1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
|
/*
* BEGIN_COPYRIGHT -*- glean -*-
*
* Copyright (C) 2001 Allen Akin All Rights Reserved.
* Copyright (C) 2014 Intel Corporation All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person
* obtaining a copy of this software and associated documentation
* files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use,
* copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following
* conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* END_COPYRIGHT
*/
/** @file polygon-offset.c
*
* Implementation of polygon offset tests.
*
* This test verifies glPolygonOffset. It is run on every
* OpenGL-capable drawing surface configuration that supports
* creation of a window, has a depth buffer, and is RGB.
*
* The first subtest verifies that the OpenGL implementation is
* using a plausible value for the \"minimum resolvable
* difference\" (MRD). This is the offset in window coordinates
* that is sufficient to provide separation in depth (Z) for any
* two parallel surfaces. The subtest searches for the MRD by
* drawing two surfaces at a distance from each other and
* checking the resulting image to see if they were cleanly
* separated. The distance is then modified (using a binary
* search) until a minimum value is found. This is the so-called
* \"ideal\" MRD. Then two surfaces are drawn using
* glPolygonOffset to produce a separation that should equal one
* MRD. The depth values at corresponding points on each surface
* are subtracted to form the \"actual\" MRD. The subtest performs
* these checks twice, once close to the viewpoint and once far
* away from it, and passes if the largest of the ideal MRDs and
* the largest of the actual MRDs are nearly the same.
*
* The second subtest verifies that the OpenGL implementation is
* producing plausible values for slope-dependent offsets. The
* OpenGL spec requires that the depth slope of a surface be
* computed by an approximation that is at least as large as
* max(abs(dz/dx),abs(dz/dy)) and no larger than
* sqrt((dz/dx)**2+(dz/dy)**2). The subtest draws a quad rotated
* by various angles along various axes, samples three points on
* the quad's surface, and computes dz/dx and dz/dy. Then it
* draws two additional quads offset by one and two times the
* depth slope, respectively. The base quad and the two new
* quads are sampled and their actual depths read from the depth
* buffer. The subtest passes if the quads are offset by amounts
* that are within one and two times the allowable range,
* respectively.
*
* Derived in part from tests written by Angus Dorbie <dorbie@sgi.com>
* in September 2000 and Rickard E. (Rik) Faith <faith@valinux.com> in
* October 2000.
*
* Ported to Piglit by Laura Ekstrand.
*/
#include "piglit-util-gl.h"
#include <GL/glu.h>
#include <math.h>
PIGLIT_GL_TEST_CONFIG_BEGIN
config.supports_gl_compat_version = 11;
config.window_visual = PIGLIT_GL_VISUAL_RGBA |
PIGLIT_GL_VISUAL_DOUBLE | PIGLIT_GL_VISUAL_DEPTH;
PIGLIT_GL_TEST_CONFIG_END
struct angle_axis {
GLfloat angle;
GLfloat axis[3];
};
void
draw_quad_at_distance(GLdouble dist)
{
glBegin(GL_QUADS);
glVertex3d(-dist, -dist, -dist);
glVertex3d( dist, -dist, -dist);
glVertex3d( dist, dist, -dist);
glVertex3d(-dist, dist, -dist);
glEnd();
}
GLdouble
window_coord_depth(GLdouble dist)
{
/*
* Assumes we're using the "far at infinity" projection matrix
* and simple viewport transformation.
*/
return 0.5 * (dist - 2.0) / dist + 0.5;
}
bool
red_quad_was_drawn(void)
{
float expected[] = {1.0f, 0.0f, 0.0f};
return piglit_probe_rect_rgb_silent(0, 0, piglit_width,
piglit_height, expected);
}
void
piglit_init(int argc, char **argv)
{
}
void
find_ideal_mrd(GLdouble* ideal_mrd_near, GLdouble* ideal_mrd_far,
GLdouble* next_to_near, GLdouble* next_to_far)
{
/*
* MRD stands for Minimum Resolvable Difference, the smallest
* distance in depth that suffices to separate any two
* polygons (or a polygon and the near or far clipping
* planes).
*
* This function tries to determine the "ideal" MRD for the
* current rendering context. It's expressed in window
* coordinates, because the value in model or clipping
* coordinates depends on the scale factors in the modelview
* and projection matrices and on the distances to the near
* and far clipping planes.
*
* For simple unsigned-integer depth buffers that aren't too
* deep (so that precision isn't an issue during coordinate
* transformations), it should be about one least-significant
* bit. For deep or floating-point or compressed depth
* buffers the situation may be more complicated, so we don't
* pass or fail an implementation solely on the basis of its
* ideal MRD.
*
* There are two subtle parts of this function. The first is
* the projection matrix we use for rendering. This matrix
* places the far clip plane at infinity (so that we don't run
* into arbitrary limits during our search process). The
* second is the method used for drawing the polygon. We
* scale the x and y coords of the polygon vertices by the
* polygon's depth, so that it always occupies the full view
* frustum. This makes it easier to verify that the polygon
* was resolved completely -- we just read back the entire
* window and see if any background pixels appear.
*
* To insure that we get reasonable results on machines with
* unusual depth buffers (floating-point, or compressed), we
* determine the MRD twice, once close to the near clipping
* plane and once as far away from the eye as possible. On a
* simple integer depth buffer these two values should be
* essentially the same. For other depth-buffer formats, the
* ideal MRD is simply the largest of the two.
*/
GLdouble near_dist, far_dist, half_dist;
int i;
/*
* First, find a distance that is as far away as possible, yet
* a quad at that distance can be distinguished from the
* background. Start by pushing quads away from the eye until
* we find an interval where the closer quad can be resolved,
* but the farther quad cannot. Then binary-search to find
* the threshold.
*/
glDepthFunc(GL_LESS);
glClearDepth(1.0);
glColor3f(1.0, 0.0, 0.0); /* red */
near_dist = 1.0;
far_dist = 2.0;
for (;;) {
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
draw_quad_at_distance(far_dist);
if (!red_quad_was_drawn())
break;
piglit_present_results();
near_dist = far_dist;
far_dist *= 2.0;
}
for (i = 0; i < 64; ++i) {
half_dist = 0.5 * (near_dist + far_dist);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
draw_quad_at_distance(half_dist);
if (red_quad_was_drawn())
near_dist = half_dist;
else
far_dist = half_dist;
piglit_present_results();
}
*next_to_far = near_dist;
/*
* We can derive a resolvable difference from the value
* next_to_far, but it's not necessarily the one we want.
* Consider mapping the object coordinate range [0,1] onto the
* integer window coordinate range [0,2]. A natural way to do
* this is with a linear function, windowCoord =
* 2*objectCoord. With rounding, this maps [0,0.25) to 0,
* [0.25,0.75) to 1, and [0.75,1] to 2. Note that the
* intervals at either end are 0.25 wide, but the one in the
* middle is 0.5 wide. The difference we can derive from
* next_to_far is related to the width of the final interval.
* We want to back up just a bit so that we can get a
* (possibly much larger) difference that will work for the
* larger interval. To do this we need to find a difference
* that allows us to distinguish two quads when the more
* distant one is at distance next_to_far.
*/
near_dist = 1.0;
far_dist = *next_to_far;
for (i = 0; i < 64; ++i) {
half_dist = 0.5 * (near_dist + far_dist);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glColor3f(0.0, 0.0, 0.0); /* black */
glDepthFunc(GL_ALWAYS);
draw_quad_at_distance(*next_to_far);
glColor3f(1.0, 0.0, 0.0); /* red */
glDepthFunc(GL_LESS);
draw_quad_at_distance(half_dist);
if (red_quad_was_drawn())
near_dist = half_dist;
else
far_dist = half_dist;
piglit_present_results();
}
*ideal_mrd_far = window_coord_depth(*next_to_far)
- window_coord_depth(near_dist);
/*
* Now we apply a similar strategy at the near end of the
* depth range, but swapping the senses of various comparisons
* so that we approach the near clipping plane rather than the
* far.
*/
glClearDepth(0.0);
glDepthFunc(GL_GREATER);
glColor3f(1.0, 0.0, 0.0); /* red */
near_dist = 1.0;
far_dist = *next_to_far;
for (i = 0; i < 64; ++i) {
half_dist = 0.5 * (near_dist + far_dist);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
draw_quad_at_distance(half_dist);
if (red_quad_was_drawn())
far_dist = half_dist;
else
near_dist = half_dist;
piglit_present_results();
}
*next_to_near = far_dist;
near_dist = *next_to_near;
far_dist = *next_to_far;
for (i = 0; i < 64; ++i) {
half_dist = 0.5 * (near_dist + far_dist);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glColor3f(0.0, 0.0, 0.0); /* black */
glDepthFunc(GL_ALWAYS);
draw_quad_at_distance(*next_to_near);
glColor3f(1.0, 0.0, 0.0); /* red */
glDepthFunc(GL_GREATER);
draw_quad_at_distance(half_dist);
if (red_quad_was_drawn())
far_dist = half_dist;
else
near_dist = half_dist;
piglit_present_results();
}
*ideal_mrd_near = window_coord_depth(far_dist)
- window_coord_depth(*next_to_near);
} /* find_ideal_mrd */
double
read_depth(int x, int y)
{
GLuint depth;
glReadPixels(x, y, 1, 1, GL_DEPTH_COMPONENT,
GL_UNSIGNED_INT, &depth);
/*
* This normalization of "depth" is correct even on 64-bit
* machines because GL types have machine-independent ranges.
*/
return ((double) depth) / 4294967295.0;
}
void
find_actual_mrd(GLdouble* next_to_near, GLdouble* next_to_far,
GLdouble* actual_mrd_near, GLdouble* actual_mrd_far)
{
/*
* Here we use polygon offset to determine the
* implementation's actual MRD.
*/
double base_depth;
glDepthFunc(GL_ALWAYS);
/* Draw a quad far away from the eye and read the depth at its
* center: */
glDisable(GL_POLYGON_OFFSET_FILL);
draw_quad_at_distance(*next_to_far);
base_depth = read_depth(piglit_width/2, piglit_height/2);
/* Now draw a quad that's one MRD closer to the eye: */
glEnable(GL_POLYGON_OFFSET_FILL);
glPolygonOffset(0.0, -1.0);
draw_quad_at_distance(*next_to_far);
/*
* The difference between the depths of the two quads is the
* value the implementation is actually using for one MRD:
*/
*actual_mrd_far = base_depth
- read_depth(piglit_width/2, piglit_height/2);
/* Repeat the process for a quad close to the eye: */
glDisable(GL_POLYGON_OFFSET_FILL);
draw_quad_at_distance(*next_to_near);
base_depth = read_depth(piglit_width/2, piglit_height/2);
glEnable(GL_POLYGON_OFFSET_FILL);
glPolygonOffset(0.0, 1.0); /* 1 MRD further away */
draw_quad_at_distance(*next_to_near);
*actual_mrd_near = read_depth(piglit_width/2, piglit_height/2)
- base_depth;
} /* find_actual_mrd */
void
draw_2x2_quad(void)
{
glBegin(GL_QUADS);
glVertex2f(-1.0, -1.0);
glVertex2f( 1.0, -1.0);
glVertex2f( 1.0, 1.0);
glVertex2f(-1.0, 1.0);
glEnd();
}
bool
check_slope_offset(struct angle_axis* aa, GLdouble* ideal_mrd_near)
{
/*
* This function checks for correct slope-based offsets for
* a quad rotated to a given angle around a given axis.
*
* The basic strategy is to:
* Draw the quad. (Note: the quad's size and position
* are chosen so that it won't ever be clipped.)
* Sample three points in the quad's interior.
* Compute dz/dx and dz/dy based on those samples.
* Compute the range of allowable offsets; must be between
* max(abs(dz/dx), abs(dz/dy)) and
* sqrt((dz/dx)**2, (dz/dy)**2)
* Sample the depth of the quad at its center.
* Use PolygonOffset to produce an offset equal to one
* times the depth slope of the base quad.
* Draw another quad with the same orientation as the first.
* Sample the second quad at its center.
* Compute the difference in depths between the first quad
* and the second.
* Verify that the difference is within the allowable range.
* Repeat for a third quad at twice the offset from the first.
* (This verifies that the implementation is scaling
* the depth offset correctly.)
*/
const GLfloat quad_dist = 2.5; /* must be > 1+sqrt(2) to avoid */
/* clipping by the near plane */
GLdouble modelview_mat[16];
GLdouble projection_mat[16];
GLint viewport[4];
GLdouble centerw[3];
GLdouble base_depth;
GLdouble p0[3];
GLdouble p1[3];
GLdouble p2[3];
double det, dzdx, dzdy, mmax, mmin;
GLdouble offset_depth, offset;
glClearDepth(1.0);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_LESS);
glColor3f(1.0, 0.0, 0.0); /* red */
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glTranslatef(0.0, 0.0, -quad_dist);
glRotatef(aa->angle, aa->axis[0], aa->axis[1], aa->axis[2]);
glGetDoublev(GL_MODELVIEW_MATRIX, modelview_mat);
glGetDoublev(GL_PROJECTION_MATRIX, projection_mat);
glGetIntegerv(GL_VIEWPORT, viewport);
glDisable(GL_POLYGON_OFFSET_FILL);
draw_2x2_quad();
gluProject(0.0, 0.0, 0.0, modelview_mat, projection_mat, viewport,
centerw + 0, centerw + 1, centerw + 2);
base_depth = read_depth(centerw[0], centerw[1]);
gluProject(-0.9, -0.9, 0.0, modelview_mat, projection_mat, viewport,
p0 + 0, p0 + 1, p0 + 2);
p0[2] = read_depth(p0[0], p0[1]);
gluProject( 0.9, -0.9, 0.0, modelview_mat, projection_mat, viewport,
p1 + 0, p1 + 1, p1 + 2);
p1[2] = read_depth(p1[0], p1[1]);
gluProject( 0.9, 0.9, 0.0, modelview_mat, projection_mat, viewport,
p2 + 0, p2 + 1, p2 + 2);
p2[2] = read_depth(p2[0], p2[1]);
det = (p0[0] - p1[0]) * (p0[1] - p2[1])
- (p0[0] - p2[0]) * (p0[1] - p1[1]);
if (fabs(det) < 0.001)
return false; /* too close to colinear to evaluate */
dzdx = ((p0[2] - p1[2]) * (p0[1] - p2[1])
- (p0[2] - p2[2]) * (p0[1] - p1[1])) / det;
dzdy = ((p0[0] - p1[0]) * (p0[2] - p2[2])
- (p0[0] - p2[0]) * (p0[2] - p1[2])) / det;
mmax = 1.1 * sqrt(dzdx * dzdx + dzdy * dzdy) + (*ideal_mrd_near);
/* (adding ideal_mrd_near is a fudge for roundoff error */
/* when the slope is extremely close to zero) */
mmin = 0.9 * fmax(fabs(dzdx), fabs(dzdy));
glEnable(GL_POLYGON_OFFSET_FILL);
glPolygonOffset(-1.0, 0.0);
piglit_present_results();
draw_2x2_quad();
offset_depth = read_depth(centerw[0], centerw[1]);
offset = fmax(base_depth - offset_depth, 0.0);
if (offset < mmin || offset > mmax) {
if (offset < mmin)
printf("\tDepth-slope related offset was too small");
else
printf("\tDepth-slope related offset was too large");
printf("; first failure at:\n");
printf("\t\tAngle = %f degrees, axis = (%f, %f, %f)\n",
aa->angle, aa->axis[0], aa->axis[1], aa->axis[2]);
printf("\t\tFailing offset was %.16f\n", offset);
printf("\t\tAllowable range is (%f, %f)\n", mmin, mmax);
return false;
}
glPolygonOffset(-2.0, 0.0);
piglit_present_results();
draw_2x2_quad();
offset_depth = read_depth(centerw[0], centerw[1]);
offset = fmax(base_depth - offset_depth, 0.0);
if (offset < 2.0 * mmin || offset > 2.0 * mmax) {
if (offset < 2.0 * mmin)
printf("\tDepth-slope related offset was too small");
else
printf("\tDepth-slope related offset was too large");
printf("; first failure at:\n");
printf("\t\tAngle = %f degrees, axis = (%f, %f, %f)\n",
aa->angle, aa->axis[0], aa->axis[1], aa->axis[2]);
printf("\t\tFailing offset was %.16f\n", offset);
printf("\t\tAllowable range is (%f, %f)\n", 2.0 * mmin,
2.0 * mmax);
return false;
}
return true;
}
bool
check_slope_offsets(GLdouble* ideal_mrd_near)
{
/*
* This function checks that the implementation is offsetting
* primitives correctly according to their depth slopes.
* (Note that it uses some values computed by find_ideal_mrd, so
* that function must be run first.)
*/
bool pass = true;
int i;
/*
* Rotation angles (degrees)
* and axes for which offset will be checked
*/
struct angle_axis aa[] = {
{ 0, {1, 0, 0}},
{30, {1, 0, 0}},
{45, {1, 0, 0}},
{60, {1, 0, 0}},
{80, {1, 0, 0}},
{ 0, {0, 1, 0}},
{30, {0, 1, 0}},
{45, {0, 1, 0}},
{60, {0, 1, 0}},
{80, {0, 1, 0}},
{ 0, {1, 1, 0}},
{30, {1, 1, 0}},
{45, {1, 1, 0}},
{60, {1, 1, 0}},
{80, {1, 1, 0}},
{ 0, {2, 1, 0}},
{30, {2, 1, 0}},
{45, {2, 1, 0}},
{60, {2, 1, 0}},
{80, {2, 1, 0}}
};
for (i = 0; pass && i < ARRAY_SIZE(aa); ++i)
pass &= check_slope_offset(aa + i, ideal_mrd_near);
return pass;
} /* check_slope_offsets */
void
log_mrd(double mrd, GLint dbits)
{
int bits;
bits = (int)(0.5 + (pow(2.0, dbits) - 1.0) * mrd);
printf("%e (nominally %i %s)\n", mrd, bits,
(bits == 1)? "bit": "bits");
} /* log_mrd */
enum piglit_result
piglit_display(void)
{
bool pass = true;
double ideal_mrd, actual_mrd;
GLdouble ideal_mrd_near, ideal_mrd_far, next_to_near, next_to_far;
GLdouble actual_mrd_near, actual_mrd_far;
bool big_enough_mrd, small_enough_mrd;
GLint dbits;
/*
* The following projection matrix places the near clipping
* plane at distance 1.0, and the far clipping plane at
* infinity. This allows us to stress depth-buffer resolution
* as far away from the eye as possible, without introducing
* code that depends on the size or format of the depth
* buffer.
*
* (To derive this matrix, start with the matrix generated by
* glFrustum with near-plane distance equal to 1.0, and take
* the limit of the matrix elements as the far-plane distance
* goes to infinity.)
*/
static GLfloat near_1_far_infinity[] = {
1.0, 0.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0,
0.0, 0.0, -1.0, -1.0,
0.0, 0.0, -2.0, 0.0
};
glViewport(0, 0, piglit_width, piglit_height);
glDepthRange(0.0, 1.0);
glMatrixMode(GL_PROJECTION);
glLoadMatrixf(near_1_far_infinity);
glDisable(GL_LIGHTING);
glFrontFace(GL_CCW);
glDisable(GL_NORMALIZE);
glDisable(GL_COLOR_MATERIAL);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glDisable(GL_TEXTURE_2D);
glDisable(GL_FOG);
glDisable(GL_SCISSOR_TEST);
glDisable(GL_ALPHA_TEST);
glDisable(GL_STENCIL_TEST);
glDepthFunc(GL_LESS);
glEnable(GL_DEPTH_TEST);
glDisable(GL_BLEND);
glDisable(GL_DITHER);
glDisable(GL_COLOR_LOGIC_OP);
glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);
glDepthMask(GL_TRUE);
glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
glCullFace(GL_BACK);
glEnable(GL_CULL_FACE);
glDisable(GL_POLYGON_STIPPLE);
glDisable(GL_POLYGON_OFFSET_FILL);
glShadeModel(GL_FLAT);
glClearColor(0.0, 0.0, 0.0, 0.0);
glClearDepth(1.0);
find_ideal_mrd(&ideal_mrd_near, &ideal_mrd_far,
&next_to_near, &next_to_far);
find_actual_mrd(&next_to_near, &next_to_far,
&actual_mrd_near, &actual_mrd_far);
ideal_mrd = fmax(ideal_mrd_near, ideal_mrd_far);
actual_mrd = fmax(actual_mrd_near, actual_mrd_far);
big_enough_mrd = (actual_mrd >= 0.99 * ideal_mrd);
small_enough_mrd = (actual_mrd <= 2.0 * ideal_mrd);
pass &= big_enough_mrd;
pass &= small_enough_mrd;
pass &= check_slope_offsets(&ideal_mrd_near);
/* Print the results */
if (!big_enough_mrd)
{
printf("\tActual MRD is too small ");
printf("(may cause incorrect results)\n");
}
if (!small_enough_mrd)
{
printf("\tActual MRD is too large ");
printf("(may waste depth-buffer range)\n\n");
}
glGetIntegerv(GL_DEPTH_BITS, &dbits);
printf("\tIdeal MRD at near plane is ");
log_mrd(ideal_mrd_near, dbits);
printf("\tActual MRD at near plane is ");
log_mrd(actual_mrd_near, dbits);
printf("\tIdeal MRD at infinity is ");
log_mrd(ideal_mrd_far, dbits);
printf("\tActual MRD at infinity is ");
log_mrd(actual_mrd_far, dbits);
printf("\n");
return pass ? PIGLIT_PASS : PIGLIT_FAIL;
} /* piglit_display */
|