe(entry, this, head, list) { if (force && entry->len < cpc->trim_minlen) goto skip; f2fs_issue_discard(sbi, entry->blkaddr, entry->len); cpc->trimmed += entry->len; skip: list_del(&entry->list); SM_I(sbi)->nr_discards -= entry->len; kmem_cache_free(discard_entry_slab, entry); } blk_finish_plug(&plug); } static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno) { struct sit_info *sit_i = SIT_I(sbi); if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) { sit_i->dirty_sentries++; return false; } return true; } static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type, unsigned int segno, int modified) { struct seg_entry *se = get_seg_entry(sbi, segno); se->type = type; if (modified) __mark_sit_entry_dirty(sbi, segno); } static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del) { struct seg_entry *se; unsigned int segno, offset; long int new_vblocks; segno = GET_SEGNO(sbi, blkaddr); se = get_seg_entry(sbi, segno); new_vblocks = se->valid_blocks + del; offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) || (new_vblocks > sbi->blocks_per_seg))); se->valid_blocks = new_vblocks; se->mtime = get_mtime(sbi); SIT_I(sbi)->max_mtime = se->mtime; /* Update valid block bitmap */ if (del > 0) { if (f2fs_test_and_set_bit(offset, se->cur_valid_map)) f2fs_bug_on(sbi, 1); if (f2fs_discard_en(sbi) && !f2fs_test_and_set_bit(offset, se->discard_map)) sbi->discard_blks--; } else { if (!f2fs_test_and_clear_bit(offset, se->cur_valid_map)) f2fs_bug_on(sbi, 1); if (f2fs_discard_en(sbi) && f2fs_test_and_clear_bit(offset, se->discard_map)) sbi->discard_blks++; } if (!f2fs_test_bit(offset, se->ckpt_valid_map)) se->ckpt_valid_blocks += del; __mark_sit_entry_dirty(sbi, segno); /* update total number of valid blocks to be written in ckpt area */ SIT_I(sbi)->written_valid_blocks += del; if (sbi->segs_per_sec > 1) get_sec_entry(sbi, segno)->valid_blocks += del; } void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new) { update_sit_entry(sbi, new, 1); if (GET_SEGNO(sbi, old) != NULL_SEGNO) update_sit_entry(sbi, old, -1); locate_dirty_segment(sbi, GET_SEGNO(sbi, old)); locate_dirty_segment(sbi, GET_SEGNO(sbi, new)); } void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr) { unsigned int segno = GET_SEGNO(sbi, addr); struct sit_info *sit_i = SIT_I(sbi); f2fs_bug_on(sbi, addr == NULL_ADDR); if (addr == NEW_ADDR) return; /* add it into sit main buffer */ mutex_lock(&sit_i->sentry_lock); update_sit_entry(sbi, addr, -1); /* add it into dirty seglist */ locate_dirty_segment(sbi, segno); mutex_unlock(&sit_i->sentry_lock); } bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr) { struct sit_info *sit_i = SIT_I(sbi); unsigned int segno, offset; struct seg_entry *se; bool is_cp = false; if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) return true; mutex_lock(&sit_i->sentry_lock); segno = GET_SEGNO(sbi, blkaddr); se = get_seg_entry(sbi, segno); offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); if (f2fs_test_bit(offset, se->ckpt_valid_map)) is_cp = true; mutex_unlock(&sit_i->sentry_lock); return is_cp; } /* * This function should be resided under the curseg_mutex lock */ static void __add_sum_entry(struct f2fs_sb_info *sbi, int type, struct f2fs_summary *sum) { struct curseg_info *curseg = CURSEG_I(sbi, type); void *addr = curseg->sum_blk; addr += curseg->next_blkoff * sizeof(struct f2fs_summary); memcpy(addr, sum, sizeof(struct f2fs_summary)); } /* * Calculate the number of current summary pages for writing */ int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra) { int valid_sum_count = 0; int i, sum_in_page; for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { if (sbi->ckpt->alloc_type[i] == SSR) valid_sum_count += sbi->blocks_per_seg; else { if (for_ra) valid_sum_count += le16_to_cpu( F2FS_CKPT(sbi)->cur_data_blkoff[i]); else valid_sum_count += curseg_blkoff(sbi, i); } } sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE; if (valid_sum_count <= sum_in_page) return 1; else if ((valid_sum_count - sum_in_page) <= (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE) return 2; return 3; } /* * Caller should put this summary page */ struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno) { return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno)); } void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr) { struct page *page = grab_meta_page(sbi, blk_addr); void *dst = page_address(page); if (src) memcpy(dst, src, PAGE_SIZE); else memset(dst, 0, PAGE_SIZE); set_page_dirty(page); f2fs_put_page(page, 1); } static void write_sum_page(struct f2fs_sb_info *sbi, struct f2fs_summary_block *sum_blk, block_t blk_addr) { update_meta_page(sbi, (void *)sum_blk, blk_addr); } static void write_current_sum_page(struct f2fs_sb_info *sbi, int type, block_t blk_addr) { struct curseg_info *curseg = CURSEG_I(sbi, type); struct page *page = grab_meta_page(sbi, blk_addr); struct f2fs_summary_block *src = curseg->sum_blk; struct f2fs_summary_block *dst; dst = (struct f2fs_summary_block *)page_address(page); mutex_lock(&curseg->curseg_mutex); down_read(&curseg->journal_rwsem); memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE); up_read(&curseg->journal_rwsem); memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE); memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE); mutex_unlock(&curseg->curseg_mutex); set_page_dirty(page); f2fs_put_page(page, 1); } static int is_next_segment_free(struct f2fs_sb_info *sbi, int type) { struct curseg_info *curseg = CURSEG_I(sbi, type); unsigned int segno = curseg->segno + 1; struct free_segmap_info *free_i = FREE_I(sbi); if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec) return !test_bit(segno, free_i->free_segmap); return 0; } /* * Find a new segment from the free segments bitmap to right order * This function should be returned with success, otherwise BUG */ static void get_new_segment(struct f2fs_sb_info *sbi, unsigned int *newseg, bool new_sec, int dir) { struct free_segmap_info *free_i = FREE_I(sbi); unsigned int segno, secno, zoneno; unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone; unsigned int hint = *newseg / sbi->segs_per_sec; unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg); unsigned int left_start = hint; bool init = true; int go_left = 0; int i; spin_lock(&free_i->segmap_lock); if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) { segno = find_next_zero_bit(free_i->free_segmap, (hint + 1) * sbi->segs_per_sec, *newseg + 1); if (segno < (hint + 1) * sbi->segs_per_sec) goto got_it; } find_other_zone: secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint); if (secno >= MAIN_SECS(sbi)) { if (dir == ALLOC_RIGHT) { secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), 0); f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi)); } else { go_left = 1; left_start = hint - 1; } } if (go_left == 0) goto skip_left; while (test_bit(left_start, free_i->free_secmap)) { if (left_start > 0) { left_start--; continue; } left_start = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), 0); f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi)); break; } secno = left_start; skip_left: hint = secno; segno = secno * sbi->segs_per_sec; zoneno = secno / sbi->secs_per_zone; /* give up on finding another zone */ if (!init) goto got_it; if (sbi->secs_per_zone == 1) goto got_it; if (zoneno == old_zoneno) goto got_it; if (dir == ALLOC_LEFT) { if (!go_left && zoneno + 1 >= total_zones) goto got_it; if (go_left && zoneno == 0) goto got_it; } for (i = 0; i < NR_CURSEG_TYPE; i++) if (CURSEG_I(sbi, i)->zone == zoneno) break; if (i < NR_CURSEG_TYPE) { /* zone is in user, try another */ if (go_left) hint = zoneno * sbi->secs_per_zone - 1; else if (zoneno + 1 >= total_zones) hint = 0; else hint = (zoneno + 1) * sbi->secs_per_zone; init = false; goto find_other_zone; } got_it: /* set it as dirty segment in free segmap */ f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap)); __set_inuse(sbi, segno); *newseg = segno; spin_unlock(&free_i->segmap_lock); } static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified) { struct curseg_info *curseg = CURSEG_I(sbi, type); struct summary_footer *sum_footer; curseg->segno = curseg->next_segno; curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno); curseg->next_blkoff = 0; curseg->next_segno = NULL_SEGNO; sum_footer = &(curseg->sum_blk->footer); memset(sum_footer, 0, sizeof(struct summary_footer)); if (IS_DATASEG(type)) SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA); if (IS_NODESEG(type)) SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE); __set_sit_entry_type(sbi, type, curseg->segno, modified); } /* * Allocate a current working segment. * This function always allocates a free segment in LFS manner. */ static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec) { struct curseg_info *curseg = CURSEG_I(sbi, type); unsigned int segno = curseg->segno; int dir = ALLOC_LEFT; write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, segno)); if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA) dir = ALLOC_RIGHT; if (test_opt(sbi, NOHEAP)) dir = ALLOC_RIGHT; get_new_segment(sbi, &segno, new_sec, dir); curseg->next_segno = segno; reset_curseg(sbi, type, 1); curseg->alloc_type = LFS; } static void __next_free_blkoff(struct f2fs_sb_info *sbi, struct curseg_info *seg, block_t start) { struct seg_entry *se = get_seg_entry(sbi, seg->segno); int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); unsigned long *target_map = SIT_I(sbi)->tmp_map; unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; unsigned long *cur_map = (unsigned long *)se->cur_valid_map; int i, pos; for (i = 0; i < entries; i++) target_map[i] = ckpt_map[i] | cur_map[i]; pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start); seg->next_blkoff = pos; } /* * If a segment is written by LFS manner, next block offset is just obtained * by increasing the current block offset. However, if a segment is written by * SSR manner, next block offset obtained by calling __next_free_blkoff */ static void __refresh_next_blkoff(struct f2fs_sb_info *sbi, struct curseg_info *seg) { if (seg->alloc_type == SSR) __next_free_blkoff(sbi, seg, seg->next_blkoff + 1); else seg->next_blkoff++; } /* * This function always allocates a used segment(from dirty seglist) by SSR * manner, so it should recover the existing segment information of valid blocks */ static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse) { struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); struct curseg_info *curseg = CURSEG_I(sbi, type); unsigned int new_segno = curseg->next_segno; struct f2fs_summary_block *sum_node; struct page *sum_page; write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, curseg->segno)); __set_test_and_inuse(sbi, new_segno); mutex_lock(&dirty_i->seglist_lock); __remove_dirty_segment(sbi, new_segno, PRE); __remove_dirty_segment(sbi, new_segno, DIRTY); mutex_unlock(&dirty_i->seglist_lock); reset_curseg(sbi, type, 1); curseg->alloc_type = SSR; __next_free_blkoff(sbi, curseg, 0); if (reuse) { sum_page = get_sum_page(sbi, new_segno); sum_node = (struct f2fs_summary_block *)page_address(sum_page); memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE); f2fs_put_page(sum_page, 1); } } static int get_ssr_segment(struct f2fs_sb_info *sbi, int type) { struct curseg_info *curseg = CURSEG_I(sbi, type); const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops; if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0, 0)) return v_ops->get_victim(sbi, &(curseg)->next_segno, BG_GC, type, SSR); /* For data segments, let's do SSR more intensively */ for (; type >= CURSEG_HOT_DATA; type--) if (v_ops->get_victim(sbi, &(curseg)->next_segno, BG_GC, type, SSR)) return 1; return 0; } /* * flush out current segment and replace it with new segment * This function should be returned with success, otherwise BUG */ static void allocate_segment_by_default(struct f2fs_sb_info *sbi, int type, bool force) { struct curseg_info *curseg = CURSEG_I(sbi, type); if (force) new_curseg(sbi, type, true); else if (type == CURSEG_WARM_NODE) new_curseg(sbi, type, false); else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type)) new_curseg(sbi, type, false); else if (need_SSR(sbi) && get_ssr_segment(sbi, type)) change_curseg(sbi, type, true); else new_curseg(sbi, type, false); stat_inc_seg_type(sbi, curseg); } void allocate_new_segments(struct f2fs_sb_info *sbi) { struct curseg_info *curseg; unsigned int old_segno; int i; if (test_opt(sbi, LFS)) return; for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { curseg = CURSEG_I(sbi, i); old_segno = curseg->segno; SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true); locate_dirty_segment(sbi, old_segno); } } static const struct segment_allocation default_salloc_ops = { .allocate_segment = allocate_segment_by_default, }; int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range) { __u64 start = F2FS_BYTES_TO_BLK(range->start); __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1; unsigned int start_segno, end_segno; struct cp_control cpc; int err = 0; if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize) return -EINVAL; cpc.trimmed = 0; if (end <= MAIN_BLKADDR(sbi)) goto out; if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { f2fs_msg(sbi->sb, KERN_WARNING, "Found FS corruption, run fsck to fix."); goto out; } /* start/end segment number in main_area */ start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start); end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 : GET_SEGNO(sbi, end); cpc.reason = CP_DISCARD; cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen)); /* do checkpoint to issue discard commands safely */ for (; start_segno <= end_segno; start_segno = cpc.trim_end + 1) { cpc.trim_start = start_segno; if (sbi->discard_blks == 0) break; else if (sbi->discard_blks < BATCHED_TRIM_BLOCKS(sbi)) cpc.trim_end = end_segno; else cpc.trim_end = min_t(unsigned int, rounddown(start_segno + BATCHED_TRIM_SEGMENTS(sbi), sbi->segs_per_sec) - 1, end_segno); mutex_lock(&sbi->gc_mutex); err = write_checkpoint(sbi, &cpc); mutex_unlock(&sbi->gc_mutex); if (err) break; schedule(); } out: range->len = F2FS_BLK_TO_BYTES(cpc.trimmed); return err; } static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type) { struct curseg_info *curseg = CURSEG_I(sbi, type); if (curseg->next_blkoff < sbi->blocks_per_seg) return true; return false; } static int __get_segment_type_2(struct page *page, enum page_type p_type) { if (p_type == DATA) return CURSEG_HOT_DATA; else return CURSEG_HOT_NODE; } static int __get_segment_type_4(struct page *page, enum page_type p_type) { if (p_type == DATA) { struct inode *inode = page->mapping->host; if (S_ISDIR(inode->i_mode)) return CURSEG_HOT_DATA; else return CURSEG_COLD_DATA; } else { if (IS_DNODE(page) && is_cold_node(page)) return CURSEG_WARM_NODE; else return CURSEG_COLD_NODE; } } static int __get_segment_type_6(struct page *page, enum page_type p_type) { if (p_type == DATA) { struct inode *inode = page->mapping->host; if (S_ISDIR(inode->i_mode)) return CURSEG_HOT_DATA; else if (is_cold_data(page) || file_is_cold(inode)) return CURSEG_COLD_DATA; else return CURSEG_WARM_DATA; } else { if (IS_DNODE(page)) return is_cold_node(page) ? CURSEG_WARM_NODE : CURSEG_HOT_NODE; else return CURSEG_COLD_NODE; } } static int __get_segment_type(struct page *page, enum page_type p_type) { switch (F2FS_P_SB(page)->active_logs) { case 2: return __get_segment_type_2(page, p_type); case 4: return __get_segment_type_4(page, p_type); } /* NR_CURSEG_TYPE(6) logs by default */ f2fs_bug_on(F2FS_P_SB(page), F2FS_P_SB(page)->active_logs != NR_CURSEG_TYPE); return __get_segment_type_6(page, p_type); } void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, block_t old_blkaddr, block_t *new_blkaddr, struct f2fs_summary *sum, int type) { struct sit_info *sit_i = SIT_I(sbi); struct curseg_info *curseg = CURSEG_I(sbi, type); mutex_lock(&curseg->curseg_mutex); mutex_lock(&sit_i->sentry_lock); *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); /* * __add_sum_entry should be resided under the curseg_mutex * because, this function updates a summary entry in the * current summary block. */ __add_sum_entry(sbi, type, sum); __refresh_next_blkoff(sbi, curseg); stat_inc_block_count(sbi, curseg); if (!__has_curseg_space(sbi, type)) sit_i->s_ops->allocate_segment(sbi, type, false); /* * SIT information should be updated before segment allocation, * since SSR needs latest valid block information. */ refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr); mutex_unlock(&sit_i->sentry_lock); if (page && IS_NODESEG(type)) fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg)); mutex_unlock(&curseg->curseg_mutex); } static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio) { int type = __get_segment_type(fio->page, fio->type); if (fio->type == NODE || fio->type == DATA) mutex_lock(&fio->sbi->wio_mutex[fio->type]); allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr, &fio->new_blkaddr, sum, type); /* writeout dirty page into bdev */ f2fs_submit_page_mbio(fio); if (fio->type == NODE || fio->type == DATA) mutex_unlock(&fio->sbi->wio_mutex[fio->type]); } void write_meta_page(struct f2fs_sb_info *sbi, struct page *page) { struct f2fs_io_info fio = { .sbi = sbi, .type = META, .op = REQ_OP_WRITE, .op_flags = WRITE_SYNC | REQ_META | REQ_PRIO, .old_blkaddr = page->index, .new_blkaddr = page->index, .page = page, .encrypted_page = NULL, }; if (unlikely(page->index >= MAIN_BLKADDR(sbi))) fio.op_flags &= ~REQ_META; set_page_writeback(page); f2fs_submit_page_mbio(&fio); } void write_node_page(unsigned int nid, struct f2fs_io_info *fio) { struct f2fs_summary sum; set_summary(&sum, nid, 0, 0); do_write_page(&sum, fio); } void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio) { struct f2fs_sb_info *sbi = fio->sbi; struct f2fs_summary sum; struct node_info ni; f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR); get_node_info(sbi, dn->nid, &ni); set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); do_write_page(&sum, fio); f2fs_update_data_blkaddr(dn, fio->new_blkaddr); } void rewrite_data_page(struct f2fs_io_info *fio) { fio->new_blkaddr = fio->old_blkaddr; stat_inc_inplace_blocks(fio->sbi); f2fs_submit_page_mbio(fio); } void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, block_t old_blkaddr, block_t new_blkaddr, bool recover_curseg, bool recover_newaddr) { struct sit_info *sit_i = SIT_I(sbi); struct curseg_info *curseg; unsigned int segno, old_cursegno; struct seg_entry *se; int type; unsigned short old_blkoff; segno = GET_SEGNO(sbi, new_blkaddr); se = get_seg_entry(sbi, segno); type = se->type; if (!recover_curseg) { /* for recovery flow */ if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) { if (old_blkaddr == NULL_ADDR) type = CURSEG_COLD_DATA; else type = CURSEG_WARM_DATA; } } else { if (!IS_CURSEG(sbi, segno)) type = CURSEG_WARM_DATA; } curseg = CURSEG_I(sbi, type); mutex_lock(&curseg->curseg_mutex); mutex_lock(&sit_i->sentry_lock); old_cursegno = curseg->segno; old_blkoff = curseg->next_blkoff; /* change the current segment */ if (segno != curseg->segno) { curseg->next_segno = segno; change_curseg(sbi, type, true); } curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr); __add_sum_entry(sbi, type, sum); if (!recover_curseg || recover_newaddr) update_sit_entry(sbi, new_blkaddr, 1); if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) update_sit_entry(sbi, old_blkaddr, -1); locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr)); locate_dirty_segment(sbi, old_cursegno); if (recover_curseg) { if (old_cursegno != curseg->segno) { curseg->next_segno = old_cursegno; change_curseg(sbi, type, true); } curseg->next_blkoff = old_blkoff; } mutex_unlock(&sit_i->sentry_lock); mutex_unlock(&curseg->curseg_mutex); } void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, block_t old_addr, block_t new_addr, unsigned char version, bool recover_curseg, bool recover_newaddr) { struct f2fs_summary sum; set_summary(&sum, dn->nid, dn->ofs_in_node, version); __f2fs_replace_block(sbi, &sum, old_addr, new_addr, recover_curseg, recover_newaddr); f2fs_update_data_blkaddr(dn, new_addr); } void f2fs_wait_on_page_writeback(struct page *page, enum page_type type, bool ordered) { if (PageWriteback(page)) { struct f2fs_sb_info *sbi = F2FS_P_SB(page); f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, type, WRITE); if (ordered) wait_on_page_writeback(page); else wait_for_stable_page(page); } } void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *sbi, block_t blkaddr) { struct page *cpage; if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) return; cpage = find_lock_page(META_MAPPING(sbi), blkaddr); if (cpage) { f2fs_wait_on_page_writeback(cpage, DATA, true); f2fs_put_page(cpage, 1); } } static int read_compacted_summaries(struct f2fs_sb_info *sbi) { struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); struct curseg_info *seg_i; unsigned char *kaddr; struct page *page; block_t start; int i, j, offset; start = start_sum_block(sbi); page = get_meta_page(sbi, start++); kaddr = (unsigned char *)page_address(page); /* Step 1: restore nat cache */ seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE); /* Step 2: restore sit cache */ seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE); offset = 2 * SUM_JOURNAL_SIZE; /* Step 3: restore summary entries */ for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { unsigned short blk_off; unsigned int segno; seg_i = CURSEG_I(sbi, i); segno = le32_to_cpu(ckpt->cur_data_segno[i]); blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]); seg_i->next_segno = segno; reset_curseg(sbi, i, 0); seg_i->alloc_type = ckpt->alloc_type[i]; seg_i->next_blkoff = blk_off; if (seg_i->alloc_type == SSR) blk_off = sbi->blocks_per_seg; for (j = 0; j < blk_off; j++) { struct f2fs_summary *s; s = (struct f2fs_summary *)(kaddr + offset); seg_i->sum_blk->entries[j] = *s; offset += SUMMARY_SIZE; if (offset + SUMMARY_SIZE <= PAGE_SIZE - SUM_FOOTER_SIZE) continue; f2fs_put_page(page, 1); page = NULL; page = get_meta_page(sbi, start++); kaddr = (unsigned char *)page_address(page); offset = 0; } } f2fs_put_page(page, 1); return 0; } static int read_normal_summaries(struct f2fs_sb_info *sbi, int type) { struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); struct f2fs_summary_block *sum; struct curseg_info *curseg; struct page *new; unsigned short blk_off; unsigned int segno = 0; block_t blk_addr = 0; /* get segment number and block addr */ if (IS_DATASEG(type)) { segno = le32_to_cpu(ckpt->cur_data_segno[type]); blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type - CURSEG_HOT_DATA]); if (__exist_node_summaries(sbi)) blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type); else blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type); } else { segno = le32_to_cpu(ckpt->cur_node_segno[type - CURSEG_HOT_NODE]); blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type - CURSEG_HOT_NODE]); if (__exist_node_summaries(sbi)) blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE, type - CURSEG_HOT_NODE); else blk_addr = GET_SUM_BLOCK(sbi, segno); } new = get_meta_page(sbi, blk_addr); sum = (struct f2fs_summary_block *)page_address(new); if (IS_NODESEG(type)) { if (__exist_node_summaries(sbi)) { struct f2fs_summary *ns = &sum->entries[0]; int i; for (i = 0; i < sbi->blocks_per_seg; i++, ns++) { ns->version = 0; ns->ofs_in_node = 0; } } else { int err; err = restore_node_summary(sbi, segno, sum); if (err) { f2fs_put_page(new, 1); return err; } } } /* set uncompleted segment to curseg */ curseg = CURSEG_I(sbi, type); mutex_lock(&curseg->curseg_mutex); /* update journal info */ down_write(&curseg->journal_rwsem); memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE); up_write(&curseg->journal_rwsem); memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE); memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE); curseg->next_segno = segno; reset_curseg(sbi, type, 0); curseg->alloc_type = ckpt->alloc_type[type]; curseg->next_blkoff = blk_off; mutex_unlock(&curseg->curseg_mutex); f2fs_put_page(new, 1); return 0; } static int restore_curseg_summaries(struct f2fs_sb_info *sbi) { int type = CURSEG_HOT_DATA; int err; if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) { int npages = npages_for_summary_flush(sbi, true); if (npages >= 2) ra_meta_pages(sbi, start_sum_block(sbi), npages, META_CP, true); /* restore for compacted data summary */ if (read_compacted_summaries(sbi)) return -EINVAL; type = CURSEG_HOT_NODE; } if (__exist_node_summaries(sbi)) ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type), NR_CURSEG_TYPE - type, META_CP, true); for (; type <= CURSEG_COLD_NODE; type++) { err = read_normal_summaries(sbi, type); if (err) return err; } return 0; } static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr) { struct page *page; unsigned char *kaddr; struct f2fs_summary *summary; struct curseg_info *seg_i; int written_size = 0; int i, j; page = grab_meta_page(sbi, blkaddr++); kaddr = (unsigned char *)page_address(page); /* Step 1: write nat cache */ seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE); written_size += SUM_JOURNAL_SIZE; /* Step 2: write sit cache */ seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE); written_size += SUM_JOURNAL_SIZE; /* Step 3: write summary entries */ for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { unsigned short blkoff; seg_i = CURSEG_I(sbi, i); if (sbi->ckpt->alloc_type[i] == SSR) blkoff = sbi->blocks_per_seg; else blkoff = curseg_blkoff(sbi, i); for (j = 0; j < blkoff; j++) { if (!page) { page = grab_meta_page(sbi, blkaddr++); kaddr = (unsigned char *)page_address(page); written_size = 0; } summary = (struct f2fs_summary *)(kaddr + written_size); *summary = seg_i->sum_blk->entries[j]; written_size += SUMMARY_SIZE; if (written_size + SUMMARY_SIZE <= PAGE_SIZE - SUM_FOOTER_SIZE) continue; set_page_dirty(page); f2fs_put_page(page, 1); page = NULL; } } if (page) { set_page_dirty(page); f2fs_put_page(page, 1); } } static void write_normal_summaries(struct f2fs_sb_info *sbi, block_t blkaddr, int type) { int i, end; if (IS_DATASEG(type)) end = type + NR_CURSEG_DATA_TYPE; else end = type + NR_CURSEG_NODE_TYPE; for (i = type; i < end; i++) write_current_sum_page(sbi, i, blkaddr + (i - type)); } void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk) { if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) write_compacted_summaries(sbi, start_blk); else write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA); } void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk) { write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE); } int lookup_journal_in_cursum(struct f2fs_journal *journal, int type, unsigned int val, int alloc) { int i; if (type == NAT_JOURNAL) { for (i = 0; i < nats_in_cursum(journal); i++) { if (le32_to_cpu(nid_in_journal(journal, i)) == val) return i; } if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL)) return update_nats_in_cursum(journal, 1); } else if (type == SIT_JOURNAL) { for (i = 0; i < sits_in_cursum(journal); i++) if (le32_to_cpu(segno_in_journal(journal, i)) == val) return i; if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL)) return update_sits_in_cursum(journal, 1); } return -1; } static struct page *get_current_sit_page(struct f2fs_sb_info *sbi, unsigned int segno) { return get_meta_page(sbi, current_sit_addr(sbi, segno)); } static struct page *get_next_sit_page(struct f2fs_sb_info *sbi, unsigned int start) { struct sit_info *sit_i = SIT_I(sbi); struct page *src_page, *dst_page; pgoff_t src_off, dst_off; void *src_addr, *dst_addr; src_off = current_sit_addr(sbi, start); dst_off = next_sit_addr(sbi, src_off); /* get current sit block page without lock */ src_page = get_meta_page(sbi, src_off); dst_page = grab_meta_page(sbi, dst_off); f2fs_bug_on(sbi, PageDirty(src_page)); src_addr = page_address(src_page); dst_addr = page_address(dst_page); memcpy(dst_addr, src_addr, PAGE_SIZE); set_page_dirty(dst_page); f2fs_put_page(src_page, 1); set_to_next_sit(sit_i, start); return dst_page; } static struct sit_entry_set *grab_sit_entry_set(void) { struct sit_entry_set *ses = f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS); ses->entry_cnt = 0; INIT_LIST_HEAD(&ses->set_list); return ses; } static void release_sit_entry_set(struct sit_entry_set *ses) { list_del(&ses->set_list); kmem_cache_free(sit_entry_set_slab, ses); } static void adjust_sit_entry_set(struct sit_entry_set *ses, struct list_head *head) { struct sit_entry_set *next = ses; if (list_is_last(&ses->set_list, head)) return; list_for_each_entry_continue(next, head, set_list) if (ses->entry_cnt <= next->entry_cnt) break; list_move_tail(&ses->set_list, &next->set_list); } static void add_sit_entry(unsigned int segno, struct list_head *head) { struct sit_entry_set *ses; unsigned int start_segno = START_SEGNO(segno); list_for_each_entry(ses, head, set_list) { if (ses->start_segno == start_segno) { ses->entry_cnt++; adjust_sit_entry_set(ses, head); return; } } ses = grab_sit_entry_set(); ses->start_segno = start_segno; ses->entry_cnt++; list_add(&ses->set_list, head); } static void add_sits_in_set(struct f2fs_sb_info *sbi) { struct f2fs_sm_info *sm_info = SM_I(sbi); struct list_head *set_list = &sm_info->sit_entry_set; unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap; unsigned int segno; for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi)) add_sit_entry(segno, set_list); } static void remove_sits_in_journal(struct f2fs_sb_info *sbi) { struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); struct f2fs_journal *journal = curseg->journal; int i; down_write(&curseg->journal_rwsem); for (i = 0; i < sits_in_cursum(journal); i++) { unsigned int segno; bool dirtied; segno = le32_to_cpu(segno_in_journal(journal, i)); dirtied = __mark_sit_entry_dirty(sbi, segno); if (!dirtied) add_sit_entry(segno, &SM_I(sbi)->sit_entry_set); } update_sits_in_cursum(journal, -i); up_write(&curseg->journal_rwsem); } /* * CP calls this function, which flushes SIT entries including sit_journal, * and moves prefree segs to free segs. */ void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) { struct sit_info *sit_i = SIT_I(sbi); unsigned long *bitmap = sit_i->dirty_sentries_bitmap; struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); struct f2fs_journal *journal = curseg->journal; struct sit_entry_set *ses, *tmp; struct list_head *head = &SM_I(sbi)->sit_entry_set; bool to_journal = true; struct seg_entry *se; mutex_lock(&sit_i->sentry_lock); if (!sit_i->dirty_sentries) goto out; /* * add and account sit entries of dirty bitmap in sit entry * set temporarily */ add_sits_in_set(sbi); /* * if there are no enough space in journal to store dirty sit * entries, remove all entries from journal and add and account * them in sit entry set. */ if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL)) remove_sits_in_journal(sbi); /* * there are two steps to flush sit entries: * #1, flush sit entries to journal in current cold data summary block. * #2, flush sit entries to sit page. */ list_for_each_entry_safe(ses, tmp, head, set_list) { struct page *page = NULL; struct f2fs_sit_block *raw_sit = NULL; unsigned int start_segno = ses->start_segno; unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK, (unsigned long)MAIN_SEGS(sbi)); unsigned int segno = start_segno; if (to_journal && !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL)) to_journal = false; if (to_journal) { down_write(&curseg->journal_rwsem); } else { page = get_next_sit_page(sbi, start_segno); raw_sit = page_address(page); } /* flush dirty sit entries in region of current sit set */ for_each_set_bit_from(segno, bitmap, end) { int offset, sit_offset; se = get_seg_entry(sbi, segno); /* add discard candidates */ if (cpc->reason != CP_DISCARD) { cpc->trim_start = segno; add_discard_addrs(sbi, cpc); } if (to_journal) { offset = lookup_journal_in_cursum(journal, SIT_JOURNAL, segno, 1); f2fs_bug_on(sbi, offset < 0); segno_in_journal(journal, offset) = cpu_to_le32(segno); seg_info_to_raw_sit(se, &sit_in_journal(journal, offset)); } else { sit_offset = SIT_ENTRY_OFFSET(sit_i, segno); seg_info_to_raw_sit(se, &raw_sit->entries[sit_offset]); } __clear_bit(segno, bitmap); sit_i->dirty_sentries--; ses->entry_cnt--; } if (to_journal) up_write(&curseg->journal_rwsem); else f2fs_put_page(page, 1); f2fs_bug_on(sbi, ses->entry_cnt); release_sit_entry_set(ses); } f2fs_bug_on(sbi, !list_empty(head)); f2fs_bug_on(sbi, sit_i->dirty_sentries); out: if (cpc->reason == CP_DISCARD) { for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) add_discard_addrs(sbi, cpc); } mutex_unlock(&sit_i->sentry_lock); set_prefree_as_free_segments(sbi); } static int build_sit_info(struct f2fs_sb_info *sbi) { struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); struct sit_info *sit_i; unsigned int sit_segs, start; char *src_bitmap, *dst_bitmap; unsigned int bitmap_size; /* allocate memory for SIT information */ sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL); if (!sit_i) return -ENOMEM; SM_I(sbi)->sit_info = sit_i; sit_i->sentries = f2fs_kvzalloc(MAIN_SEGS(sbi) * sizeof(struct seg_entry), GFP_KERNEL); if (!sit_i->sentries) return -ENOMEM; bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL); if (!sit_i->dirty_sentries_bitmap) return -ENOMEM; for (start = 0; start < MAIN_SEGS(sbi); start++) { sit_i->sentries[start].cur_valid_map = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); sit_i->sentries[start].ckpt_valid_map = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); if (!sit_i->sentries[start].cur_valid_map || !sit_i->sentries[start].ckpt_valid_map) return -ENOMEM; if (f2fs_discard_en(sbi)) { sit_i->sentries[start].discard_map = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); if (!sit_i->sentries[start].discard_map) return -ENOMEM; } } sit_i->tmp_map = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); if (!sit_i->tmp_map) return -ENOMEM; if (sbi->segs_per_sec > 1) { sit_i->sec_entries = f2fs_kvzalloc(MAIN_SECS(sbi) * sizeof(struct sec_entry), GFP_KERNEL); if (!sit_i->sec_entries) return -ENOMEM; } /* get information related with SIT */ sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1; /* setup SIT bitmap from ckeckpoint pack */ bitmap_size = __bitmap_size(sbi, SIT_BITMAP); src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP); dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL); if (!dst_bitmap) return -ENOMEM; /* init SIT information */ sit_i->s_ops = &default_salloc_ops; sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr); sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg; sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count); sit_i->sit_bitmap = dst_bitmap; sit_i->bitmap_size = bitmap_size; sit_i->dirty_sentries = 0; sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK; sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time); sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec; mutex_init(&sit_i->sentry_lock); return 0; } static int build_free_segmap(struct f2fs_sb_info *sbi) { struct free_segmap_info *free_i; unsigned int bitmap_size, sec_bitmap_size; /* allocate memory for free segmap information */ free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL); if (!free_i) return -ENOMEM; SM_I(sbi)->free_info = free_i; bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); free_i->free_segmap = f2fs_kvmalloc(bitmap_size, GFP_KERNEL); if (!free_i->free_segmap) return -ENOMEM; sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); free_i->free_secmap = f2fs_kvmalloc(sec_bitmap_size, GFP_KERNEL); if (!free_i->free_secmap) return -ENOMEM; /* set all segments as dirty temporarily */ memset(free_i->free_segmap, 0xff, bitmap_size); memset(free_i->free_secmap, 0xff, sec_bitmap_size); /* init free segmap information */ free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi)); free_i->free_segments = 0; free_i->free_sections = 0; spin_lock_init(&free_i->segmap_lock); return 0; } static int build_curseg(struct f2fs_sb_info *sbi) { struct curseg_info *array; int i; array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL); if (!array) return -ENOMEM; SM_I(sbi)->curseg_array = array; for (i = 0; i < NR_CURSEG_TYPE; i++) { mutex_init(&array[i].curseg_mutex); array[i].sum_blk = kzalloc(PAGE_SIZE, GFP_KERNEL); if (!array[i].sum_blk) return -ENOMEM; init_rwsem(&array[i].journal_rwsem); array[i].journal = kzalloc(sizeof(struct f2fs_journal), GFP_KERNEL); if (!array[i].journal) return -ENOMEM; array[i].segno = NULL_SEGNO; array[i].next_blkoff = 0; } return restore_curseg_summaries(sbi); } static void build_sit_entries(struct f2fs_sb_info *sbi) { struct sit_info *sit_i = SIT_I(sbi); struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); struct f2fs_journal *journal = curseg->journal; struct seg_entry *se; struct f2fs_sit_entry sit; int sit_blk_cnt = SIT_BLK_CNT(sbi); unsigned int i, start, end; unsigned int readed, start_blk = 0; do { readed = ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES, META_SIT, true); start = start_blk * sit_i->sents_per_block; end = (start_blk + readed) * sit_i->sents_per_block; for (; start < end && start < MAIN_SEGS(sbi); start++) { struct f2fs_sit_block *sit_blk; struct page *page; se = &sit_i->sentries[start]; page = get_current_sit_page(sbi, start); sit_blk = (struct f2fs_sit_block *)page_address(page); sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)]; f2fs_put_page(page, 1); check_block_count(sbi, start, &sit); seg_info_from_raw_sit(se, &sit); /* build discard map only one time */ if (f2fs_discard_en(sbi)) { memcpy(se->discard_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE); sbi->discard_blks += sbi->blocks_per_seg - se->valid_blocks; } if (sbi->segs_per_sec > 1) get_sec_entry(sbi, start)->valid_blocks += se->valid_blocks; } start_blk += readed; } while (start_blk < sit_blk_cnt); down_read(&curseg->journal_rwsem); for (i = 0; i < sits_in_cursum(journal); i++) { unsigned int old_valid_blocks; start = le32_to_cpu(segno_in_journal(journal, i)); se = &sit_i->sentries[start]; sit = sit_in_journal(journal, i); old_valid_blocks = se->valid_blocks; check_block_count(sbi, start, &sit); seg_info_from_raw_sit(se, &sit); if (f2fs_discard_en(sbi)) { memcpy(se->discard_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE); sbi->discard_blks += old_valid_blocks - se->valid_blocks; } if (sbi->segs_per_sec > 1) get_sec_entry(sbi, start)->valid_blocks += se->valid_blocks - old_valid_blocks; } up_read(&curseg->journal_rwsem); } static void init_free_segmap(struct f2fs_sb_info *sbi) { unsigned int start; int type; for (start = 0; start < MAIN_SEGS(sbi); start++) { struct seg_entry *sentry = get_seg_entry(sbi, start); if (!sentry->valid_blocks) __set_free(sbi, start); } /* set use the current segments */ for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) { struct curseg_info *curseg_t = CURSEG_I(sbi, type); __set_test_and_inuse(sbi, curseg_t->segno); } } static void init_dirty_segmap(struct f2fs_sb_info *sbi) { struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); struct free_segmap_info *free_i = FREE_I(sbi); unsigned int segno = 0, offset = 0; unsigned short valid_blocks; while (1) { /* find dirty segment based on free segmap */ segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset); if (segno >= MAIN_SEGS(sbi)) break; offset = segno + 1; valid_blocks = get_valid_blocks(sbi, segno, 0); if (valid_blocks == sbi->blocks_per_seg || !valid_blocks) continue; if (valid_blocks > sbi->blocks_per_seg) { f2fs_bug_on(sbi, 1); continue; } mutex_lock(&dirty_i->seglist_lock); __locate_dirty_segment(sbi, segno, DIRTY); mutex_unlock(&dirty_i->seglist_lock); } } static int init_victim_secmap(struct f2fs_sb_info *sbi) { struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); dirty_i->victim_secmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL); if (!dirty_i->victim_secmap) return -ENOMEM; return 0; } static int build_dirty_segmap(struct f2fs_sb_info *sbi) { struct dirty_seglist_info *dirty_i; unsigned int bitmap_size, i; /* allocate memory for dirty segments list information */ dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL); if (!dirty_i) return -ENOMEM; SM_I(sbi)->dirty_info = dirty_i; mutex_init(&dirty_i->seglist_lock); bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); for (i = 0; i < NR_DIRTY_TYPE; i++) { dirty_i->dirty_segmap[i] = f2fs_kvzalloc(bitmap_size, GFP_KERNEL); if (!dirty_i->dirty_segmap[i]) return -ENOMEM; } init_dirty_segmap(sbi); return init_victim_secmap(sbi); } /* * Update min, max modified time for cost-benefit GC algorithm */ static void init_min_max_mtime(struct f2fs_sb_info *sbi) { struct sit_info *sit_i = SIT_I(sbi); unsigned int segno; mutex_lock(&sit_i->sentry_lock); sit_i->min_mtime = LLONG_MAX; for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) { unsigned int i; unsigned long long mtime = 0; for (i = 0; i < sbi->segs_per_sec; i++) mtime += get_seg_entry(sbi, segno + i)->mtime; mtime = div_u64(mtime, sbi->segs_per_sec); if (sit_i->min_mtime > mtime) sit_i->min_mtime = mtime; } sit_i->max_mtime = get_mtime(sbi); mutex_unlock(&sit_i->sentry_lock); } int build_segment_manager(struct f2fs_sb_info *sbi) { struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); struct f2fs_sm_info *sm_info; int err; sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL); if (!sm_info) return -ENOMEM; /* init sm info */ sbi->sm_info = sm_info; sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); sm_info->segment_count = le32_to_cpu(raw_super->segment_count); sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main); sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); sm_info->rec_prefree_segments = sm_info->main_segments * DEF_RECLAIM_PREFREE_SEGMENTS / 100; if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS) sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS; if (!test_opt(sbi, LFS)) sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC; sm_info->min_ipu_util = DEF_MIN_IPU_UTIL; sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS; INIT_LIST_HEAD(&sm_info->discard_list); INIT_LIST_HEAD(&sm_info->wait_list); sm_info->nr_discards = 0; sm_info->max_discards = 0; sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS; INIT_LIST_HEAD(&sm_info->sit_entry_set); if (test_opt(sbi, FLUSH_MERGE) && !f2fs_readonly(sbi->sb)) { err = create_flush_cmd_control(sbi); if (err) return err; } err = build_sit_info(sbi); if (err) return err; err = build_free_segmap(sbi); if (err) return err; err = build_curseg(sbi); if (err) return err; /* reinit free segmap based on SIT */ build_sit_entries(sbi); init_free_segmap(sbi); err = build_dirty_segmap(sbi); if (err) return err; init_min_max_mtime(sbi); return 0; } static void discard_dirty_segmap(struct f2fs_sb_info *sbi, enum dirty_type dirty_type) { struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); mutex_lock(&dirty_i->seglist_lock); kvfree(dirty_i->dirty_segmap[dirty_type]); dirty_i->nr_dirty[dirty_type] = 0; mutex_unlock(&dirty_i->seglist_lock); } static void destroy_victim_secmap(struct f2fs_sb_info *sbi) { struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); kvfree(dirty_i->victim_secmap); } static void destroy_dirty_segmap(struct f2fs_sb_info *sbi) { struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); int i; if (!dirty_i) return; /* discard pre-free/dirty segments list */ for (i = 0; i < NR_DIRTY_TYPE; i++) discard_dirty_segmap(sbi, i); destroy_victim_secmap(sbi); SM_I(sbi)->dirty_info = NULL; kfree(dirty_i); } static void destroy_curseg(struct f2fs_sb_info *sbi) { struct curseg_info *array = SM_I(sbi)->curseg_array; int i; if (!array) return; SM_I(sbi)->curseg_array = NULL; for (i = 0; i < NR_CURSEG_TYPE; i++) { kfree(array[i].sum_blk); kfree(array[i].journal); } kfree(array); } static void destroy_free_segmap(struct f2fs_sb_info *sbi) { struct free_segmap_info *free_i = SM_I(sbi)->free_info; if (!free_i) return; SM_I(sbi)->free_info = NULL; kvfree(free_i->free_segmap); kvfree(free_i->free_secmap); kfree(free_i); } static void destroy_sit_info(struct f2fs_sb_info *sbi) { struct sit_info *sit_i = SIT_I(sbi); unsigned int start; if (!sit_i) return; if (sit_i->sentries) { for (start = 0; start < MAIN_SEGS(sbi); start++) { kfree(sit_i->sentries[start].cur_valid_map); kfree(sit_i->sentries[start].ckpt_valid_map); kfree(sit_i->sentries[start].discard_map); } } kfree(sit_i->tmp_map); kvfree(sit_i->sentries); kvfree(sit_i->sec_entries); kvfree(sit_i->dirty_sentries_bitmap); SM_I(sbi)->sit_info = NULL; kfree(sit_i->sit_bitmap); kfree(sit_i); } void destroy_segment_manager(struct f2fs_sb_info *sbi) { struct f2fs_sm_info *sm_info = SM_I(sbi); if (!sm_info) return; destroy_flush_cmd_control(sbi); destroy_dirty_segmap(sbi); destroy_curseg(sbi); destroy_free_segmap(sbi); destroy_sit_info(sbi); sbi->sm_info = NULL; kfree(sm_info); } int __init create_segment_manager_caches(void) { discard_entry_slab = f2fs_kmem_cache_create("discard_entry", sizeof(struct discard_entry)); if (!discard_entry_slab) goto fail; bio_entry_slab = f2fs_kmem_cache_create("bio_entry", sizeof(struct bio_entry)); if (!bio_entry_slab) goto destroy_discard_entry; sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set", sizeof(struct sit_entry_set)); if (!sit_entry_set_slab) goto destroy_bio_entry; inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry", sizeof(struct inmem_pages)); if (!inmem_entry_slab) goto destroy_sit_entry_set; return 0; destroy_sit_entry_set: kmem_cache_destroy(sit_entry_set_slab); destroy_bio_entry: kmem_cache_destroy(bio_entry_slab); destroy_discard_entry: kmem_cache_destroy(discard_entry_slab); fail: return -ENOMEM; } void destroy_segment_manager_caches(void) { kmem_cache_destroy(sit_entry_set_slab); kmem_cache_destroy(bio_entry_slab); kmem_cache_destroy(discard_entry_slab); kmem_cache_destroy(inmem_entry_slab); }