static const char* noise_simplex_cl_source = "#define MAX_RANK 3 \n" " \n" "float2 \n" "philox (uint2 st, \n" " uint k) \n" "{ \n" " ulong p; \n" " int i; \n" " \n" " for (i = 0 ; i < 3 ; i += 1) \n" " { \n" " p = st.x * 0xcd9e8d57ul; \n" " \n" " st.x = ((uint)(p >> 32)) ^ st.y ^ k; \n" " st.y = (uint)p; \n" " \n" " k += 0x9e3779b9u; \n" " } \n" " \n" " return convert_float2(st) / 2147483648.0f - 1.0f; \n" "} \n" " \n" "__kernel void kernel_noise (__global float *out, \n" " const int x_0, \n" " const int y_0, \n" " const uint iterations, \n" " const float scale, \n" " const uint seed) \n" "{ \n" " const int gidx = get_global_id(0); \n" " const int gidy = get_global_id(1); \n" " \n" " float c, d, m; \n" " float2 p; \n" " int j; \n" " \n" " for (j = 0, m = 0, c = 1, d = scale; \n" " j < iterations; \n" " c *= 2, d *= 2, j += 1) \n" " { \n" " float s, t, n; \n" " float2 g[3], u[3], i, di; \n" " int k; \n" " \n" " p = (float2)(gidx + x_0, gidy + y_0) * d; \n" " \n" " /* Skew the input point and find the lowest corner of the containing \n" " simplex. */ \n" " \n" " s = (p.x + p.y) * (sqrt(3.0f) - 1) / 2; \n" " i = floor(p + s); \n" " \n" " /* Calculate the (unskewed) distance between the input point and all \n" " simplex corners. */ \n" " \n" " s = (i.x + i.y) * (3 - sqrt(3.0f)) / 6; \n" " u[0] = p - i + s; \n" " \n" " di = u[0].x >= u[0].y ? (float2)(1, 0) : (float2)(0, 1); \n" " \n" " u[1] = u[0] - di + (3 - sqrt(3.0f)) / 6; \n" " u[2] = u[0] - 1 + (3 - sqrt(3.0f)) / 3; \n" " \n" " /* Calculate gradients for each corner vertex. We convert to \n" " * signed int first to avoid implementation-defined behavior for \n" " * out-of-range values. See section 6.2.3.3 of the OpenCL \n" " * specification. */ \n" " \n" " g[0] = philox(convert_uint2(convert_int2(i)), seed); \n" " g[1] = philox(convert_uint2(convert_int2(i + di)), seed); \n" " g[2] = philox(convert_uint2(convert_int2(i + 1)), seed); \n" " \n" " for (k = 0, n = 0 ; k < 3 ; k += 1) \n" " { \n" " t = 0.5f - dot(u[k], u[k]); \n" " \n" " if (t > 0) \n" " { \n" " t *= t; \n" " n += t * t * dot(g[k], u[k]); \n" " } \n" " } \n" " \n" " m += 70 * n / c; \n" " } \n" " \n" " out[gidy * get_global_size(0) + gidx] = m; \n" "} \n" ;