summaryrefslogtreecommitdiff
path: root/fpu
diff options
context:
space:
mode:
authorMarcelo Tosatti <mtosatti@redhat.com>2011-05-03 20:16:18 -0300
committerMarcelo Tosatti <mtosatti@redhat.com>2011-05-03 20:16:18 -0300
commit28262112181f27f302b5186f0df6428df6b513e7 (patch)
treec1a12fd82d869eb8c57da3e3314abb3437f3a8a1 /fpu
parent70757dcaa40e14978bf287084d8fab9efb815a2d (diff)
parent4eb1a092e5810298b2baf4b12d9f52ea0d52322f (diff)
Merge branch 'upstream-merge'HEADmaster
* upstream-merge: (197 commits) NBD: Avoid leaking a couple of strings when the NBD device is closed qemu-progress.c: printf isn't signal safe ide/atapi: fix set but unused atapi: Explain why we need a 'media not present' state atapi: Move comment to proper place qemu-img resize: Fix option parsing lm32: add Milkymist Minimac2 support milkymist-sysctl: fix timers milkymist-vgafb: fix console resizing lm32: fix exception handling kvm: use qemu_free consistently kvm: Install specialized interrupt handler fix crash in migration, 32-bit userspace on 64-bit host Redirect cpu_interrupt to callback handler Break up user and system cpu_interrupt implementations kvm: create kvmclock when one of the flags are present kvm: add kvmclock to its second bit x86: Allow multiple cpu feature matches of lookup_feature kvm: use kernel-provided para_features instead of statically coming up with new capabilities Don't zero out buffer in sched_getaffinity ... Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Diffstat (limited to 'fpu')
-rw-r--r--fpu/softfloat-macros.h29
-rw-r--r--fpu/softfloat-native.c26
-rw-r--r--fpu/softfloat-native.h63
-rw-r--r--fpu/softfloat-specialize.h23
-rw-r--r--fpu/softfloat.c410
-rw-r--r--fpu/softfloat.h30
6 files changed, 480 insertions, 101 deletions
diff --git a/fpu/softfloat-macros.h b/fpu/softfloat-macros.h
index 3128e60cb..e82ce2332 100644
--- a/fpu/softfloat-macros.h
+++ b/fpu/softfloat-macros.h
@@ -36,6 +36,17 @@ these four paragraphs for those parts of this code that are retained.
=============================================================================*/
/*----------------------------------------------------------------------------
+| This macro tests for minimum version of the GNU C compiler.
+*----------------------------------------------------------------------------*/
+#if defined(__GNUC__) && defined(__GNUC_MINOR__)
+# define SOFTFLOAT_GNUC_PREREQ(maj, min) \
+ ((__GNUC__ << 16) + __GNUC_MINOR__ >= ((maj) << 16) + (min))
+#else
+# define SOFTFLOAT_GNUC_PREREQ(maj, min) 0
+#endif
+
+
+/*----------------------------------------------------------------------------
| Shifts `a' right by the number of bits given in `count'. If any nonzero
| bits are shifted off, they are ``jammed'' into the least significant bit of
| the result by setting the least significant bit to 1. The value of `count'
@@ -616,6 +627,13 @@ static uint32_t estimateSqrt32( int16 aExp, uint32_t a )
static int8 countLeadingZeros32( uint32_t a )
{
+#if SOFTFLOAT_GNUC_PREREQ(3, 4)
+ if (a) {
+ return __builtin_clz(a);
+ } else {
+ return 32;
+ }
+#else
static const int8 countLeadingZerosHigh[] = {
8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
@@ -647,7 +665,7 @@ static int8 countLeadingZeros32( uint32_t a )
}
shiftCount += countLeadingZerosHigh[ a>>24 ];
return shiftCount;
-
+#endif
}
/*----------------------------------------------------------------------------
@@ -657,6 +675,13 @@ static int8 countLeadingZeros32( uint32_t a )
static int8 countLeadingZeros64( uint64_t a )
{
+#if SOFTFLOAT_GNUC_PREREQ(3, 4)
+ if (a) {
+ return __builtin_clzll(a);
+ } else {
+ return 64;
+ }
+#else
int8 shiftCount;
shiftCount = 0;
@@ -668,7 +693,7 @@ static int8 countLeadingZeros64( uint64_t a )
}
shiftCount += countLeadingZeros32( a );
return shiftCount;
-
+#endif
}
/*----------------------------------------------------------------------------
diff --git a/fpu/softfloat-native.c b/fpu/softfloat-native.c
index a47b0d48e..3bb38860a 100644
--- a/fpu/softfloat-native.c
+++ b/fpu/softfloat-native.c
@@ -264,6 +264,15 @@ int float32_is_quiet_nan( float32 a1 )
return ( 0xFF800000 < ( a<<1 ) );
}
+int float32_is_any_nan( float32 a1 )
+{
+ float32u u;
+ uint32_t a;
+ u.f = a1;
+ a = u.i;
+ return (a & ~(1 << 31)) > 0x7f800000U;
+}
+
/*----------------------------------------------------------------------------
| Software IEC/IEEE double-precision conversion routines.
*----------------------------------------------------------------------------*/
@@ -423,6 +432,16 @@ int float64_is_quiet_nan( float64 a1 )
}
+int float64_is_any_nan( float64 a1 )
+{
+ float64u u;
+ uint64_t a;
+ u.f = a1;
+ a = u.i;
+
+ return (a & ~(1ULL << 63)) > LIT64 (0x7FF0000000000000 );
+}
+
#ifdef FLOATX80
/*----------------------------------------------------------------------------
@@ -512,4 +531,11 @@ int floatx80_is_quiet_nan( floatx80 a1 )
return ( ( u.i.high & 0x7FFF ) == 0x7FFF ) && (uint64_t) ( u.i.low<<1 );
}
+int floatx80_is_any_nan( floatx80 a1 )
+{
+ floatx80u u;
+ u.f = a1;
+ return ((u.i.high & 0x7FFF) == 0x7FFF) && ( u.i.low<<1 );
+}
+
#endif
diff --git a/fpu/softfloat-native.h b/fpu/softfloat-native.h
index 80b5f288e..6afb74a15 100644
--- a/fpu/softfloat-native.h
+++ b/fpu/softfloat-native.h
@@ -172,6 +172,15 @@ float128 int64_to_float128( int64_t STATUS_PARAM);
#endif
/*----------------------------------------------------------------------------
+| Software IEC/IEEE single-precision conversion constants.
+*----------------------------------------------------------------------------*/
+#define float32_zero (0.0)
+#define float32_one (1.0)
+#define float32_ln2 (0.6931471)
+#define float32_pi (3.1415926)
+#define float32_half (0.5)
+
+/*----------------------------------------------------------------------------
| Software IEC/IEEE single-precision conversion routines.
*----------------------------------------------------------------------------*/
int float32_to_int32( float32 STATUS_PARAM);
@@ -210,7 +219,7 @@ INLINE float32 float32_div( float32 a, float32 b STATUS_PARAM)
}
float32 float32_rem( float32, float32 STATUS_PARAM);
float32 float32_sqrt( float32 STATUS_PARAM);
-INLINE int float32_eq( float32 a, float32 b STATUS_PARAM)
+INLINE int float32_eq_quiet( float32 a, float32 b STATUS_PARAM)
{
return a == b;
}
@@ -222,7 +231,7 @@ INLINE int float32_lt( float32 a, float32 b STATUS_PARAM)
{
return a < b;
}
-INLINE int float32_eq_signaling( float32 a, float32 b STATUS_PARAM)
+INLINE int float32_eq( float32 a, float32 b STATUS_PARAM)
{
return a <= b && a >= b;
}
@@ -237,12 +246,16 @@ INLINE int float32_lt_quiet( float32 a, float32 b STATUS_PARAM)
INLINE int float32_unordered( float32 a, float32 b STATUS_PARAM)
{
return isunordered(a, b);
-
+}
+INLINE int float32_unordered_quiet( float32 a, float32 b STATUS_PARAM)
+{
+ return isunordered(a, b);
}
int float32_compare( float32, float32 STATUS_PARAM );
int float32_compare_quiet( float32, float32 STATUS_PARAM );
int float32_is_signaling_nan( float32 );
int float32_is_quiet_nan( float32 );
+int float32_is_any_nan( float32 );
INLINE float32 float32_abs(float32 a)
{
@@ -271,12 +284,21 @@ INLINE float32 float32_is_zero(float32 a)
return fpclassify(a) == FP_ZERO;
}
-INLINE float32 float32_scalbn(float32 a, int n)
+INLINE float32 float32_scalbn(float32 a, int n STATUS_PARAM)
{
return scalbnf(a, n);
}
/*----------------------------------------------------------------------------
+| Software IEC/IEEE double-precision conversion constants.
+*----------------------------------------------------------------------------*/
+#define float64_zero (0.0)
+#define float64_one (1.0)
+#define float64_ln2 (0.693147180559945)
+#define float64_pi (3.141592653589793)
+#define float64_half (0.5)
+
+/*----------------------------------------------------------------------------
| Software IEC/IEEE double-precision conversion routines.
*----------------------------------------------------------------------------*/
int float64_to_int32( float64 STATUS_PARAM );
@@ -318,7 +340,7 @@ INLINE float64 float64_div( float64 a, float64 b STATUS_PARAM)
}
float64 float64_rem( float64, float64 STATUS_PARAM );
float64 float64_sqrt( float64 STATUS_PARAM );
-INLINE int float64_eq( float64 a, float64 b STATUS_PARAM)
+INLINE int float64_eq_quiet( float64 a, float64 b STATUS_PARAM)
{
return a == b;
}
@@ -330,7 +352,7 @@ INLINE int float64_lt( float64 a, float64 b STATUS_PARAM)
{
return a < b;
}
-INLINE int float64_eq_signaling( float64 a, float64 b STATUS_PARAM)
+INLINE int float64_eq( float64 a, float64 b STATUS_PARAM)
{
return a <= b && a >= b;
}
@@ -346,11 +368,15 @@ INLINE int float64_lt_quiet( float64 a, float64 b STATUS_PARAM)
INLINE int float64_unordered( float64 a, float64 b STATUS_PARAM)
{
return isunordered(a, b);
-
+}
+INLINE int float64_unordered_quiet( float64 a, float64 b STATUS_PARAM)
+{
+ return isunordered(a, b);
}
int float64_compare( float64, float64 STATUS_PARAM );
int float64_compare_quiet( float64, float64 STATUS_PARAM );
int float64_is_signaling_nan( float64 );
+int float64_is_any_nan( float64 );
int float64_is_quiet_nan( float64 );
INLINE float64 float64_abs(float64 a)
@@ -380,7 +406,7 @@ INLINE float64 float64_is_zero(float64 a)
return fpclassify(a) == FP_ZERO;
}
-INLINE float64 float64_scalbn(float64 a, int n)
+INLINE float64 float64_scalbn(float64 a, int n STATUS_PARAM)
{
return scalbn(a, n);
}
@@ -388,6 +414,15 @@ INLINE float64 float64_scalbn(float64 a, int n)
#ifdef FLOATX80
/*----------------------------------------------------------------------------
+| Software IEC/IEEE extended double-precision conversion constants.
+*----------------------------------------------------------------------------*/
+#define floatx80_zero (0.0L)
+#define floatx80_one (1.0L)
+#define floatx80_ln2 (0.69314718055994530943L)
+#define floatx80_pi (3.14159265358979323851L)
+#define floatx80_half (0.5L)
+
+/*----------------------------------------------------------------------------
| Software IEC/IEEE extended double-precision conversion routines.
*----------------------------------------------------------------------------*/
int floatx80_to_int32( floatx80 STATUS_PARAM );
@@ -422,7 +457,7 @@ INLINE floatx80 floatx80_div( floatx80 a, floatx80 b STATUS_PARAM)
}
floatx80 floatx80_rem( floatx80, floatx80 STATUS_PARAM );
floatx80 floatx80_sqrt( floatx80 STATUS_PARAM );
-INLINE int floatx80_eq( floatx80 a, floatx80 b STATUS_PARAM)
+INLINE int floatx80_eq_quiet( floatx80 a, floatx80 b STATUS_PARAM)
{
return a == b;
}
@@ -434,7 +469,7 @@ INLINE int floatx80_lt( floatx80 a, floatx80 b STATUS_PARAM)
{
return a < b;
}
-INLINE int floatx80_eq_signaling( floatx80 a, floatx80 b STATUS_PARAM)
+INLINE int floatx80_eq( floatx80 a, floatx80 b STATUS_PARAM)
{
return a <= b && a >= b;
}
@@ -450,12 +485,16 @@ INLINE int floatx80_lt_quiet( floatx80 a, floatx80 b STATUS_PARAM)
INLINE int floatx80_unordered( floatx80 a, floatx80 b STATUS_PARAM)
{
return isunordered(a, b);
-
+}
+INLINE int floatx80_unordered_quiet( floatx80 a, floatx80 b STATUS_PARAM)
+{
+ return isunordered(a, b);
}
int floatx80_compare( floatx80, floatx80 STATUS_PARAM );
int floatx80_compare_quiet( floatx80, floatx80 STATUS_PARAM );
int floatx80_is_signaling_nan( floatx80 );
int floatx80_is_quiet_nan( floatx80 );
+int floatx80_is_any_nan( floatx80 );
INLINE floatx80 floatx80_abs(floatx80 a)
{
@@ -484,7 +523,7 @@ INLINE floatx80 floatx80_is_zero(floatx80 a)
return fpclassify(a) == FP_ZERO;
}
-INLINE floatx80 floatx80_scalbn(floatx80 a, int n)
+INLINE floatx80 floatx80_scalbn(floatx80 a, int n STATUS_PARAM)
{
return scalbnl(a, n);
}
diff --git a/fpu/softfloat-specialize.h b/fpu/softfloat-specialize.h
index b1101872a..9d68aae9d 100644
--- a/fpu/softfloat-specialize.h
+++ b/fpu/softfloat-specialize.h
@@ -603,9 +603,15 @@ static commonNaNT floatx80ToCommonNaN( floatx80 a STATUS_PARAM)
commonNaNT z;
if ( floatx80_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR);
- z.sign = a.high>>15;
- z.low = 0;
- z.high = a.low;
+ if ( a.low >> 63 ) {
+ z.sign = a.high >> 15;
+ z.low = 0;
+ z.high = a.low << 1;
+ } else {
+ z.sign = floatx80_default_nan_high >> 15;
+ z.low = 0;
+ z.high = floatx80_default_nan_low << 1;
+ }
return z;
}
@@ -624,11 +630,14 @@ static floatx80 commonNaNToFloatx80( commonNaNT a STATUS_PARAM)
return z;
}
- if (a.high)
- z.low = a.high;
- else
+ if (a.high >> 1) {
+ z.low = LIT64( 0x8000000000000000 ) | a.high >> 1;
+ z.high = ( ( (uint16_t) a.sign )<<15 ) | 0x7FFF;
+ } else {
z.low = floatx80_default_nan_low;
- z.high = ( ( (uint16_t) a.sign )<<15 ) | 0x7FFF;
+ z.high = floatx80_default_nan_high;
+ }
+
return z;
}
diff --git a/fpu/softfloat.c b/fpu/softfloat.c
index 03fb9487b..baba1dc44 100644
--- a/fpu/softfloat.c
+++ b/fpu/softfloat.c
@@ -2314,33 +2314,33 @@ float32 float32_log2( float32 a STATUS_PARAM )
/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is equal to
-| the corresponding value `b', and 0 otherwise. The comparison is performed
+| the corresponding value `b', and 0 otherwise. The invalid exception is
+| raised if either operand is a NaN. Otherwise, the comparison is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/
int float32_eq( float32 a, float32 b STATUS_PARAM )
{
+ uint32_t av, bv;
a = float32_squash_input_denormal(a STATUS_VAR);
b = float32_squash_input_denormal(b STATUS_VAR);
if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
|| ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
) {
- if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
- float_raise( float_flag_invalid STATUS_VAR);
- }
+ float_raise( float_flag_invalid STATUS_VAR);
return 0;
}
- return ( float32_val(a) == float32_val(b) ) ||
- ( (uint32_t) ( ( float32_val(a) | float32_val(b) )<<1 ) == 0 );
-
+ av = float32_val(a);
+ bv = float32_val(b);
+ return ( av == bv ) || ( (uint32_t) ( ( av | bv )<<1 ) == 0 );
}
/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is less than
-| or equal to the corresponding value `b', and 0 otherwise. The comparison
-| is performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic.
+| or equal to the corresponding value `b', and 0 otherwise. The invalid
+| exception is raised if either operand is a NaN. The comparison is performed
+| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/
int float32_le( float32 a, float32 b STATUS_PARAM )
@@ -2367,8 +2367,9 @@ int float32_le( float32 a, float32 b STATUS_PARAM )
/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is less than
-| the corresponding value `b', and 0 otherwise. The comparison is performed
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+| the corresponding value `b', and 0 otherwise. The invalid exception is
+| raised if either operand is a NaN. The comparison is performed according
+| to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/
int float32_lt( float32 a, float32 b STATUS_PARAM )
@@ -2394,15 +2395,14 @@ int float32_lt( float32 a, float32 b STATUS_PARAM )
}
/*----------------------------------------------------------------------------
-| Returns 1 if the single-precision floating-point value `a' is equal to
-| the corresponding value `b', and 0 otherwise. The invalid exception is
-| raised if either operand is a NaN. Otherwise, the comparison is performed
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+| Returns 1 if the single-precision floating-point values `a' and `b' cannot
+| be compared, and 0 otherwise. The invalid exception is raised if either
+| operand is a NaN. The comparison is performed according to the IEC/IEEE
+| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/
-int float32_eq_signaling( float32 a, float32 b STATUS_PARAM )
+int float32_unordered( float32 a, float32 b STATUS_PARAM )
{
- uint32_t av, bv;
a = float32_squash_input_denormal(a STATUS_VAR);
b = float32_squash_input_denormal(b STATUS_VAR);
@@ -2410,12 +2410,33 @@ int float32_eq_signaling( float32 a, float32 b STATUS_PARAM )
|| ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
) {
float_raise( float_flag_invalid STATUS_VAR);
- return 0;
+ return 1;
}
- av = float32_val(a);
- bv = float32_val(b);
- return ( av == bv ) || ( (uint32_t) ( ( av | bv )<<1 ) == 0 );
+ return 0;
+}
+/*----------------------------------------------------------------------------
+| Returns 1 if the single-precision floating-point value `a' is equal to
+| the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
+| exception. The comparison is performed according to the IEC/IEEE Standard
+| for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+int float32_eq_quiet( float32 a, float32 b STATUS_PARAM )
+{
+ a = float32_squash_input_denormal(a STATUS_VAR);
+ b = float32_squash_input_denormal(b STATUS_VAR);
+
+ if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
+ || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
+ ) {
+ if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
+ float_raise( float_flag_invalid STATUS_VAR);
+ }
+ return 0;
+ }
+ return ( float32_val(a) == float32_val(b) ) ||
+ ( (uint32_t) ( ( float32_val(a) | float32_val(b) )<<1 ) == 0 );
}
/*----------------------------------------------------------------------------
@@ -2481,6 +2502,29 @@ int float32_lt_quiet( float32 a, float32 b STATUS_PARAM )
}
/*----------------------------------------------------------------------------
+| Returns 1 if the single-precision floating-point values `a' and `b' cannot
+| be compared, and 0 otherwise. Quiet NaNs do not cause an exception. The
+| comparison is performed according to the IEC/IEEE Standard for Binary
+| Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+int float32_unordered_quiet( float32 a, float32 b STATUS_PARAM )
+{
+ a = float32_squash_input_denormal(a STATUS_VAR);
+ b = float32_squash_input_denormal(b STATUS_VAR);
+
+ if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
+ || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
+ ) {
+ if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
+ float_raise( float_flag_invalid STATUS_VAR);
+ }
+ return 1;
+ }
+ return 0;
+}
+
+/*----------------------------------------------------------------------------
| Returns the result of converting the double-precision floating-point value
| `a' to the 32-bit two's complement integer format. The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
@@ -3536,7 +3580,8 @@ float64 float64_log2( float64 a STATUS_PARAM )
/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is equal to the
-| corresponding value `b', and 0 otherwise. The comparison is performed
+| corresponding value `b', and 0 otherwise. The invalid exception is raised
+| if either operand is a NaN. Otherwise, the comparison is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/
@@ -3549,9 +3594,7 @@ int float64_eq( float64 a, float64 b STATUS_PARAM )
if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
|| ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
) {
- if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
- float_raise( float_flag_invalid STATUS_VAR);
- }
+ float_raise( float_flag_invalid STATUS_VAR);
return 0;
}
av = float64_val(a);
@@ -3562,9 +3605,9 @@ int float64_eq( float64 a, float64 b STATUS_PARAM )
/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is less than or
-| equal to the corresponding value `b', and 0 otherwise. The comparison is
-| performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic.
+| equal to the corresponding value `b', and 0 otherwise. The invalid
+| exception is raised if either operand is a NaN. The comparison is performed
+| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/
int float64_le( float64 a, float64 b STATUS_PARAM )
@@ -3591,8 +3634,9 @@ int float64_le( float64 a, float64 b STATUS_PARAM )
/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is less than
-| the corresponding value `b', and 0 otherwise. The comparison is performed
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+| the corresponding value `b', and 0 otherwise. The invalid exception is
+| raised if either operand is a NaN. The comparison is performed according
+| to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/
int float64_lt( float64 a, float64 b STATUS_PARAM )
@@ -3618,13 +3662,34 @@ int float64_lt( float64 a, float64 b STATUS_PARAM )
}
/*----------------------------------------------------------------------------
+| Returns 1 if the double-precision floating-point values `a' and `b' cannot
+| be compared, and 0 otherwise. The invalid exception is raised if either
+| operand is a NaN. The comparison is performed according to the IEC/IEEE
+| Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+int float64_unordered( float64 a, float64 b STATUS_PARAM )
+{
+ a = float64_squash_input_denormal(a STATUS_VAR);
+ b = float64_squash_input_denormal(b STATUS_VAR);
+
+ if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
+ || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
+ ) {
+ float_raise( float_flag_invalid STATUS_VAR);
+ return 1;
+ }
+ return 0;
+}
+
+/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is equal to the
-| corresponding value `b', and 0 otherwise. The invalid exception is raised
-| if either operand is a NaN. Otherwise, the comparison is performed
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+| corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
+| exception.The comparison is performed according to the IEC/IEEE Standard
+| for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/
-int float64_eq_signaling( float64 a, float64 b STATUS_PARAM )
+int float64_eq_quiet( float64 a, float64 b STATUS_PARAM )
{
uint64_t av, bv;
a = float64_squash_input_denormal(a STATUS_VAR);
@@ -3633,7 +3698,9 @@ int float64_eq_signaling( float64 a, float64 b STATUS_PARAM )
if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
|| ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
) {
- float_raise( float_flag_invalid STATUS_VAR);
+ if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
+ float_raise( float_flag_invalid STATUS_VAR);
+ }
return 0;
}
av = float64_val(a);
@@ -3704,6 +3771,29 @@ int float64_lt_quiet( float64 a, float64 b STATUS_PARAM )
}
+/*----------------------------------------------------------------------------
+| Returns 1 if the double-precision floating-point values `a' and `b' cannot
+| be compared, and 0 otherwise. Quiet NaNs do not cause an exception. The
+| comparison is performed according to the IEC/IEEE Standard for Binary
+| Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+int float64_unordered_quiet( float64 a, float64 b STATUS_PARAM )
+{
+ a = float64_squash_input_denormal(a STATUS_VAR);
+ b = float64_squash_input_denormal(b STATUS_VAR);
+
+ if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
+ || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
+ ) {
+ if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
+ float_raise( float_flag_invalid STATUS_VAR);
+ }
+ return 1;
+ }
+ return 0;
+}
+
#ifdef FLOATX80
/*----------------------------------------------------------------------------
@@ -4501,10 +4591,10 @@ floatx80 floatx80_sqrt( floatx80 a STATUS_PARAM )
}
/*----------------------------------------------------------------------------
-| Returns 1 if the extended double-precision floating-point value `a' is
-| equal to the corresponding value `b', and 0 otherwise. The comparison is
-| performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic.
+| Returns 1 if the extended double-precision floating-point value `a' is equal
+| to the corresponding value `b', and 0 otherwise. The invalid exception is
+| raised if either operand is a NaN. Otherwise, the comparison is performed
+| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/
int floatx80_eq( floatx80 a, floatx80 b STATUS_PARAM )
@@ -4515,10 +4605,7 @@ int floatx80_eq( floatx80 a, floatx80 b STATUS_PARAM )
|| ( ( extractFloatx80Exp( b ) == 0x7FFF )
&& (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
) {
- if ( floatx80_is_signaling_nan( a )
- || floatx80_is_signaling_nan( b ) ) {
- float_raise( float_flag_invalid STATUS_VAR);
- }
+ float_raise( float_flag_invalid STATUS_VAR);
return 0;
}
return
@@ -4533,8 +4620,9 @@ int floatx80_eq( floatx80 a, floatx80 b STATUS_PARAM )
/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point value `a' is
| less than or equal to the corresponding value `b', and 0 otherwise. The
-| comparison is performed according to the IEC/IEEE Standard for Binary
-| Floating-Point Arithmetic.
+| invalid exception is raised if either operand is a NaN. The comparison is
+| performed according to the IEC/IEEE Standard for Binary Floating-Point
+| Arithmetic.
*----------------------------------------------------------------------------*/
int floatx80_le( floatx80 a, floatx80 b STATUS_PARAM )
@@ -4565,9 +4653,9 @@ int floatx80_le( floatx80 a, floatx80 b STATUS_PARAM )
/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point value `a' is
-| less than the corresponding value `b', and 0 otherwise. The comparison
-| is performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic.
+| less than the corresponding value `b', and 0 otherwise. The invalid
+| exception is raised if either operand is a NaN. The comparison is performed
+| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/
int floatx80_lt( floatx80 a, floatx80 b STATUS_PARAM )
@@ -4597,13 +4685,32 @@ int floatx80_lt( floatx80 a, floatx80 b STATUS_PARAM )
}
/*----------------------------------------------------------------------------
-| Returns 1 if the extended double-precision floating-point value `a' is equal
-| to the corresponding value `b', and 0 otherwise. The invalid exception is
-| raised if either operand is a NaN. Otherwise, the comparison is performed
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+| Returns 1 if the extended double-precision floating-point values `a' and `b'
+| cannot be compared, and 0 otherwise. The invalid exception is raised if
+| either operand is a NaN. The comparison is performed according to the
+| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+int floatx80_unordered( floatx80 a, floatx80 b STATUS_PARAM )
+{
+ if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
+ && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
+ || ( ( extractFloatx80Exp( b ) == 0x7FFF )
+ && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
+ ) {
+ float_raise( float_flag_invalid STATUS_VAR);
+ return 1;
+ }
+ return 0;
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the extended double-precision floating-point value `a' is
+| equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not
+| cause an exception. The comparison is performed according to the IEC/IEEE
+| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/
-int floatx80_eq_signaling( floatx80 a, floatx80 b STATUS_PARAM )
+int floatx80_eq_quiet( floatx80 a, floatx80 b STATUS_PARAM )
{
if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
@@ -4611,7 +4718,10 @@ int floatx80_eq_signaling( floatx80 a, floatx80 b STATUS_PARAM )
|| ( ( extractFloatx80Exp( b ) == 0x7FFF )
&& (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
) {
- float_raise( float_flag_invalid STATUS_VAR);
+ if ( floatx80_is_signaling_nan( a )
+ || floatx80_is_signaling_nan( b ) ) {
+ float_raise( float_flag_invalid STATUS_VAR);
+ }
return 0;
}
return
@@ -4695,6 +4805,28 @@ int floatx80_lt_quiet( floatx80 a, floatx80 b STATUS_PARAM )
}
+/*----------------------------------------------------------------------------
+| Returns 1 if the extended double-precision floating-point values `a' and `b'
+| cannot be compared, and 0 otherwise. Quiet NaNs do not cause an exception.
+| The comparison is performed according to the IEC/IEEE Standard for Binary
+| Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+int floatx80_unordered_quiet( floatx80 a, floatx80 b STATUS_PARAM )
+{
+ if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
+ && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
+ || ( ( extractFloatx80Exp( b ) == 0x7FFF )
+ && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
+ ) {
+ if ( floatx80_is_signaling_nan( a )
+ || floatx80_is_signaling_nan( b ) ) {
+ float_raise( float_flag_invalid STATUS_VAR);
+ }
+ return 1;
+ }
+ return 0;
+}
+
#endif
#ifdef FLOAT128
@@ -5625,7 +5757,8 @@ float128 float128_sqrt( float128 a STATUS_PARAM )
/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is equal to
-| the corresponding value `b', and 0 otherwise. The comparison is performed
+| the corresponding value `b', and 0 otherwise. The invalid exception is
+| raised if either operand is a NaN. Otherwise, the comparison is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/
@@ -5637,10 +5770,7 @@ int float128_eq( float128 a, float128 b STATUS_PARAM )
|| ( ( extractFloat128Exp( b ) == 0x7FFF )
&& ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
) {
- if ( float128_is_signaling_nan( a )
- || float128_is_signaling_nan( b ) ) {
- float_raise( float_flag_invalid STATUS_VAR);
- }
+ float_raise( float_flag_invalid STATUS_VAR);
return 0;
}
return
@@ -5654,9 +5784,9 @@ int float128_eq( float128 a, float128 b STATUS_PARAM )
/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is less than
-| or equal to the corresponding value `b', and 0 otherwise. The comparison
-| is performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic.
+| or equal to the corresponding value `b', and 0 otherwise. The invalid
+| exception is raised if either operand is a NaN. The comparison is performed
+| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/
int float128_le( float128 a, float128 b STATUS_PARAM )
@@ -5687,8 +5817,9 @@ int float128_le( float128 a, float128 b STATUS_PARAM )
/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is less than
-| the corresponding value `b', and 0 otherwise. The comparison is performed
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+| the corresponding value `b', and 0 otherwise. The invalid exception is
+| raised if either operand is a NaN. The comparison is performed according
+| to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/
int float128_lt( float128 a, float128 b STATUS_PARAM )
@@ -5718,13 +5849,33 @@ int float128_lt( float128 a, float128 b STATUS_PARAM )
}
/*----------------------------------------------------------------------------
+| Returns 1 if the quadruple-precision floating-point values `a' and `b' cannot
+| be compared, and 0 otherwise. The invalid exception is raised if either
+| operand is a NaN. The comparison is performed according to the IEC/IEEE
+| Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+int float128_unordered( float128 a, float128 b STATUS_PARAM )
+{
+ if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
+ && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
+ || ( ( extractFloat128Exp( b ) == 0x7FFF )
+ && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
+ ) {
+ float_raise( float_flag_invalid STATUS_VAR);
+ return 1;
+ }
+ return 0;
+}
+
+/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is equal to
-| the corresponding value `b', and 0 otherwise. The invalid exception is
-| raised if either operand is a NaN. Otherwise, the comparison is performed
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+| the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
+| exception. The comparison is performed according to the IEC/IEEE Standard
+| for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/
-int float128_eq_signaling( float128 a, float128 b STATUS_PARAM )
+int float128_eq_quiet( float128 a, float128 b STATUS_PARAM )
{
if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
@@ -5732,7 +5883,10 @@ int float128_eq_signaling( float128 a, float128 b STATUS_PARAM )
|| ( ( extractFloat128Exp( b ) == 0x7FFF )
&& ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
) {
- float_raise( float_flag_invalid STATUS_VAR);
+ if ( float128_is_signaling_nan( a )
+ || float128_is_signaling_nan( b ) ) {
+ float_raise( float_flag_invalid STATUS_VAR);
+ }
return 0;
}
return
@@ -5816,6 +5970,29 @@ int float128_lt_quiet( float128 a, float128 b STATUS_PARAM )
}
+/*----------------------------------------------------------------------------
+| Returns 1 if the quadruple-precision floating-point values `a' and `b' cannot
+| be compared, and 0 otherwise. Quiet NaNs do not cause an exception. The
+| comparison is performed according to the IEC/IEEE Standard for Binary
+| Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+int float128_unordered_quiet( float128 a, float128 b STATUS_PARAM )
+{
+ if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
+ && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
+ || ( ( extractFloat128Exp( b ) == 0x7FFF )
+ && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
+ ) {
+ if ( float128_is_signaling_nan( a )
+ || float128_is_signaling_nan( b ) ) {
+ float_raise( float_flag_invalid STATUS_VAR);
+ }
+ return 1;
+ }
+ return 0;
+}
+
#endif
/* misc functions */
@@ -6013,6 +6190,52 @@ int float ## s ## _compare_quiet( float ## s a, float ## s b STATUS_PARAM ) \
COMPARE(32, 0xff)
COMPARE(64, 0x7ff)
+INLINE int floatx80_compare_internal( floatx80 a, floatx80 b,
+ int is_quiet STATUS_PARAM )
+{
+ flag aSign, bSign;
+
+ if (( ( extractFloatx80Exp( a ) == 0x7fff ) &&
+ ( extractFloatx80Frac( a )<<1 ) ) ||
+ ( ( extractFloatx80Exp( b ) == 0x7fff ) &&
+ ( extractFloatx80Frac( b )<<1 ) )) {
+ if (!is_quiet ||
+ floatx80_is_signaling_nan( a ) ||
+ floatx80_is_signaling_nan( b ) ) {
+ float_raise( float_flag_invalid STATUS_VAR);
+ }
+ return float_relation_unordered;
+ }
+ aSign = extractFloatx80Sign( a );
+ bSign = extractFloatx80Sign( b );
+ if ( aSign != bSign ) {
+
+ if ( ( ( (uint16_t) ( ( a.high | b.high ) << 1 ) ) == 0) &&
+ ( ( a.low | b.low ) == 0 ) ) {
+ /* zero case */
+ return float_relation_equal;
+ } else {
+ return 1 - (2 * aSign);
+ }
+ } else {
+ if (a.low == b.low && a.high == b.high) {
+ return float_relation_equal;
+ } else {
+ return 1 - 2 * (aSign ^ ( lt128( a.high, a.low, b.high, b.low ) ));
+ }
+ }
+}
+
+int floatx80_compare( floatx80 a, floatx80 b STATUS_PARAM )
+{
+ return floatx80_compare_internal(a, b, 0 STATUS_VAR);
+}
+
+int floatx80_compare_quiet( floatx80 a, floatx80 b STATUS_PARAM )
+{
+ return floatx80_compare_internal(a, b, 1 STATUS_VAR);
+}
+
INLINE int float128_compare_internal( float128 a, float128 b,
int is_quiet STATUS_PARAM )
{
@@ -6110,7 +6333,7 @@ MINMAX(64, 0x7ff)
float32 float32_scalbn( float32 a, int n STATUS_PARAM )
{
flag aSign;
- int16 aExp;
+ int16_t aExp;
uint32_t aSig;
a = float32_squash_input_denormal(a STATUS_VAR);
@@ -6119,6 +6342,9 @@ float32 float32_scalbn( float32 a, int n STATUS_PARAM )
aSign = extractFloat32Sign( a );
if ( aExp == 0xFF ) {
+ if ( aSig ) {
+ return propagateFloat32NaN( a, a STATUS_VAR );
+ }
return a;
}
if ( aExp != 0 )
@@ -6126,6 +6352,12 @@ float32 float32_scalbn( float32 a, int n STATUS_PARAM )
else if ( aSig == 0 )
return a;
+ if (n > 0x200) {
+ n = 0x200;
+ } else if (n < -0x200) {
+ n = -0x200;
+ }
+
aExp += n - 1;
aSig <<= 7;
return normalizeRoundAndPackFloat32( aSign, aExp, aSig STATUS_VAR );
@@ -6134,7 +6366,7 @@ float32 float32_scalbn( float32 a, int n STATUS_PARAM )
float64 float64_scalbn( float64 a, int n STATUS_PARAM )
{
flag aSign;
- int16 aExp;
+ int16_t aExp;
uint64_t aSig;
a = float64_squash_input_denormal(a STATUS_VAR);
@@ -6143,6 +6375,9 @@ float64 float64_scalbn( float64 a, int n STATUS_PARAM )
aSign = extractFloat64Sign( a );
if ( aExp == 0x7FF ) {
+ if ( aSig ) {
+ return propagateFloat64NaN( a, a STATUS_VAR );
+ }
return a;
}
if ( aExp != 0 )
@@ -6150,6 +6385,12 @@ float64 float64_scalbn( float64 a, int n STATUS_PARAM )
else if ( aSig == 0 )
return a;
+ if (n > 0x1000) {
+ n = 0x1000;
+ } else if (n < -0x1000) {
+ n = -0x1000;
+ }
+
aExp += n - 1;
aSig <<= 10;
return normalizeRoundAndPackFloat64( aSign, aExp, aSig STATUS_VAR );
@@ -6159,19 +6400,29 @@ float64 float64_scalbn( float64 a, int n STATUS_PARAM )
floatx80 floatx80_scalbn( floatx80 a, int n STATUS_PARAM )
{
flag aSign;
- int16 aExp;
+ int32_t aExp;
uint64_t aSig;
aSig = extractFloatx80Frac( a );
aExp = extractFloatx80Exp( a );
aSign = extractFloatx80Sign( a );
- if ( aExp == 0x7FF ) {
+ if ( aExp == 0x7FFF ) {
+ if ( aSig<<1 ) {
+ return propagateFloatx80NaN( a, a STATUS_VAR );
+ }
return a;
}
+
if (aExp == 0 && aSig == 0)
return a;
+ if (n > 0x10000) {
+ n = 0x10000;
+ } else if (n < -0x10000) {
+ n = -0x10000;
+ }
+
aExp += n;
return normalizeRoundAndPackFloatx80( STATUS(floatx80_rounding_precision),
aSign, aExp, aSig, 0 STATUS_VAR );
@@ -6182,7 +6433,7 @@ floatx80 floatx80_scalbn( floatx80 a, int n STATUS_PARAM )
float128 float128_scalbn( float128 a, int n STATUS_PARAM )
{
flag aSign;
- int32 aExp;
+ int32_t aExp;
uint64_t aSig0, aSig1;
aSig1 = extractFloat128Frac1( a );
@@ -6190,6 +6441,9 @@ float128 float128_scalbn( float128 a, int n STATUS_PARAM )
aExp = extractFloat128Exp( a );
aSign = extractFloat128Sign( a );
if ( aExp == 0x7FFF ) {
+ if ( aSig0 | aSig1 ) {
+ return propagateFloat128NaN( a, a STATUS_VAR );
+ }
return a;
}
if ( aExp != 0 )
@@ -6197,6 +6451,12 @@ float128 float128_scalbn( float128 a, int n STATUS_PARAM )
else if ( aSig0 == 0 && aSig1 == 0 )
return a;
+ if (n > 0x10000) {
+ n = 0x10000;
+ } else if (n < -0x10000) {
+ n = -0x10000;
+ }
+
aExp += n - 1;
return normalizeRoundAndPackFloat128( aSign, aExp, aSig0, aSig1
STATUS_VAR );
diff --git a/fpu/softfloat.h b/fpu/softfloat.h
index c7654d4c6..5eff0858f 100644
--- a/fpu/softfloat.h
+++ b/fpu/softfloat.h
@@ -154,6 +154,7 @@ typedef struct {
uint64_t low;
uint16_t high;
} floatx80;
+#define make_floatx80(exp, mant) ((floatx80) { mant, exp })
#endif
#ifdef FLOAT128
typedef struct {
@@ -323,9 +324,11 @@ float32 float32_log2( float32 STATUS_PARAM );
int float32_eq( float32, float32 STATUS_PARAM );
int float32_le( float32, float32 STATUS_PARAM );
int float32_lt( float32, float32 STATUS_PARAM );
-int float32_eq_signaling( float32, float32 STATUS_PARAM );
+int float32_unordered( float32, float32 STATUS_PARAM );
+int float32_eq_quiet( float32, float32 STATUS_PARAM );
int float32_le_quiet( float32, float32 STATUS_PARAM );
int float32_lt_quiet( float32, float32 STATUS_PARAM );
+int float32_unordered_quiet( float32, float32 STATUS_PARAM );
int float32_compare( float32, float32 STATUS_PARAM );
int float32_compare_quiet( float32, float32 STATUS_PARAM );
float32 float32_min(float32, float32 STATUS_PARAM);
@@ -384,6 +387,7 @@ INLINE float32 float32_set_sign(float32 a, int sign)
#define float32_zero make_float32(0)
#define float32_one make_float32(0x3f800000)
#define float32_ln2 make_float32(0x3f317218)
+#define float32_pi make_float32(0x40490fdb)
#define float32_half make_float32(0x3f000000)
#define float32_infinity make_float32(0x7f800000)
@@ -437,9 +441,11 @@ float64 float64_log2( float64 STATUS_PARAM );
int float64_eq( float64, float64 STATUS_PARAM );
int float64_le( float64, float64 STATUS_PARAM );
int float64_lt( float64, float64 STATUS_PARAM );
-int float64_eq_signaling( float64, float64 STATUS_PARAM );
+int float64_unordered( float64, float64 STATUS_PARAM );
+int float64_eq_quiet( float64, float64 STATUS_PARAM );
int float64_le_quiet( float64, float64 STATUS_PARAM );
int float64_lt_quiet( float64, float64 STATUS_PARAM );
+int float64_unordered_quiet( float64, float64 STATUS_PARAM );
int float64_compare( float64, float64 STATUS_PARAM );
int float64_compare_quiet( float64, float64 STATUS_PARAM );
float64 float64_min(float64, float64 STATUS_PARAM);
@@ -494,6 +500,7 @@ INLINE float64 float64_set_sign(float64 a, int sign)
#define float64_zero make_float64(0)
#define float64_one make_float64(0x3ff0000000000000LL)
#define float64_ln2 make_float64(0x3fe62e42fefa39efLL)
+#define float64_pi make_float64(0x400921fb54442d18LL)
#define float64_half make_float64(0x3fe0000000000000LL)
#define float64_infinity make_float64(0x7ff0000000000000LL)
@@ -538,9 +545,13 @@ floatx80 floatx80_sqrt( floatx80 STATUS_PARAM );
int floatx80_eq( floatx80, floatx80 STATUS_PARAM );
int floatx80_le( floatx80, floatx80 STATUS_PARAM );
int floatx80_lt( floatx80, floatx80 STATUS_PARAM );
-int floatx80_eq_signaling( floatx80, floatx80 STATUS_PARAM );
+int floatx80_unordered( floatx80, floatx80 STATUS_PARAM );
+int floatx80_eq_quiet( floatx80, floatx80 STATUS_PARAM );
int floatx80_le_quiet( floatx80, floatx80 STATUS_PARAM );
int floatx80_lt_quiet( floatx80, floatx80 STATUS_PARAM );
+int floatx80_unordered_quiet( floatx80, floatx80 STATUS_PARAM );
+int floatx80_compare( floatx80, floatx80 STATUS_PARAM );
+int floatx80_compare_quiet( floatx80, floatx80 STATUS_PARAM );
int floatx80_is_quiet_nan( floatx80 );
int floatx80_is_signaling_nan( floatx80 );
floatx80 floatx80_maybe_silence_nan( floatx80 );
@@ -560,7 +571,7 @@ INLINE floatx80 floatx80_chs(floatx80 a)
INLINE int floatx80_is_infinity(floatx80 a)
{
- return (a.high & 0x7fff) == 0x7fff && a.low == 0;
+ return (a.high & 0x7fff) == 0x7fff && a.low == 0x8000000000000000LL;
}
INLINE int floatx80_is_neg(floatx80 a)
@@ -578,6 +589,13 @@ INLINE int floatx80_is_any_nan(floatx80 a)
return ((a.high & 0x7fff) == 0x7fff) && (a.low<<1);
}
+#define floatx80_zero make_floatx80(0x0000, 0x0000000000000000LL)
+#define floatx80_one make_floatx80(0x3fff, 0x8000000000000000LL)
+#define floatx80_ln2 make_floatx80(0x3ffe, 0xb17217f7d1cf79acLL)
+#define floatx80_pi make_floatx80(0x4000, 0xc90fdaa22168c235LL)
+#define floatx80_half make_floatx80(0x3ffe, 0x8000000000000000LL)
+#define floatx80_infinity make_floatx80(0x7fff, 0x8000000000000000LL)
+
/*----------------------------------------------------------------------------
| The pattern for a default generated extended double-precision NaN. The
| `high' and `low' values hold the most- and least-significant bits,
@@ -621,9 +639,11 @@ float128 float128_sqrt( float128 STATUS_PARAM );
int float128_eq( float128, float128 STATUS_PARAM );
int float128_le( float128, float128 STATUS_PARAM );
int float128_lt( float128, float128 STATUS_PARAM );
-int float128_eq_signaling( float128, float128 STATUS_PARAM );
+int float128_unordered( float128, float128 STATUS_PARAM );
+int float128_eq_quiet( float128, float128 STATUS_PARAM );
int float128_le_quiet( float128, float128 STATUS_PARAM );
int float128_lt_quiet( float128, float128 STATUS_PARAM );
+int float128_unordered_quiet( float128, float128 STATUS_PARAM );
int float128_compare( float128, float128 STATUS_PARAM );
int float128_compare_quiet( float128, float128 STATUS_PARAM );
int float128_is_quiet_nan( float128 );