Age | Commit message (Collapse) | Author | Files | Lines |
|
Initial implementation for swapping out KSM's shared pages: add
page_referenced_ksm() and try_to_unmap_ksm(), which rmap.c calls when
faced with a PageKsm page.
Most of what's needed can be got from the rmap_items listed from the
stable_node of the ksm page, without discovering the actual vma: so in
this patch just fake up a struct vma for page_referenced_one() or
try_to_unmap_one(), then refine that in the next patch.
Add VM_NONLINEAR to ksm_madvise()'s list of exclusions: it has always been
implicit there (being only set with VM_SHARED, already excluded), but
let's make it explicit, to help justify the lack of nonlinear unmap.
Rely on the page lock to protect against concurrent modifications to that
page's node of the stable tree.
The awkward part is not swapout but swapin: do_swap_page() and
page_add_anon_rmap() now have to allow for new possibilities - perhaps a
ksm page still in swapcache, perhaps a swapcache page associated with one
location in one anon_vma now needed for another location or anon_vma.
(And the vma might even be no longer VM_MERGEABLE when that happens.)
ksm_might_need_to_copy() checks for that case, and supplies a duplicate
page when necessary, simply leaving it to a subsequent pass of ksmd to
rediscover the identity and merge them back into one ksm page.
Disappointingly primitive: but the alternative would have to accumulate
unswappable info about the swapped out ksm pages, limiting swappability.
Remove page_add_ksm_rmap(): page_add_anon_rmap() now has to allow for the
particular case it was handling, so just use it instead.
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Izik Eidus <ieidus@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Chris Wright <chrisw@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
When KSM merges an mlocked page, it has been forgetting to munlock it:
that's been left to free_page_mlock(), which reports it in /proc/vmstat as
unevictable_pgs_mlockfreed instead of unevictable_pgs_munlocked (and
whinges "Page flag mlocked set for process" in mmotm, whereas mainline is
silently forgiving). Call munlock_vma_page() to fix that.
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Izik Eidus <ieidus@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Chris Wright <chrisw@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Add a pointer to the ksm page into struct stable_node, holding a reference
to the page while the node exists. Put a pointer to the stable_node into
the ksm page's ->mapping.
Then we don't need get_ksm_page() while traversing the stable tree: the
page to compare against is sure to be present and correct, even if it's no
longer visible through any of its existing rmap_items.
And we can handle the forked ksm page case more efficiently: no need to
memcmp our way through the tree to find its match.
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Izik Eidus <ieidus@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Though we still do well to keep rmap_items in the unstable tree without a
separate tree_item at the node, for several reasons it becomes awkward to
keep rmap_items in the stable tree without a separate stable_node: lack of
space in the nicely-sized rmap_item, the need for an anchor as rmap_items
are removed, the need for a node even when temporarily no rmap_items are
attached to it.
So declare struct stable_node (rb_node to place it in the tree and
hlist_head for the rmap_items hanging off it), and convert stable tree
handling to use it: without yet taking advantage of it. Note how one
stable_tree_insert() of a node now has _two_ stable_tree_append()s of the
two rmap_items being merged.
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Izik Eidus <ieidus@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Free up a pointer in struct rmap_item, by making the mm_slot's rmap_list a
singly-linked list: we always traverse that list sequentially, and we
don't even lose any prefetches (but should consider adding a few later).
Name it rmap_list throughout.
Do we need to free up that pointer? Not immediately, and in the end, we
could continue to avoid it with a union; but having done the conversion,
let's keep it this way, since there's no downside, and maybe we'll want
more in future (struct rmap_item is a cache-friendly 32 bytes on 32-bit
and 64 bytes on 64-bit, so we shall want to avoid expanding it).
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Izik Eidus <ieidus@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Cleanup: make argument names more consistent from cmp_and_merge_page()
down to replace_page(), so that it's easier to follow the rmap_item's page
and the matching tree_page and the merged kpage through that code.
In some places, e.g. break_cow(), pass rmap_item instead of separate mm
and address.
cmp_and_merge_page() initialize tree_page to NULL, to avoid a "may be used
uninitialized" warning seen in one config by Anil SB.
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Izik Eidus <ieidus@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
There is no need for replace_page() to calculate a write-protected prot
vm_page_prot must already be write-protected for an anonymous page (see
mm/memory.c do_anonymous_page() for similar reliance on vm_page_prot).
There is no need for try_to_merge_one_page() to get_page and put_page on
newpage and oldpage: in every case we already hold a reference to each of
them.
But some instinct makes me move try_to_merge_one_page()'s unlock_page of
oldpage down after replace_page(): that doesn't increase contention on the
ksm page, and makes thinking about the transition easier.
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Izik Eidus <ieidus@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
1. remove_rmap_item_from_tree() is called as a precaution from
various places: don't dirty the rmap_item cacheline unnecessarily,
just mask the flags out of the address when they have been set.
2. First get_next_rmap_item() removes an unstable rmap_item from its tree,
then shortly afterwards cmp_and_merge_page() removes a stable rmap_item
from its tree: it's easier just to do both at once (but definitely keep
the BUG_ON(age > 1) which guards against a future omission).
3. When cmp_and_merge_page() moves an rmap_item from unstable to stable
tree, it does its own rb_erase() and accounting: that's better
expressed by remove_rmap_item_from_tree().
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Izik Eidus <ieidus@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
shrink_zone
Fix small inconsistent of ">" and ">=".
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Now, All caller of reclaim use swap_cluster_max as SWAP_CLUSTER_MAX.
Then, we can remove it perfectly.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
In old days, we didn't have sc.nr_to_reclaim and it brought
sc.swap_cluster_max misuse.
huge sc.swap_cluster_max might makes unnecessary OOM risk and no
performance benefit.
Now, we can stop its insane thing.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
shrink_all_zone() was introduced by commit d6277db4ab (swsusp: rework
memory shrinker) for hibernate performance improvement. and
sc.swap_cluster_max was introduced by commit a06fe4d307 (Speed freeing
memory for suspend).
commit a06fe4d307 said
Without the patch:
Freed 14600 pages in 1749 jiffies = 32.61 MB/s (Anomolous!)
Freed 88563 pages in 14719 jiffies = 23.50 MB/s
Freed 205734 pages in 32389 jiffies = 24.81 MB/s
With the patch:
Freed 68252 pages in 496 jiffies = 537.52 MB/s
Freed 116464 pages in 569 jiffies = 798.54 MB/s
Freed 209699 pages in 705 jiffies = 1161.89 MB/s
At that time, their patch was pretty worth. However, Modern Hardware
trend and recent VM improvement broke its worth. From several reason, I
think we should remove shrink_all_zones() at all.
detail:
1) Old days, shrink_zone()'s slowness was mainly caused by stupid io-throttle
at no i/o congestion.
but current shrink_zone() is sane, not slow.
2) shrink_all_zone() try to shrink all pages at a time. but it doesn't works
fine on numa system.
example)
System has 4GB memory and each node have 2GB. and hibernate need 1GB.
optimal)
steal 500MB from each node.
shrink_all_zones)
steal 1GB from node-0.
Oh, Cache balancing logic was broken. ;)
Unfortunately, Desktop system moved ahead NUMA at nowadays.
(Side note, if hibernate require 2GB, shrink_all_zones() never success
on above machine)
3) if the node has several I/O flighting pages, shrink_all_zones() makes
pretty bad result.
schenario) hibernate need 1GB
1) shrink_all_zones() try to reclaim 1GB from Node-0
2) but it only reclaimed 990MB
3) stupidly, shrink_all_zones() try to reclaim 1GB from Node-1
4) it reclaimed 990MB
Oh, well. it reclaimed twice much than required.
In the other hand, current shrink_zone() has sane baling out logic.
then, it doesn't make overkill reclaim. then, we lost shrink_zones()'s risk.
4) SplitLRU VM always keep active/inactive ratio very carefully. inactive list only
shrinking break its assumption. it makes unnecessary OOM risk. it obviously suboptimal.
Now, shrink_all_memory() is only the wrapper function of do_try_to_free_pages().
it bring good reviewability and debuggability, and solve above problems.
side note: Reclaim logic unificication makes two good side effect.
- Fix recursive reclaim bug on shrink_all_memory().
it did forgot to use PF_MEMALLOC. it mean the system be able to stuck into deadlock.
- Now, shrink_all_memory() got lockdep awareness. it bring good debuggability.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Acked-by: Rafael J. Wysocki <rjw@sisk.pl>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Currently, sc.scap_cluster_max has double meanings.
1) reclaim batch size as isolate_lru_pages()'s argument
2) reclaim baling out thresolds
The two meanings pretty unrelated. Thus, Let's separate it.
this patch doesn't change any behavior.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Describe NUMA node symlink created for CPUs when CONFIG_NUMA is set.
Signed-off-by: Alex Chiang <achiang@hp.com>
Cc: Greg KH <greg@kroah.com>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Gary Hade <garyhade@us.ibm.com>
Cc: Badari Pulavarty <pbadari@us.ibm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: David Rientjes <rientjes@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
You can discover which CPUs belong to a NUMA node by examining
/sys/devices/system/node/node#/
However, it's not convenient to go in the other direction, when looking at
/sys/devices/system/cpu/cpu#/
Yes, you can muck about in sysfs, but adding these symlinks makes life a
lot more convenient.
Signed-off-by: Alex Chiang <achiang@hp.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Gary Hade <garyhade@us.ibm.com>
Cc: Badari Pulavarty <pbadari@us.ibm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: David Rientjes <rientjes@google.com>
Cc: Greg KH <greg@kroah.com>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
By returning early if the node is not online, we can unindent the
interesting code by two levels.
No functional change.
Signed-off-by: Alex Chiang <achiang@hp.com>
Cc: Gary Hade <garyhade@us.ibm.com>
Cc: Badari Pulavarty <pbadari@us.ibm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: David Rientjes <rientjes@google.com>
Cc: Greg KH <greg@kroah.com>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
By returning early if the node is not online, we can unindent the
interesting code by one level.
No functional change.
Signed-off-by: Alex Chiang <achiang@hp.com>
Cc: Gary Hade <garyhade@us.ibm.com>
Cc: Badari Pulavarty <pbadari@us.ibm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: David Rientjes <rientjes@google.com>
Cc: Greg KH <greg@kroah.com>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Commit c04fc586c (mm: show node to memory section relationship with
symlinks in sysfs) created symlinks from nodes to memory sections, e.g.
/sys/devices/system/node/node1/memory135 -> ../../memory/memory135
If you're examining the memory section though and are wondering what node
it might belong to, you can find it by grovelling around in sysfs, but
it's a little cumbersome.
Add a reverse symlink for each memory section that points back to the
node to which it belongs.
Signed-off-by: Alex Chiang <achiang@hp.com>
Cc: Gary Hade <garyhade@us.ibm.com>
Cc: Badari Pulavarty <pbadari@us.ibm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Greg KH <greg@kroah.com>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
When do_nonlinear_fault() realizes that the page table must have been
corrupted for it to have been called, it does print_bad_pte() and returns
... VM_FAULT_OOM, which is hard to understand.
It made some sense when I did it for 2.6.15, when do_page_fault() just
killed the current process; but nowadays it lets the OOM killer decide who
to kill - so page table corruption in one process would be liable to kill
another.
Change it to return VM_FAULT_SIGBUS instead: that doesn't guarantee that
the process will be killed, but is good enough for such a rare
abnormality, accompanied as it is by the "BUG: Bad page map" message.
And recent HWPOISON work has copied that code into do_swap_page(), when it
finds an impossible swap entry: fix that to VM_FAULT_SIGBUS too.
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Izik Eidus <ieidus@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Nick Piggin <npiggin@suse.de>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Cc: Andi Kleen <andi@firstfloor.org>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Wu Fengguang <fengguang.wu@intel.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
CONFIG_DEBUG_SPINLOCK adds 12 or 16 bytes to a 32- or 64-bit spinlock_t,
and CONFIG_DEBUG_LOCK_ALLOC adds another 12 or 24 bytes to it: lockdep
enables both of those, and CONFIG_LOCK_STAT adds 8 or 16 bytes to that.
When 2.6.15 placed the split page table lock inside struct page (usually
sized 32 or 56 bytes), only CONFIG_DEBUG_SPINLOCK was a possibility, and
we ignored the enlargement (but fitted in CONFIG_GENERIC_LOCKBREAK's 4 by
letting the spinlock_t occupy both page->private and page->mapping).
Should these debugging options be allowed to double the size of a struct
page, when only one minority use of the page (as a page table) needs to
fit a spinlock in there? Perhaps not.
Take the easy way out: switch off SPLIT_PTLOCK_CPUS when DEBUG_SPINLOCK or
DEBUG_LOCK_ALLOC is in force. I've sometimes tried to be cleverer,
kmallocing a cacheline for the spinlock when it doesn't fit, but given up
each time. Falling back to mm->page_table_lock (as we do when ptlock is
not split) lets lockdep check out the strictest path anyway.
And now that some arches allow 8192 cpus, use 999999 for infinity.
(What has this got to do with KSM swapping? It doesn't care about the
size of struct page, but may care about random junk in page->mapping - to
be explained separately later.)
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Izik Eidus <ieidus@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
KSM swapping will know where page_referenced_one() and try_to_unmap_one()
should look. It could hack page->index to get them to do what it wants,
but it seems cleaner now to pass the address down to them.
Make the same change to page_mkclean_one(), since it follows the same
pattern; but there's no real need in its case.
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Izik Eidus <ieidus@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Remove three degrees of obfuscation, left over from when we had
CONFIG_UNEVICTABLE_LRU. MLOCK_PAGES is CONFIG_HAVE_MLOCKED_PAGE_BIT is
CONFIG_HAVE_MLOCK is CONFIG_MMU. rmap.o (and memory-failure.o) are only
built when CONFIG_MMU, so don't need such conditions at all.
Somehow, I feel no compulsion to remove the CONFIG_HAVE_MLOCK* lines from
169 defconfigs: leave those to evolve in due course.
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Izik Eidus <ieidus@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Nick Piggin <npiggin@suse.de>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
There's contorted mlock/munlock handling in try_to_unmap_anon() and
try_to_unmap_file(), which we'd prefer not to repeat for KSM swapping.
Simplify it by moving it all down into try_to_unmap_one().
One thing is then lost, try_to_munlock()'s distinction between when no vma
holds the page mlocked, and when a vma does mlock it, but we could not get
mmap_sem to set the page flag. But its only caller takes no interest in
that distinction (and is better testing SWAP_MLOCK anyway), so let's keep
the code simple and return SWAP_AGAIN for both cases.
try_to_unmap_file()'s TTU_MUNLOCK nonlinear handling was particularly
amusing: once unravelled, it turns out to have been choosing between two
different ways of doing the same nothing. Ah, no, one way was actually
returning SWAP_FAIL when it meant to return SWAP_SUCCESS.
[kosaki.motohiro@jp.fujitsu.com: comment adding to mlocking in try_to_unmap_one]
[akpm@linux-foundation.org: remove test of MLOCK_PAGES]
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Izik Eidus <ieidus@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Andi Kleen <andi@firstfloor.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
At present we define PageAnon(page) by the low PAGE_MAPPING_ANON bit set
in page->mapping, with the higher bits a pointer to the anon_vma; and have
defined PageKsm(page) as that with NULL anon_vma.
But KSM swapping will need to store a pointer there: so in preparation for
that, now define PAGE_MAPPING_FLAGS as the low two bits, including
PAGE_MAPPING_KSM (always set along with PAGE_MAPPING_ANON, until some
other use for the bit emerges).
Declare page_rmapping(page) to return the pointer part of page->mapping,
and page_anon_vma(page) to return the anon_vma pointer when that's what it
is. Use these in a few appropriate places: notably, unuse_vma() has been
testing page->mapping, but is better to be testing page_anon_vma() (cases
may be added in which flag bits are set without any pointer).
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Izik Eidus <ieidus@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
being met
If reclaim fails to make sufficient progress, the priority is raised.
Once the priority is higher, kswapd starts waiting on congestion.
However, if the zone is below the min watermark then kswapd needs to
continue working without delay as there is a danger of an increased rate
of GFP_ATOMIC allocation failure.
This patch changes the conditions under which kswapd waits on congestion
by only going to sleep if the min watermarks are being met.
[mel@csn.ul.ie: add stats to track how relevant the logic is]
[mel@csn.ul.ie: make kswapd only check its own zones and rename the relevant counters]
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
asleep
After kswapd balances all zones in a pgdat, it goes to sleep. In the
event of no IO congestion, kswapd can go to sleep very shortly after the
high watermark was reached. If there are a constant stream of allocations
from parallel processes, it can mean that kswapd went to sleep too quickly
and the high watermark is not being maintained for sufficient length time.
This patch makes kswapd go to sleep as a two-stage process. It first
tries to sleep for HZ/10. If it is woken up by another process or the
high watermark is no longer met, it's considered a premature sleep and
kswapd continues work. Otherwise it goes fully to sleep.
This adds more counters to distinguish between fast and slow breaches of
watermarks. A "fast" premature sleep is one where the low watermark was
hit in a very short time after kswapd going to sleep. A "slow" premature
sleep indicates that the high watermark was breached after a very short
interval.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Cc: Frans Pop <elendil@planet.nl>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
When the code jumps to the `out', `referenced' is still zero. So there is
no need to check it.
Signed-off-by: Huang Shijie <shijie8@gmail.com>
Acked-by: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Just simplify the code when `mlocked' is true.
Signed-off-by: Huang Shijie <shijie8@gmail.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Fix the comment for try_to_unmap_anon() with the new arguments.
Signed-off-by: Huang Shijie <shijie8@gmail.com>
Acked-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Commit 543ade1fc9 ("Streamline generic_file_* interfaces and filemap
cleanups") removed generic_file_write() in filemap. Change the comment in
vmscan pageout() to __generic_file_aio_write().
Signed-off-by: Vincent Li <macli@brc.ubc.ca>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Seems that page_io.c doesn't really need to know that page_private(page)
is the swp_entry 'val'. Rework map_swap_page() to do what its name says
and map a page to a page offset in the swap space.
The only other caller of map_swap_page() is internal to mm/swapfile.c and
it does want to map a swap entry to the 'sector'. So rename
map_swap_page() to map_swap_entry(), make it 'static' and and implement
map_swap_page() as a wrapper around that.
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Reorder (and comment) the fields of swap_info_struct, to make better
use of its cachelines: it's good for swap_duplicate() in particular
if unsigned int max and swap_map are near the start.
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
While we're fiddling with the swap_map values, let's assign a particular
value to shmem/tmpfs swap pages: their swap counts are never incremented,
and it helps swapoff's try_to_unuse() a little if it can immediately
distinguish those pages from process pages.
Since we've no use for SWAP_MAP_BAD | COUNT_CONTINUED,
we might as well use that 0xbf value for SWAP_MAP_SHMEM.
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Swap is duplicated (reference count incremented by one) whenever the same
swap page is inserted into another mm (when forking finds a swap entry in
place of a pte, or when reclaim unmaps a pte to insert the swap entry).
swap_info_struct's vmalloc'ed swap_map is the array of these reference
counts: but what happens when the unsigned short (or unsigned char since
the preceding patch) is full? (and its high bit is kept for a cache flag)
We then lose track of it, never freeing, leaving it in use until swapoff:
at which point we _hope_ that a single pass will have found all instances,
assume there are no more, and will lose user data if we're wrong.
Swapping of KSM pages has not yet been enabled; but it is implemented,
and makes it very easy for a user to overflow the maximum swap count:
possible with ordinary process pages, but unlikely, even when pid_max
has been raised from PID_MAX_DEFAULT.
This patch implements swap count continuations: when the count overflows,
a continuation page is allocated and linked to the original vmalloc'ed
map page, and this used to hold the continuation counts for that entry
and its neighbours. These continuation pages are seldom referenced:
the common paths all work on the original swap_map, only referring to
a continuation page when the low "digit" of a count is incremented or
decremented through SWAP_MAP_MAX.
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Halve the vmalloc'ed swap_map array from unsigned shorts to unsigned
chars: it's still very unusual to reach a swap count of 126, and the
next patch allows it to be extended indefinitely.
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Though swap_count() is useful, I'm finding that swap_has_cache() and
encode_swapmap() obscure what happens in the swap_map entry, just at
those points where I need to understand it. Remove them, and pass
more usable "usage" values to scan_swap_map(), swap_entry_free() and
__swap_duplicate(), instead of the SWAP_MAP and SWAP_CACHE enum.
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Move CONFIG_HIBERNATION's swapdev_block() into the main CONFIG_HIBERNATION
block, remove extraneous whitespace and return, fix typo in a comment.
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Make better use of the space by folding first swap_extent into its
swap_info_struct, instead of just the list_head: swap partitions need
only that one, and for others it's used as a circular list anyway.
[jirislaby@gmail.com: fix crash on double swapon]
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Jiri Slaby <jirislaby@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The swap_info_struct is only 76 or 104 bytes, but it does seem wrong
to reserve an array of about 30 of them in bss, when most people will
want only one. Change swap_info[] to an array of pointers.
That does need a "type" field in the structure: pack it as a char with
next type and short prio (aha, char is unsigned by default on PowerPC).
Use the (admittedly peculiar) name "type" throughout for this index.
/proc/swaps does not take swap_lock: I wouldn't want it to, but do take
care with barriers when adding a new item to the array (never removed).
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The swap_info_struct is mostly private to mm/swapfile.c, with only
one other in-tree user: get_swap_bio(). Adjust its interface to
map_swap_page(), so that we can then remove get_swap_info_struct().
But there is a popular user out-of-tree, TuxOnIce: so leave the
declaration of swap_info_struct in linux/swap.h.
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Nigel Cunningham <ncunningham@crca.org.au>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
- avoid wasting more precious resources (DMA or DMA32 pools), when
being called through vmalloc_32{,_user}()
- explicitly allow using high memory here even if the outer allocation
request doesn't allow it
Signed-off-by: Jan Beulich <jbeulich@novell.com>
Acked-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Objects passed to NODEMASK_ALLOC() are relatively small in size and are
backed by slab caches that are not of large order, traditionally never
greater than PAGE_ALLOC_COSTLY_ORDER.
Thus, using GFP_KERNEL for these allocations on large machines when
CONFIG_NODES_SHIFT > 8 will cause the page allocator to loop endlessly in
the allocation attempt, each time invoking both direct reclaim or the oom
killer.
This is of particular interest when using NODEMASK_ALLOC() from a
mempolicy context (either directly in mm/mempolicy.c or the mempolicy
constrained hugetlb allocations) since the oom killer always kills current
when allocations are constrained by mempolicies. So for all present use
cases in the kernel, current would end up being oom killed when direct
reclaim fails. That would allow the NODEMASK_ALLOC() to succeed but
current would have sacrificed itself upon returning.
This patch adds gfp flags to NODEMASK_ALLOC() to pass to kmalloc() on
CONFIG_NODES_SHIFT > 8; this parameter is a nop on other configurations.
All current use cases either directly from hugetlb code or indirectly via
NODEMASK_SCRATCH() union __GFP_NORETRY to avoid direct reclaim and the oom
killer when the slab allocator needs to allocate additional pages.
The side-effect of this change is that all current use cases of either
NODEMASK_ALLOC() or NODEMASK_SCRATCH() need appropriate -ENOMEM handling
when the allocation fails (never for CONFIG_NODES_SHIFT <= 8). All
current use cases were audited and do have appropriate error handling at
this time.
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Nishanth Aravamudan <nacc@us.ibm.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@canonical.com>
Cc: Eric Whitney <eric.whitney@hp.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Offload the registration and unregistration of per node hstate sysfs
attributes to a worker thread rather than attempt the
allocation/attachment or detachment/freeing of the attributes in the
context of the memory hotplug handler.
I don't know that this is absolutely required, but the registration can
sleep in allocations and other mem hot plug handlers do it this way. If
it turns out this is NOT required, we can drop this patch.
N.B., Only tested build, boot, libhugetlbfs regression.
i.e., no memory hotplug testing.
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Reviewed-by: Andi Kleen <andi@firstfloor.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Nishanth Aravamudan <nacc@us.ibm.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@canonical.com>
Cc: Eric Whitney <eric.whitney@hp.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Register per node hstate attributes only for nodes with memory. As
suggested by David Rientjes.
With Memory Hotplug, memory can be added to a memoryless node and a node
with memory can become memoryless. Therefore, add a memory on/off-line
notifier callback to [un]register a node's attributes on transition
to/from memoryless state.
N.B., Only tested build, boot, libhugetlbfs regression.
i.e., no memory hotplug testing.
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Reviewed-by: Andi Kleen <andi@firstfloor.org>
Acked-by: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Nishanth Aravamudan <nacc@us.ibm.com>
Cc: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@canonical.com>
Cc: Eric Whitney <eric.whitney@hp.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
When memory is hot-removed, its node must be cleared in N_HIGH_MEMORY if
there are no present pages left.
In such a situation, kswapd must also be stopped since it has nothing left
to do.
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Yasunori Goto <y-goto@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Rafael J. Wysocki <rjw@sisk.pl>
Cc: Rik van Riel <riel@redhat.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Nishanth Aravamudan <nacc@us.ibm.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@canonical.com>
Cc: Eric Whitney <eric.whitney@hp.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Register per node hstate sysfs attributes only for nodes with memory.
Global replacement of 'all online nodes" with "all nodes with memory" in
mm/hugetlb.c. Suggested by David Rientjes.
A subsequent patch will handle adding/removing of per node hstate sysfs
attributes when nodes transition to/from memoryless state via memory
hotplug.
NOTE: this patch has not been tested with memoryless nodes.
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Reviewed-by: Andi Kleen <andi@firstfloor.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Nishanth Aravamudan <nacc@us.ibm.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@canonical.com>
Cc: Eric Whitney <eric.whitney@hp.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Update the kernel huge tlb documentation to describe the numa memory
policy based huge page management. Additionaly, the patch includes a fair
amount of rework to improve consistency, eliminate duplication and set the
context for documenting the memory policy interaction.
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Andi Kleen <andi@firstfloor.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Nishanth Aravamudan <nacc@us.ibm.com>
Cc: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@canonical.com>
Cc: Eric Whitney <eric.whitney@hp.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Add the per huge page size control/query attributes to the per node
sysdevs:
/sys/devices/system/node/node<ID>/hugepages/hugepages-<size>/
nr_hugepages - r/w
free_huge_pages - r/o
surplus_huge_pages - r/o
The patch attempts to re-use/share as much of the existing global hstate
attribute initialization and handling, and the "nodes_allowed" constraint
processing as possible.
Calling set_max_huge_pages() with no node indicates a change to global
hstate parameters. In this case, any non-default task mempolicy will be
used to generate the nodes_allowed mask. A valid node id indicates an
update to that node's hstate parameters, and the count argument specifies
the target count for the specified node. From this info, we compute the
target global count for the hstate and construct a nodes_allowed node mask
contain only the specified node.
Setting the node specific nr_hugepages via the per node attribute
effectively ignores any task mempolicy or cpuset constraints.
With this patch:
(me):ls /sys/devices/system/node/node0/hugepages/hugepages-2048kB
./ ../ free_hugepages nr_hugepages surplus_hugepages
Starting from:
Node 0 HugePages_Total: 0
Node 0 HugePages_Free: 0
Node 0 HugePages_Surp: 0
Node 1 HugePages_Total: 0
Node 1 HugePages_Free: 0
Node 1 HugePages_Surp: 0
Node 2 HugePages_Total: 0
Node 2 HugePages_Free: 0
Node 2 HugePages_Surp: 0
Node 3 HugePages_Total: 0
Node 3 HugePages_Free: 0
Node 3 HugePages_Surp: 0
vm.nr_hugepages = 0
Allocate 16 persistent huge pages on node 2:
(me):echo 16 >/sys/devices/system/node/node2/hugepages/hugepages-2048kB/nr_hugepages
[Note that this is equivalent to:
numactl -m 2 hugeadmin --pool-pages-min 2M:+16
]
Yields:
Node 0 HugePages_Total: 0
Node 0 HugePages_Free: 0
Node 0 HugePages_Surp: 0
Node 1 HugePages_Total: 0
Node 1 HugePages_Free: 0
Node 1 HugePages_Surp: 0
Node 2 HugePages_Total: 16
Node 2 HugePages_Free: 16
Node 2 HugePages_Surp: 0
Node 3 HugePages_Total: 0
Node 3 HugePages_Free: 0
Node 3 HugePages_Surp: 0
vm.nr_hugepages = 16
Global controls work as expected--reduce pool to 8 persistent huge pages:
(me):echo 8 >/sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages
Node 0 HugePages_Total: 0
Node 0 HugePages_Free: 0
Node 0 HugePages_Surp: 0
Node 1 HugePages_Total: 0
Node 1 HugePages_Free: 0
Node 1 HugePages_Surp: 0
Node 2 HugePages_Total: 8
Node 2 HugePages_Free: 8
Node 2 HugePages_Surp: 0
Node 3 HugePages_Total: 0
Node 3 HugePages_Free: 0
Node 3 HugePages_Surp: 0
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Andi Kleen <andi@firstfloor.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Nishanth Aravamudan <nacc@us.ibm.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@canonical.com>
Cc: Eric Whitney <eric.whitney@hp.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Move definition of NUMA_NO_NODE from ia64 and x86_64 arch specific headers
to generic header 'linux/numa.h' for use in generic code. NUMA_NO_NODE
replaces bare '-1' where it's used in this series to indicate "no node id
specified". Ultimately, it can be used to replace the -1 elsewhere where
it is used similarly.
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Andi Kleen <andi@firstfloor.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Nishanth Aravamudan <nacc@us.ibm.com>
Cc: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@canonical.com>
Cc: Eric Whitney <eric.whitney@hp.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This patch derives a "nodes_allowed" node mask from the numa mempolicy of
the task modifying the number of persistent huge pages to control the
allocation, freeing and adjusting of surplus huge pages when the pool page
count is modified via the new sysctl or sysfs attribute
"nr_hugepages_mempolicy". The nodes_allowed mask is derived as follows:
* For "default" [NULL] task mempolicy, a NULL nodemask_t pointer
is produced. This will cause the hugetlb subsystem to use
node_online_map as the "nodes_allowed". This preserves the
behavior before this patch.
* For "preferred" mempolicy, including explicit local allocation,
a nodemask with the single preferred node will be produced.
"local" policy will NOT track any internode migrations of the
task adjusting nr_hugepages.
* For "bind" and "interleave" policy, the mempolicy's nodemask
will be used.
* Other than to inform the construction of the nodes_allowed node
mask, the actual mempolicy mode is ignored. That is, all modes
behave like interleave over the resulting nodes_allowed mask
with no "fallback".
See the updated documentation [next patch] for more information
about the implications of this patch.
Examples:
Starting with:
Node 0 HugePages_Total: 0
Node 1 HugePages_Total: 0
Node 2 HugePages_Total: 0
Node 3 HugePages_Total: 0
Default behavior [with or without this patch] balances persistent
hugepage allocation across nodes [with sufficient contiguous memory]:
sysctl vm.nr_hugepages[_mempolicy]=32
yields:
Node 0 HugePages_Total: 8
Node 1 HugePages_Total: 8
Node 2 HugePages_Total: 8
Node 3 HugePages_Total: 8
Of course, we only have nr_hugepages_mempolicy with the patch,
but with default mempolicy, nr_hugepages_mempolicy behaves the
same as nr_hugepages.
Applying mempolicy--e.g., with numactl [using '-m' a.k.a.
'--membind' because it allows multiple nodes to be specified
and it's easy to type]--we can allocate huge pages on
individual nodes or sets of nodes. So, starting from the
condition above, with 8 huge pages per node, add 8 more to
node 2 using:
numactl -m 2 sysctl vm.nr_hugepages_mempolicy=40
This yields:
Node 0 HugePages_Total: 8
Node 1 HugePages_Total: 8
Node 2 HugePages_Total: 16
Node 3 HugePages_Total: 8
The incremental 8 huge pages were restricted to node 2 by the
specified mempolicy.
Similarly, we can use mempolicy to free persistent huge pages
from specified nodes:
numactl -m 0,1 sysctl vm.nr_hugepages_mempolicy=32
yields:
Node 0 HugePages_Total: 4
Node 1 HugePages_Total: 4
Node 2 HugePages_Total: 16
Node 3 HugePages_Total: 8
The 8 huge pages freed were balanced over nodes 0 and 1.
[rientjes@google.com: accomodate reworked NODEMASK_ALLOC]
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Andi Kleen <andi@firstfloor.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Nishanth Aravamudan <nacc@us.ibm.com>
Cc: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@canonical.com>
Cc: Eric Whitney <eric.whitney@hp.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|