Copyright © 2008-2011 Kristian Høgsberg Copyright © 2010-2011 Intel Corporation Permission to use, copy, modify, distribute, and sell this software and its documentation for any purpose is hereby granted without fee, provided that the above copyright notice appear in all copies and that both that copyright notice and this permission notice appear in supporting documentation, and that the name of the copyright holders not be used in advertising or publicity pertaining to distribution of the software without specific, written prior permission. The copyright holders make no representations about the suitability of this software for any purpose. It is provided "as is" without express or implied warranty. THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. The core global object. This is a special singleton object. It is used for internal wayland protocol features. Binds a new, client-created object to the server using @name as the identifier. The sync request asks the server to invoke the 'done' request on the provided wl_callback object. Since requests are handled in-order, this can be used as a barrier to ensure all previous requests have been handled. The error event is sent out when a fatal (non-recoverable) error has occurred. These errors are global and can be emitted in response to any server request. Notify the client of global objects. These are objects that are created by the server. Globals are published on the initial client connection sequence, upon device hotplugs, device disconnects, reconfiguration or other events. A client can 'bind' to a global object by using the bind request. This creates a client side handle that lets the object emit events to the client and lets the client invoke requests on the object. Notify the client of removed global objects. Server has deleted the id and client can now reuse it. A compositor. This object is a singleton global. The compositor is in charge of combining the contents of multiple surfaces into one displayable output. Ask the compositor to create a new surface. Ask the compositor to create a new region. The wl_shm_pool object encapsulates a piece of memory shared between the compsitor and client. Through the wl_shm_pool object, the client can allocate shared memory wl_buffer objects. The objects will share the same underlying mapped memory. Reusing the mapped memory avoids the setup/teardown overhead and is useful when interactively resizing a surface or for many small buffers. Create a wl_buffer from the pool. The buffer is created a offset bytes into the pool and has width and height as specified. The stride arguments specifies the number of bytes from beginning of one row to the beginning of the next. The format is the pixel format of the buffer and must be one of those advertised through the wl_shm.format event. A buffer will keep a reference to the pool it was created from so it is valid to destroy the pool immediatedly after creating a buffer from it. Destroy the pool. This request will cause the server to remap the backing memory for the pool from the fd passed when the pool was creating but using the new size. Support for shared memory buffers. This creates wl_shm_pool object, which can be used to create shared memory based wl_buffer objects. The server will mmap size bytes of the passed fd, to use as backing memory for then pool. A buffer provides the content for a wl_surface. Buffers are created through factory interfaces such as wl_drm, wl_shm or similar. It has a width and a height and can be attached to a wl_surface, but the mechanism by which a client provides and updates the contents is defined by the buffer factory interface Destroy a buffer. This will invalidate the object id. Sent when an attached buffer is no longer used by the compositor. Indicate that the client can accept the given mime-type, or NULL for not accepted. Use for feedback during drag and drop. Sent immediately after creating the wl_data_offer object. One event per offered mime type. This request adds a mime-type to the set of mime-types advertised to targets. Can be called several times to offer multiple types. Destroy the data source. Sent when a target accepts pointer_focus or motion events. If a target does not accept any of the offered types, type is NULL. Request for data from another client. Send the data as the specified mime-type over the passed fd, then close the fd. Another selection became active. This request asks the compositor to start a drag and drop operation on behalf of the client. The source argument is the data source that provides the data for the eventual data transfer. If source is NULL, enter, leave and motion events are sent only to the client that initiated the drag and the client is expected to handle the data passing internally. The origin surface is the surface where the drag originates and the client must have an active implicit grab that matches the serial. The icon surface is an optional (can be nil) surface that provides an icon to be moved around with the cursor. Initially, the top-left corner of the icon surface is placed at the cursor hotspot, but subsequent surface.attach request can move the relative position. The data_offer event introduces a new wl_data_offer object, which will subsequently be used in either the data_device.enter event (for drag and drop) or the data_device.selection event (for selections). Immediately following the data_device_data_offer event, the new data_offer object will send out data_offer.offer events to describe the mime-types it offers. The selection event is sent out to notify the client of a new wl_data_offer for the selection for this device. The data_device.data_offer and the data_offer.offer events are sent out immediately before this event to introduce the data offer object. The selection event is sent to a client immediately before receiving keyboard focus and when a new selection is set while the client has keyboard focus. The data_offer is valid until a new data_offer or NULL is received or until the client loses keyboard focus. An interface implemented by a wl_surface. On server side the object is automatically destroyed when the related wl_surface is destroyed. On client side, wl_shell_surface_destroy() must be called before destroying the wl_surface object. A client must respond to a ping event with a pong request or the client may be deemed unresponsive. Make the surface a toplevel window. Map the surface relative to an existing surface. The x and y arguments specify the locations of the upper left corner of the surface relative to the upper left corner of the parent surface. The flags argument controls overflow/clipping behaviour when the surface would intersect a screen edge, panel or such. And possibly whether the offset only determines the initial position or if the surface is locked to that relative position during moves. Map the surface as a fullscreen surface. If an output parameter is given then the surface will be made fullscreen on that output. If the client does not specify the output then the compositor will apply its policy - usually choosing the output on which the surface has the biggest surface area. The client may specify a method to resolve a size conflict between the output size and the surface size - this is provided through the fullscreen_method parameter. The framerate parameter is used only when the fullscreen_method is set to "driver", to indicate the preferred framerate. framerate=0 indicates that the app does not care about framerate. The framerate is specified in mHz, that is framerate of 60000 is 60Hz. The compositor must reply to this request with a configure event with the dimensions for the output on which the surface will be made fullscreen. Hints to indicate compositor how to deal with a conflict between the dimensions for the surface and the dimensions of the output. As a hint the compositor is free to ignore this parameter. "default" The client has no preference on fullscreen behavior, policies are determined by compositor. "scale" The client prefers scaling by the compositor. Scaling would always preserve surface's aspect ratio with surface centered on the output "driver" The client wants to switch video mode to the smallest mode that can fit the client buffer. If the sizes do not match the compositor must add black borders. "fill" The surface is centered on the output on the screen with no scaling. If the surface is of insufficient size the compositor must add black borders. Popup surfaces. Will switch an implicit grab into owner-events mode, and grab will continue after the implicit grab ends (button released). Once the implicit grab is over, the popup grab continues until the window is destroyed or a mouse button is pressed in any other clients window. A click in any of the clients surfaces is reported as normal, however, clicks in other clients surfaces will be discarded and trigger the callback. TODO: Grab keyboard too, maybe just terminate on any click inside or outside the surface? A request from the client to notify the compositor the maximized operation. The compositor will reply with a configure event telling the expected new surface size. The operation is completed on the next buffer attach to this surface. A maximized client will fill the fullscreen of the output it is bound to, except the panel area. This is the main difference between a maximized shell surface and a fullscreen shell surface. The surface class identifies the general class of applications to which the surface belongs. The class is the file name of the applications .desktop file (absolute path if non-standard location). Ping a client to check if it is receiving events and sending requests. A client is expected to reply with a pong request. The configure event asks the client to resize its surface. The size is a hint, in the sense that the client is free to ignore it if it doesn't resize, pick a smaller size (to satisfy aspect ration or resize in steps of NxM pixels). The client is free to dismiss all but the last configure event it received. The popup_done event is sent out when a popup grab is broken, that is, when the users clicks a surface that doesn't belong to the client owning the popup surface. A surface. This is an image that is displayed on the screen. It has a location, size and pixel contents. Deletes the surface and invalidates its object id. Copy the contents of a buffer into this surface. The x and y arguments specify the location of the new buffers upper left corner, relative to the old buffers upper left corner. After attaching a new buffer, this request is used to describe the regions where the new buffer is different from the previous buffer and needs to be repainted. Coordinates are relative to the new buffer. Request notification when the next frame is displayed. Useful for throttling redrawing operations, and driving animations. The notification will only be posted for one frame unless requested again. This requests sets the region of the surface that contain opaque content. The opaque region is an optimization hint for the compositor that lets it optimize out redrawing of content behind opaque regions. Setting an opaque region is not required for correct behaviour, but marking transparent content as opaque will result in repaint artifacts. The region will be clipped to the extents of the current surface size. Setting the region has copy semantics, and the region object can be destroyed immediately after setting the opaque region. If a buffer of a different size is attached or if a nil region is set, the opaque region will revert back to default. The default opaque region is empty. This requests sets the region of the surface that can receive pointer and touch events. The region will be clipped to the extents of the current surface size. Setting the region has copy semantics, and the region object can be destroyed immediately after setting the input region. If a buffer of a different size is attached or if a nil region is passed, the input region will revert back to default. The default input region is the entire surface. This is emitted whenever a surface's creation, movement, or resizing results in some part of it being within the scanout region of an output. This is emitted whenever a surface's creation, movement, or resizing results in it no longer having any part of it within the scanout region of an output. A group of keyboards, pointer (mice, for example) and touch devices . This object is published as a global during start up, or when such a device is hot plugged. A seat typically has a pointer and maintains a keyboard_focus and a pointer_focus. This is a bitmask of capabilities this seat has; if a member is set, then it is present on the seat. This is emitted whenever a seat gains or loses the pointer, keyboard or touch capabilities. The argument is a wl_seat_caps_mask enum containing the complete set of capabilities this seat has. The ID provided will be initialized to the wl_pointer interface for this seat. The ID provided will be initialized to the wl_keyboard interface for this seat. The ID provided will be initialized to the wl_touch interface for this seat. Set the pointer surface, i.e., the surface that contains the pointer image. This request only takes effect if the pointer focus for this device is one of the requesting client surfaces or the surface parameter is the current pointer surface. If there was a previous surface set with this request it is replaced. If surface is NULL, the pointer image is hidden. The parameters hotspot_x and hotspot_y define the position of the pointer surface relative to the pointer location. Its top-left corner is always at (x, y) - (hotspot_x, hotspot_y), where (x, y) are the coordinates of the pointer location. On surface.attach requests to the pointer surface, hotspot_x and hotspot_y are decremented by the x and y parameters passed to the request. The hotspot can also be updated by passing the current set pointer surface to this request with new values for hotspot_x and/or hotspot_y. Notification that this seat's pointer is focused on a certain surface. When an seat's focus enters a surface, the pointer image is undefined and a client should respond to this event by setting an appropriate pointer image. Notification of pointer location change. The arguments surface_[xy] are the location relative to the focused surface. Describes the physical state of a button which provoked the button event. Mouse button click and release notifications. The location of the click is given by the last motion or pointer_focus event. Scroll and other axis notifications. This enum specifies the format of the keymap provided to the client with the wl_keyboard::keymap event. This event provides a file descriptor to the client which can be memory-mapped to provide a keyboard mapping description. Describes the physical state of a key which provoked the key event. When a key repeats, the sequence is down -> repeat -> repeat -> up. A key was pressed or released. Notifies clients that the modifier and/or group state has changed, and it should update its local state. Indicates the end of a contact point list. Sent if the compositor decides the touch stream is a global gesture. No further events are sent to the clients from that particular gesture. An output describes part of the compositor geometry. The compositor work in the 'compositor coordinate system' and an output corresponds to rectangular area in that space that is actually visible. This typically corresponds to a monitor that displays part of the compositor space. This object is published as global during start up, or when a screen is hot plugged. The mode event describes an available mode for the output. The event is sent when binding to the output object and there will always be one mode, the current mode. The event is sent again if an output changes mode, for the mode that is now current. In other words, the current mode is always the last mode that was received with the current flag set. Region. Destroy the region. This will invalidate the object id. Add the specified rectangle to the region Subtract the specified rectangle from the region