summaryrefslogtreecommitdiff
path: root/transform.c
diff options
context:
space:
mode:
authorJeff Muizelaar <jmuizelaar@mozilla.com>2009-05-21 16:46:24 -0400
committerJeff Muizelaar <jmuizelaar@mozilla.com>2009-05-21 16:46:24 -0400
commitb58b34e40bccd4dfb2b6c66358323f3c7d4ae26c (patch)
treede3f7b4149cf5dc8226d84055411c5006f703f7a /transform.c
Initial code drop
Diffstat (limited to 'transform.c')
-rw-r--r--transform.c1616
1 files changed, 1616 insertions, 0 deletions
diff --git a/transform.c b/transform.c
new file mode 100644
index 0000000..5fa5015
--- /dev/null
+++ b/transform.c
@@ -0,0 +1,1616 @@
+// qcms
+// Copyright (C) 2009 Mozilla Corporation
+// Copyright (C) 1998-2007 Marti Maria
+//
+// Permission is hereby granted, free of charge, to any person obtaining
+// a copy of this software and associated documentation files (the "Software"),
+// to deal in the Software without restriction, including without limitation
+// the rights to use, copy, modify, merge, publish, distribute, sublicense,
+// and/or sell copies of the Software, and to permit persons to whom the Software
+// is furnished to do so, subject to the following conditions:
+//
+// The above copyright notice and this permission notice shall be included in
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
+// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
+// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
+// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
+// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+
+#include <stdlib.h>
+#include <math.h>
+#include <assert.h>
+#include "qcmsint.h"
+
+#if defined(_M_IX86) || defined(__i386__) || defined(__x86_64__) || defined(_M_AMD64)
+#define X86
+#endif
+
+//XXX: could use a bettername
+typedef uint16_t uint16_fract_t;
+
+/* value must be a value between 0 and 1 */
+//XXX: is the above a good restriction to have?
+float lut_interp_linear(double value, uint16_t *table, int length)
+{
+ int upper, lower;
+ value = value * (length - 1);
+ upper = ceil(value);
+ lower = floor(value);
+ //XXX: can we be more performant here?
+ value = table[upper]*(1. - (upper - value)) + table[lower]*(upper - value);
+ /* scale the value */
+ return value * (1./65535.);
+}
+
+/* same as above but takes and returns a uint16_t value representing a range from 0..1 */
+uint16_t lut_interp_linear16(uint16_t input_value, uint16_t *table, int length)
+{
+ uint32_t value = (input_value * (length - 1));
+ uint32_t upper = (value + 65534) / 65535; /* equivalent to ceil(value/65535) */
+ uint32_t lower = value / 65535; /* equivalent to floor(value/65535) */
+ uint32_t interp = value % 65535;
+
+ value = (table[upper]*(interp) + table[lower]*(65535 - interp))/65535;
+
+ return value;
+}
+
+void compute_curve_gamma_table_type1(float gamma_table[256], double gamma)
+{
+ unsigned int i;
+ for (i = 0; i < 256; i++) {
+ gamma_table[i] = pow(i/255., gamma);
+ }
+}
+
+void compute_curve_gamma_table_type2(float gamma_table[256], uint16_t *table, int length)
+{
+ unsigned int i;
+ for (i = 0; i < 256; i++) {
+ gamma_table[i] = lut_interp_linear(i/255., table, length);
+ }
+}
+
+void compute_curve_gamma_table_type0(float gamma_table[256])
+{
+ unsigned int i;
+ for (i = 0; i < 256; i++) {
+ gamma_table[i] = i/255.;
+ }
+}
+
+unsigned char clamp_u8(float v)
+{
+ if (v > 255.)
+ return 255;
+ else if (v < 0)
+ return 0;
+ else
+ return floor(v+.5);
+}
+
+struct vector {
+ float v[3];
+};
+
+struct matrix {
+ float m[3][3];
+ bool invalid;
+};
+
+struct vector matrix_eval(struct matrix mat, struct vector v)
+{
+ struct vector result;
+ result.v[0] = mat.m[0][0]*v.v[0] + mat.m[0][1]*v.v[1] + mat.m[0][2]*v.v[2];
+ result.v[1] = mat.m[1][0]*v.v[0] + mat.m[1][1]*v.v[1] + mat.m[1][2]*v.v[2];
+ result.v[2] = mat.m[2][0]*v.v[0] + mat.m[2][1]*v.v[1] + mat.m[2][2]*v.v[2];
+ return result;
+}
+
+//XXX: should probably pass by reference and we could
+//probably reuse this computation in matrix_invert
+float matrix_det(struct matrix mat)
+{
+ float det;
+ det = mat.m[0][0]*mat.m[1][1]*mat.m[2][2] +
+ mat.m[0][1]*mat.m[1][2]*mat.m[2][0] +
+ mat.m[0][2]*mat.m[1][0]*mat.m[2][1] -
+ mat.m[0][0]*mat.m[1][2]*mat.m[2][1] -
+ mat.m[0][1]*mat.m[1][0]*mat.m[2][2] -
+ mat.m[0][2]*mat.m[1][1]*mat.m[2][0];
+ return det;
+}
+
+/* from pixman and cairo and Mathematics for Game Programmers */
+/* lcms uses gauss-jordan elimination with partial pivoting which is
+ * less efficient and not as numerically stable. See Mathematics for
+ * Game Programmers. */
+struct matrix matrix_invert(struct matrix mat)
+{
+ struct matrix dest_mat;
+ int i,j;
+ static int a[3] = { 2, 2, 1 };
+ static int b[3] = { 1, 0, 0 };
+
+ /* inv (A) = 1/det (A) * adj (A) */
+ float det = matrix_det(mat);
+
+ if (det == 0) {
+ dest_mat.invalid = true;
+ } else {
+ dest_mat.invalid = false;
+ }
+
+ det = 1/det;
+
+ for (j = 0; j < 3; j++) {
+ for (i = 0; i < 3; i++) {
+ double p;
+ int ai = a[i];
+ int aj = a[j];
+ int bi = b[i];
+ int bj = b[j];
+
+ p = mat.m[ai][aj] * mat.m[bi][bj] -
+ mat.m[ai][bj] * mat.m[bi][aj];
+ if (((i + j) & 1) != 0)
+ p = -p;
+
+ dest_mat.m[j][i] = det * p;
+ }
+ }
+ return dest_mat;
+}
+
+struct matrix matrix_identity(void)
+{
+ struct matrix i;
+ i.m[0][0] = 1;
+ i.m[0][1] = 0;
+ i.m[0][2] = 0;
+ i.m[1][0] = 0;
+ i.m[1][1] = 1;
+ i.m[1][2] = 0;
+ i.m[2][0] = 0;
+ i.m[2][1] = 0;
+ i.m[2][2] = 1;
+ i.invalid = false;
+ return i;
+}
+
+static struct matrix matrix_invalid(void)
+{
+ struct matrix inv = matrix_identity();
+ inv.invalid = true;
+ return inv;
+}
+
+
+/* from pixman */
+/* MAT3per... */
+struct matrix matrix_multiply(struct matrix a, struct matrix b)
+{
+ struct matrix result;
+ int dx, dy;
+ int o;
+ for (dy = 0; dy < 3; dy++) {
+ for (dx = 0; dx < 3; dx++) {
+ double v = 0;
+ for (o = 0; o < 3; o++) {
+ v += a.m[dy][o] * b.m[o][dx];
+ }
+ result.m[dy][dx] = v;
+ }
+ }
+ result.invalid = a.invalid || b.invalid;
+ return result;
+}
+
+float u8Fixed8Number_to_float(uint16_t x)
+{
+ // 0x0000 = 0.
+ // 0x0100 = 1.
+ // 0xffff = 255 + 255/256
+ return x/256.;
+}
+
+float *build_input_gamma_table(struct curveType *TRC)
+{
+ float *gamma_table = malloc(sizeof(float)*256);
+ if (gamma_table) {
+ if (TRC->count == 0) {
+ compute_curve_gamma_table_type0(gamma_table);
+ } else if (TRC->count == 1) {
+ compute_curve_gamma_table_type1(gamma_table, u8Fixed8Number_to_float(TRC->data[0]));
+ } else {
+ compute_curve_gamma_table_type2(gamma_table, TRC->data, TRC->count);
+ }
+ }
+ return gamma_table;
+}
+
+struct matrix build_colorant_matrix(qcms_profile *p)
+{
+ struct matrix result;
+ result.m[0][0] = s15Fixed16Number_to_float(p->redColorant.X);
+ result.m[0][1] = s15Fixed16Number_to_float(p->greenColorant.X);
+ result.m[0][2] = s15Fixed16Number_to_float(p->blueColorant.X);
+ result.m[1][0] = s15Fixed16Number_to_float(p->redColorant.Y);
+ result.m[1][1] = s15Fixed16Number_to_float(p->greenColorant.Y);
+ result.m[1][2] = s15Fixed16Number_to_float(p->blueColorant.Y);
+ result.m[2][0] = s15Fixed16Number_to_float(p->redColorant.Z);
+ result.m[2][1] = s15Fixed16Number_to_float(p->greenColorant.Z);
+ result.m[2][2] = s15Fixed16Number_to_float(p->blueColorant.Z);
+ result.invalid = false;
+ return result;
+}
+
+/* The following code is copied nearly directly from lcms.
+ * I think it could be much better. For example, Argyll seems to have better code in
+ * icmTable_lookup_bwd and icmTable_setup_bwd. However, for now this is a quick way
+ * to a working solution and allows for easy comparing with lcms. */
+uint16_fract_t lut_inverse_interp16(uint16_t Value, uint16_t LutTable[], int length)
+{
+ int l = 1;
+ int r = 0x10000;
+ int x = 0, res; // 'int' Give spacing for negative values
+ int NumZeroes, NumPoles;
+ int cell0, cell1;
+ double val2;
+ double y0, y1, x0, x1;
+ double a, b, f;
+
+ // July/27 2001 - Expanded to handle degenerated curves with an arbitrary
+ // number of elements containing 0 at the begining of the table (Zeroes)
+ // and another arbitrary number of poles (FFFFh) at the end.
+ // First the zero and pole extents are computed, then value is compared.
+
+ NumZeroes = 0;
+ while (LutTable[NumZeroes] == 0 && NumZeroes < length-1)
+ NumZeroes++;
+
+ // There are no zeros at the beginning and we are trying to find a zero, so
+ // return anything. It seems zero would be the less destructive choice
+ /* I'm not sure that this makes sense, but oh well... */
+ if (NumZeroes == 0 && Value == 0)
+ return 0;
+
+ NumPoles = 0;
+ while (LutTable[length-1- NumPoles] == 0xFFFF && NumPoles < length-1)
+ NumPoles++;
+
+ // Does the curve belong to this case?
+ if (NumZeroes > 1 || NumPoles > 1)
+ {
+ int a, b;
+
+ // Identify if value fall downto 0 or FFFF zone
+ if (Value == 0) return 0;
+ // if (Value == 0xFFFF) return 0xFFFF;
+
+ // else restrict to valid zone
+
+ a = ((NumZeroes-1) * 0xFFFF) / (length-1);
+ b = ((length-1 - NumPoles) * 0xFFFF) / (length-1);
+
+ l = a - 1;
+ r = b + 1;
+ }
+
+
+ // Seems not a degenerated case... apply binary search
+
+ while (r > l) {
+
+ x = (l + r) / 2;
+
+ res = (int) lut_interp_linear16((uint16_fract_t) (x-1), LutTable, length);
+
+ if (res == Value) {
+
+ // Found exact match.
+
+ return (uint16_fract_t) (x - 1);
+ }
+
+ if (res > Value) r = x - 1;
+ else l = x + 1;
+ }
+
+ // Not found, should we interpolate?
+
+
+ // Get surrounding nodes
+
+ val2 = (length-1) * ((double) (x - 1) / 65535.0);
+
+ cell0 = (int) floor(val2);
+ cell1 = (int) ceil(val2);
+
+ if (cell0 == cell1) return (uint16_fract_t) x;
+
+ y0 = LutTable[cell0] ;
+ x0 = (65535.0 * cell0) / (length-1);
+
+ y1 = LutTable[cell1] ;
+ x1 = (65535.0 * cell1) / (length-1);
+
+ a = (y1 - y0) / (x1 - x0);
+ b = y0 - a * x0;
+
+ if (fabs(a) < 0.01) return (uint16_fract_t) x;
+
+ f = ((Value - b) / a);
+
+ if (f < 0.0) return (uint16_fract_t) 0;
+ if (f >= 65535.0) return (uint16_fract_t) 0xFFFF;
+
+ return (uint16_fract_t) floor(f + 0.5);
+
+}
+
+// Build a White point, primary chromas transfer matrix from RGB to CIE XYZ
+// This is just an approximation, I am not handling all the non-linear
+// aspects of the RGB to XYZ process, and assumming that the gamma correction
+// has transitive property in the tranformation chain.
+//
+// the alghoritm:
+//
+// - First I build the absolute conversion matrix using
+// primaries in XYZ. This matrix is next inverted
+// - Then I eval the source white point across this matrix
+// obtaining the coeficients of the transformation
+// - Then, I apply these coeficients to the original matrix
+static struct matrix build_RGB_to_XYZ_transfer_matrix(qcms_CIE_xyY white, qcms_CIE_xyYTRIPLE primrs)
+{
+ struct matrix primaries;
+ struct matrix primaries_invert;
+ struct matrix result;
+ struct vector white_point;
+ struct vector coefs;
+
+ double xn, yn;
+ double xr, yr;
+ double xg, yg;
+ double xb, yb;
+
+ xn = white.x;
+ yn = white.y;
+
+ if (yn == 0.0)
+ return matrix_invalid();
+
+ xr = primrs.red.x;
+ yr = primrs.red.y;
+ xg = primrs.green.x;
+ yg = primrs.green.y;
+ xb = primrs.blue.x;
+ yb = primrs.blue.y;
+
+ primaries.m[0][0] = xr;
+ primaries.m[0][1] = xg;
+ primaries.m[0][2] = xb;
+
+ primaries.m[1][0] = yr;
+ primaries.m[1][1] = yg;
+ primaries.m[1][2] = yb;
+
+ primaries.m[2][0] = 1 - xr - yr;
+ primaries.m[2][1] = 1 - xg - yg;
+ primaries.m[2][2] = 1 - xb - yb;
+ primaries.invalid = false;
+
+ white_point.v[0] = xn/yn;
+ white_point.v[1] = 1.;
+ white_point.v[2] = (1.0-xn-yn)/yn;
+
+ primaries_invert = matrix_invert(primaries);
+
+ coefs = matrix_eval(primaries_invert, white_point);
+
+ result.m[0][0] = coefs.v[0]*xr;
+ result.m[0][1] = coefs.v[1]*xg;
+ result.m[0][2] = coefs.v[2]*xb;
+
+ result.m[1][0] = coefs.v[0]*yr;
+ result.m[1][1] = coefs.v[1]*yg;
+ result.m[1][2] = coefs.v[2]*yb;
+
+ result.m[2][0] = coefs.v[0]*(1.-xr-yr);
+ result.m[2][1] = coefs.v[1]*(1.-xg-yg);
+ result.m[2][2] = coefs.v[2]*(1.-xb-yb);
+ result.invalid = primaries_invert.invalid;
+
+ return result;
+}
+
+struct CIE_XYZ {
+ double X;
+ double Y;
+ double Z;
+};
+
+/* CIE Illuminant D50 */
+static const struct CIE_XYZ D50_XYZ = {
+ 0.9642,
+ 1.0000,
+ 0.8249
+};
+
+/* from lcms: xyY2XYZ()
+ * corresponds to argyll: icmYxy2XYZ() */
+static struct CIE_XYZ xyY2XYZ(qcms_CIE_xyY source)
+{
+ struct CIE_XYZ dest;
+ dest.X = (source.x / source.y) * source.Y;
+ dest.Y = source.Y;
+ dest.Z = ((1 - source.x - source.y) / source.y) * source.Y;
+ return dest;
+}
+
+/* from lcms: ComputeChromaticAdaption */
+// Compute chromatic adaption matrix using chad as cone matrix
+static struct matrix
+compute_chromatic_adaption(struct CIE_XYZ source_white_point,
+ struct CIE_XYZ dest_white_point,
+ struct matrix chad)
+{
+ struct matrix chad_inv;
+ struct vector cone_source_XYZ, cone_source_rgb;
+ struct vector cone_dest_XYZ, cone_dest_rgb;
+ struct matrix cone, tmp;
+
+ tmp = chad;
+ chad_inv = matrix_invert(tmp);
+
+ cone_source_XYZ.v[0] = source_white_point.X;
+ cone_source_XYZ.v[1] = source_white_point.Y;
+ cone_source_XYZ.v[2] = source_white_point.Z;
+
+ cone_dest_XYZ.v[0] = dest_white_point.X;
+ cone_dest_XYZ.v[1] = dest_white_point.Y;
+ cone_dest_XYZ.v[2] = dest_white_point.Z;
+
+ cone_source_rgb = matrix_eval(chad, cone_source_XYZ);
+ cone_dest_rgb = matrix_eval(chad, cone_dest_XYZ);
+
+ cone.m[0][0] = cone_dest_rgb.v[0]/cone_source_rgb.v[0];
+ cone.m[0][1] = 0;
+ cone.m[0][2] = 0;
+ cone.m[1][0] = 0;
+ cone.m[1][1] = cone_dest_rgb.v[1]/cone_source_rgb.v[1];
+ cone.m[1][2] = 0;
+ cone.m[2][0] = 0;
+ cone.m[2][1] = 0;
+ cone.m[2][2] = cone_dest_rgb.v[2]/cone_source_rgb.v[2];
+ cone.invalid = false;
+
+ // Normalize
+ return matrix_multiply(chad_inv, matrix_multiply(cone, chad));
+}
+
+/* from lcms: cmsAdaptionMatrix */
+// Returns the final chrmatic adaptation from illuminant FromIll to Illuminant ToIll
+// Bradford is assumed
+static struct matrix
+adaption_matrix(struct CIE_XYZ source_illumination, struct CIE_XYZ target_illumination)
+{
+ struct matrix lam_rigg = {{ // Bradford matrix
+ { 0.8951, 0.2664, -0.1614 },
+ { -0.7502, 1.7135, 0.0367 },
+ { 0.0389, -0.0685, 1.0296 }
+ }};
+ return compute_chromatic_adaption(source_illumination, target_illumination, lam_rigg);
+}
+
+/* from lcms: cmsAdaptMatrixToD50 */
+static struct matrix adapt_matrix_to_D50(struct matrix r, qcms_CIE_xyY source_white_pt)
+{
+ struct CIE_XYZ Dn;
+ struct matrix Bradford;
+
+ if (source_white_pt.y == 0.0)
+ return matrix_invalid();
+
+ Dn = xyY2XYZ(source_white_pt);
+
+ Bradford = adaption_matrix(Dn, D50_XYZ);
+ return matrix_multiply(Bradford, r);
+}
+
+qcms_bool set_rgb_colorants(qcms_profile *profile, qcms_CIE_xyY white_point, qcms_CIE_xyYTRIPLE primaries)
+{
+ struct matrix colorants;
+ colorants = build_RGB_to_XYZ_transfer_matrix(white_point, primaries);
+ colorants = adapt_matrix_to_D50(colorants, white_point);
+
+ if (colorants.invalid)
+ return false;
+
+ /* note: there's a transpose type of operation going on here */
+ profile->redColorant.X = double_to_s15Fixed16Number(colorants.m[0][0]);
+ profile->redColorant.Y = double_to_s15Fixed16Number(colorants.m[1][0]);
+ profile->redColorant.Z = double_to_s15Fixed16Number(colorants.m[2][0]);
+
+ profile->greenColorant.X = double_to_s15Fixed16Number(colorants.m[0][1]);
+ profile->greenColorant.Y = double_to_s15Fixed16Number(colorants.m[1][1]);
+ profile->greenColorant.Z = double_to_s15Fixed16Number(colorants.m[2][1]);
+
+ profile->blueColorant.X = double_to_s15Fixed16Number(colorants.m[0][2]);
+ profile->blueColorant.Y = double_to_s15Fixed16Number(colorants.m[1][2]);
+ profile->blueColorant.Z = double_to_s15Fixed16Number(colorants.m[2][2]);
+
+ return true;
+}
+
+static uint16_t *invert_lut(uint16_t *table, int length)
+{
+ int i;
+ /* for now we invert the lut by creating a lut of the same size
+ * and attempting to lookup a value for each entry using lut_inverse_interp16 */
+ uint16_t *output = malloc(sizeof(uint16_t)*length);
+ if (!output)
+ return NULL;
+
+ for (i = 0; i < length; i++) {
+ double x = ((double) i * 65535.) / (double) (length - 1);
+ uint16_fract_t input = floor(x + .5);
+ output[i] = lut_inverse_interp16(input, table, length);
+ }
+ return output;
+}
+
+static uint16_t *build_linear_table(int length)
+{
+ int i;
+ uint16_t *output = malloc(sizeof(uint16_t)*length);
+ if (!output)
+ return NULL;
+
+ for (i = 0; i < length; i++) {
+ double x = ((double) i * 65535.) / (double) (length - 1);
+ uint16_fract_t input = floor(x + .5);
+ output[i] = input;
+ }
+ return output;
+}
+
+static uint16_t *build_pow_table(float gamma, int length)
+{
+ int i;
+ uint16_t *output = malloc(sizeof(uint16_t)*length);
+ if (!output)
+ return NULL;
+
+ for (i = 0; i < length; i++) {
+ uint16_fract_t result;
+ double x = ((double) i) / (double) (length - 1);
+ x = pow(x, gamma);
+ //XXX turn this conversion into a function
+ result = floor(x*65535. + .5);
+ output[i] = result;
+ }
+ return output;
+}
+
+static float clamp_float(float a)
+{
+ if (a > 1.)
+ return 1.;
+ else if (a < 0)
+ return 0;
+ else
+ return a;
+}
+
+#if 0
+static void qcms_transform_data_rgb_out_pow(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length)
+{
+ int i;
+ float (*mat)[4] = transform->matrix;
+ for (i=0; i<length; i++) {
+ unsigned char device_r = *src++;
+ unsigned char device_g = *src++;
+ unsigned char device_b = *src++;
+
+ float linear_r = transform->input_gamma_table_r[device_r];
+ float linear_g = transform->input_gamma_table_g[device_g];
+ float linear_b = transform->input_gamma_table_b[device_b];
+
+ float out_linear_r = mat[0][0]*linear_r + mat[1][0]*linear_g + mat[2][0]*linear_b;
+ float out_linear_g = mat[0][1]*linear_r + mat[1][1]*linear_g + mat[2][1]*linear_b;
+ float out_linear_b = mat[0][2]*linear_r + mat[1][2]*linear_g + mat[2][2]*linear_b;
+
+ float out_device_r = pow(out_linear_r, transform->out_gamma_r);
+ float out_device_g = pow(out_linear_g, transform->out_gamma_g);
+ float out_device_b = pow(out_linear_b, transform->out_gamma_b);
+
+ *dest++ = clamp_u8(255*out_device_r);
+ *dest++ = clamp_u8(255*out_device_g);
+ *dest++ = clamp_u8(255*out_device_b);
+ }
+}
+#endif
+
+static void qcms_transform_data_gray_out_lut(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length)
+{
+ int i;
+ for (i = 0; i < length; i++) {
+ float out_device_r, out_device_g, out_device_b;
+ unsigned char device = *src++;
+
+ float linear = transform->input_gamma_table_gray[device];
+
+ out_device_r = lut_interp_linear(linear, transform->output_gamma_lut_r, transform->output_gamma_lut_r_length);
+ out_device_g = lut_interp_linear(linear, transform->output_gamma_lut_g, transform->output_gamma_lut_g_length);
+ out_device_b = lut_interp_linear(linear, transform->output_gamma_lut_b, transform->output_gamma_lut_b_length);
+
+ *dest++ = clamp_u8(out_device_r*255);
+ *dest++ = clamp_u8(out_device_g*255);
+ *dest++ = clamp_u8(out_device_b*255);
+ }
+}
+
+static void qcms_transform_data_graya_out_lut(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length)
+{
+ int i;
+ for (i = 0; i < length; i++) {
+ float out_device_r, out_device_g, out_device_b;
+ unsigned char device = *src++;
+ unsigned char alpha = *src++;
+
+ float linear = transform->input_gamma_table_gray[device];
+
+ out_device_r = lut_interp_linear(linear, transform->output_gamma_lut_r, transform->output_gamma_lut_r_length);
+ out_device_g = lut_interp_linear(linear, transform->output_gamma_lut_g, transform->output_gamma_lut_g_length);
+ out_device_b = lut_interp_linear(linear, transform->output_gamma_lut_b, transform->output_gamma_lut_b_length);
+
+ *dest++ = clamp_u8(out_device_r*255);
+ *dest++ = clamp_u8(out_device_g*255);
+ *dest++ = clamp_u8(out_device_b*255);
+ *dest++ = alpha;
+ }
+}
+
+
+static void qcms_transform_data_gray_out_precache(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length)
+{
+ int i;
+ for (i = 0; i < length; i++) {
+ unsigned char device = *src++;
+ uint16_t gray;
+
+ float linear = transform->input_gamma_table_gray[device];
+
+ /* we could round here... */
+ gray = linear * 65535.;
+
+ *dest++ = transform->output_table_r->data[gray];
+ *dest++ = transform->output_table_g->data[gray];
+ *dest++ = transform->output_table_b->data[gray];
+ }
+}
+
+static void qcms_transform_data_graya_out_precache(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length)
+{
+ int i;
+ for (i = 0; i < length; i++) {
+ unsigned char device = *src++;
+ unsigned char alpha = *src++;
+ uint16_t gray;
+
+ float linear = transform->input_gamma_table_gray[device];
+
+ /* we could round here... */
+ gray = linear * 65535.;
+
+ *dest++ = transform->output_table_r->data[gray];
+ *dest++ = transform->output_table_g->data[gray];
+ *dest++ = transform->output_table_b->data[gray];
+ *dest++ = alpha;
+ }
+}
+
+static const ALIGN float floatScale = 65536.0f;
+static const ALIGN float * const floatScaleAddr = &floatScale; // Win32 ASM doesn't know how to take addressOf inline
+
+static const ALIGN float clampMaxValue = ((float) (65536 - 1)) / 65536.0f;
+
+#ifdef X86
+#if 0
+#include <emmintrin.h>
+void qcms_transform_data_rgb_out_lut_sse_intrin(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length)
+{
+ int i;
+ float (*mat)[4] = transform->matrix;
+ char input_back[32];
+ /* Ensure we have a buffer that's 16 byte aligned regardless of the original
+ * stack alignment. We can't use __attribute__((aligned(16))) or __declspec(align(32))
+ * because they don't work on stack variables. gcc 4.4 does do the right thing
+ * on x86 but that's too new for us right now. For more info: gcc bug #16660 */
+ float *input = (float*)(((uintptr_t)&input_back[16]) & ~0xf);
+ /* share input and output locations to save having to keep the
+ * locations in separate registers */
+ uint32_t* output = (uint32_t*)input;
+ for (i=0; i<length; i++) {
+ const float *clampMax = &clampMaxValue;
+
+ unsigned char device_r = *src++;
+ unsigned char device_g = *src++;
+ unsigned char device_b = *src++;
+
+ __m128 xmm1 = _mm_load_ps(mat[0]);
+ __m128 xmm2 = _mm_load_ps(mat[1]);
+ __m128 xmm3 = _mm_load_ps(mat[2]);
+
+ __m128 vec_r = _mm_load_ss(&transform->input_gamma_table_r[device_r]);
+ vec_r = _mm_shuffle_ps(vec_r, vec_r, 0);
+ __m128 vec_g = _mm_load_ss(&transform->input_gamma_table_r[device_g]);
+ vec_g = _mm_shuffle_ps(vec_g, vec_g, 0);
+ __m128 vec_b = _mm_load_ss(&transform->input_gamma_table_r[device_b]);
+ vec_b = _mm_shuffle_ps(vec_b, vec_b, 0);
+
+ vec_r = _mm_mul_ps(vec_r, xmm1);
+ vec_g = _mm_mul_ps(vec_g, xmm2);
+ vec_b = _mm_mul_ps(vec_b, xmm3);
+
+ vec_r = _mm_add_ps(vec_r, _mm_add_ps(vec_g, vec_b));
+
+ __m128 max = _mm_load_ss(&clampMax);
+ max = _mm_shuffle_ps(max, max, 0);
+ __m128 min = _mm_setzero_ps();
+
+ vec_r = _mm_max_ps(min, vec_r);
+ vec_r = _mm_min_ps(max, vec_r);
+
+ __m128 scale = _mm_load_ss(&floatScale);
+ scale = _mm_shuffle_ps(scale, scale, 0);
+ __m128 result = _mm_mul_ps(vec_r, scale);
+
+ __m128i out = _mm_cvtps_epi32(result);
+ _mm_store_si128((__m128i*)input, out);
+
+ *dest++ = transform->output_table_r->data[output[0]];
+ *dest++ = transform->output_table_g->data[output[1]];
+ *dest++ = transform->output_table_b->data[output[2]];
+ }
+}
+#endif
+
+#if defined(_MSC_VER) && defined(_M_AMD64)
+#include <emmintrin.h>
+#endif
+
+static void qcms_transform_data_rgb_out_lut_sse(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length)
+{
+ int i;
+ float (*mat)[4] = transform->matrix;
+ char input_back[32];
+ /* Ensure we have a buffer that's 16 byte aligned regardless of the original
+ * stack alignment. We can't use __attribute__((aligned(16))) or __declspec(align(32))
+ * because they don't work on stack variables. gcc 4.4 does do the right thing
+ * on x86 but that's too new for us right now. For more info: gcc bug #16660 */
+ float *input = (float*)(((uintptr_t)&input_back[16]) & ~0xf);
+ /* share input and output locations to save having to keep the
+ * locations in separate registers */
+ uint32_t* output = (uint32_t*)input;
+ for (i = 0; i < length; i++) {
+ const float *clampMax = &clampMaxValue;
+
+ unsigned char device_r = *src++;
+ unsigned char device_g = *src++;
+ unsigned char device_b = *src++;
+
+ input[0] = transform->input_gamma_table_r[device_r];
+ input[1] = transform->input_gamma_table_g[device_g];
+ input[2] = transform->input_gamma_table_b[device_b];
+
+#ifdef __GNUC__
+ __asm(
+ "movaps (%0), %%xmm1;\n\t" // Move the first matrix column to xmm1
+ "movaps 16(%0), %%xmm2;\n\t" // Move the second matrix column to xmm2
+ "movaps 32(%0), %%xmm3;\n\t" // move the third matrix column to xmm3
+ "movaps (%3), %%xmm0;\n\t" // Move the vector to xmm0
+
+ // Note - We have to copy and then shuffle because of the weird
+ // semantics of shufps
+ //
+ "movaps %%xmm0, %%xmm4;\n\t" // Copy the vector to xmm4
+ "shufps $0, %%xmm4, %%xmm4;\n\t" // Shuffle to repeat the first vector element repeated 4 times
+ "mulps %%xmm4, %%xmm1;\n\t" // Multiply the first vector element by the first matrix column
+ "movaps %%xmm0, %%xmm5; \n\t" // Copy the vector to xmm5
+ "shufps $0x55, %%xmm5, %%xmm5;\n\t" // Shuffle to repeat the second vector element repeated 4 times
+ "mulps %%xmm5, %%xmm2;\n\t" // Multiply the second vector element by the seccond matrix column
+ "movaps %%xmm0, %%xmm6;\n\t" // Copy the vector to xmm6
+ "shufps $0xAA, %%xmm6, %%xmm6;\n\t" // Shuffle to repeat the third vector element repeated 4 times
+ "mulps %%xmm6, %%xmm3;\n\t" // Multiply the third vector element by the third matrix column
+
+ "addps %%xmm3, %%xmm2;\n\t" // Sum (second + third) columns
+ "addps %%xmm2, %%xmm1;\n\t" // Sum ((second + third) + first) columns
+
+ "movss (%1), %%xmm7;\n\t" // load the floating point representation of 65535/65536
+ "shufps $0, %%xmm7, %%xmm7;\n\t" // move it into all of the four slots
+ "minps %%xmm7, %%xmm1;\n\t" // clamp the vector to 1.0 max
+ "xorps %%xmm6, %%xmm6;\n\t" // get us cleared bitpatern, which is 0.0f
+ "maxps %%xmm6, %%xmm1;\n\t" // clamp the vector to 0.0 min
+ "movss (%2), %%xmm5;\n\t" // load the floating point scale factor
+ "shufps $0, %%xmm5, %%xmm5;\n\t" // put it in all four slots
+ "mulps %%xmm5, %%xmm1;\n\t" // multiply by the scale factor
+ "cvtps2dq %%xmm1, %%xmm1;\n\t" // convert to integers
+ "movdqa %%xmm1, (%3);\n\t" // store
+
+ :
+ : "r" (mat), "r" (clampMax), "r" (&floatScale), "r" (input)
+ : "memory"
+/* older versions of gcc don't know about these registers so only include them as constraints
+ if gcc knows about them */
+#ifdef __SSE2__
+ , "%xmm0", "%xmm1", "%xmm2", "%xmm3", "%xmm4", "%xmm5", "%xmm6", "%xmm7"
+#endif
+ );
+#elif defined(_MSC_VER) && defined(_M_IX86)
+ __asm {
+ mov eax, mat
+ mov ecx, clampMax
+ mov edx, floatScaleAddr
+ mov ebx, input
+
+ movaps xmm1, [eax]
+ movaps xmm2, [eax + 16]
+ movaps xmm3, [eax + 32]
+ movaps xmm0, [ebx]
+
+ movaps xmm4, xmm0
+ shufps xmm4, xmm4, 0
+ mulps xmm1, xmm4
+ movaps xmm5, xmm0
+ shufps xmm5, xmm5, 0x55
+ mulps xmm2, xmm5
+ movaps xmm6, xmm0
+ shufps xmm6, xmm6, 0xAA
+ mulps xmm3, xmm6
+
+ addps xmm2, xmm3
+ addps xmm1, xmm2
+
+ movss xmm7, [ecx]
+ shufps xmm7, xmm7, 0
+ minps xmm1, xmm7
+ xorps xmm6, xmm6
+ maxps xmm1, xmm6
+ movss xmm5, [edx]
+ shufps xmm5, xmm5, 0
+ mulps xmm1, xmm5
+ cvtps2dq xmm1, xmm1
+ movdqa [ebx], xmm1
+ }
+#elif defined(_MSC_VER) && defined(_M_AMD64)
+ {
+ __m128 xmm0, xmm1, xmm2, xmm3, xmm5, xmm6, xmm7;
+
+ xmm1 = _mm_load_ps((__m128*)mat);
+ xmm2 = _mm_load_ps(((__m128*)mat) + 1);
+ xmm3 = _mm_load_ps(((__m128*)mat) + 2);
+ xmm0 = _mm_load_ps((__m128*)input);
+
+ xmm1 = _mm_mul_ps(xmm1, _mm_shuffle_ps(xmm0, xmm0, _MM_SHUFFLE(0,0,0,0)));
+ xmm2 = _mm_mul_ps(xmm2, _mm_shuffle_ps(xmm0, xmm0, _MM_SHUFFLE(1,1,1,1)));
+ xmm3 = _mm_mul_ps(xmm3, _mm_shuffle_ps(xmm0, xmm0, _MM_SHUFFLE(2,2,2,2)));
+
+ xmm1 = _mm_add_ps(xmm1, _mm_add_ps(xmm2, xmm3));
+
+ xmm7 = _mm_load_ss(clampMax);
+ xmm7 = _mm_shuffle_ps(xmm7, xmm7, _MM_SHUFFLE(0,0,0,0));
+ xmm1 = _mm_min_ps(xmm1, xmm7);
+ xmm6 = _mm_xor_ps(xmm6, xmm6);
+ xmm1 = _mm_max_ps(xmm1, xmm6);
+ xmm5 = _mm_load_ss(&floatScale);
+ xmm5 = _mm_shuffle_ps(xmm5, xmm5, _MM_SHUFFLE(0,0,0,0));
+ xmm1 = _mm_mul_ps(xmm1, xmm5);
+ _mm_store_si128((__m128i*)input, _mm_cvtps_epi32(xmm1));
+ }
+#else
+#error "Unknown platform"
+#endif
+
+ *dest++ = transform->output_table_r->data[output[0]];
+ *dest++ = transform->output_table_g->data[output[1]];
+ *dest++ = transform->output_table_b->data[output[2]];
+ }
+}
+
+static void qcms_transform_data_rgba_out_lut_sse(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length)
+{
+ int i;
+ float (*mat)[4] = transform->matrix;
+ char input_back[32];
+ /* align input on 16 byte boundary */
+ float *input = (float*)(((uintptr_t)&input_back[16]) & ~0xf);
+ /* share input and output locations to save having to keep the
+ * locations in separate registers */
+ uint32_t* output = (uint32_t*)input;
+ for (i = 0; i < length; i++) {
+ const float *clampMax = &clampMaxValue;
+
+ unsigned char device_r = *src++;
+ unsigned char device_g = *src++;
+ unsigned char device_b = *src++;
+ unsigned char alpha = *src++;
+
+ input[0] = transform->input_gamma_table_r[device_r];
+ input[1] = transform->input_gamma_table_g[device_g];
+ input[2] = transform->input_gamma_table_b[device_b];
+
+#ifdef __GNUC__
+ __asm(
+ "movaps (%0), %%xmm1;\n\t" // Move the first matrix column to xmm1
+ "movaps 16(%0), %%xmm2;\n\t" // Move the second matrix column to xmm2
+ "movaps 32(%0), %%xmm3;\n\t" // move the third matrix column to xmm3
+ "movaps (%3), %%xmm0;\n\t" // Move the vector to xmm0
+
+ // Note - We have to copy and then shuffle because of the weird
+ // semantics of shufps
+ //
+ "movaps %%xmm0, %%xmm4;\n\t" // Copy the vector to xmm4
+ "shufps $0, %%xmm4, %%xmm4;\n\t" // Shuffle to repeat the first vector element repeated 4 times
+ "mulps %%xmm4, %%xmm1;\n\t" // Multiply the first vector element by the first matrix column
+ "movaps %%xmm0, %%xmm5; \n\t" // Copy the vector to xmm5
+ "shufps $0x55, %%xmm5, %%xmm5;\n\t" // Shuffle to repeat the second vector element repeated 4 times
+ "mulps %%xmm5, %%xmm2;\n\t" // Multiply the second vector element by the seccond matrix column
+ "movaps %%xmm0, %%xmm6;\n\t" // Copy the vector to xmm6
+ "shufps $0xAA, %%xmm6, %%xmm6;\n\t" // Shuffle to repeat the third vector element repeated 4 times
+ "mulps %%xmm6, %%xmm3;\n\t" // Multiply the third vector element by the third matrix column
+
+ "addps %%xmm3, %%xmm2;\n\t" // Sum (second + third) columns
+ "addps %%xmm2, %%xmm1;\n\t" // Sum ((second + third) + first) columns
+
+ "movss (%1), %%xmm7;\n\t" // load the floating point representation of 65535/65536
+ "shufps $0, %%xmm7, %%xmm7;\n\t" // move it into all of the four slots
+ "minps %%xmm7, %%xmm1;\n\t" // clamp the vector to 1.0 max
+ "xorps %%xmm6, %%xmm6;\n\t" // get us cleared bitpatern, which is 0.0f
+ "maxps %%xmm6, %%xmm1;\n\t" // clamp the vector to 0.0 min
+ "movss (%2), %%xmm5;\n\t" // load the floating point scale factor
+ "shufps $0, %%xmm5, %%xmm5;\n\t" // put it in all four slots
+ "mulps %%xmm5, %%xmm1;\n\t" // multiply by the scale factor
+ "cvtps2dq %%xmm1, %%xmm1;\n\t" // convert to integers
+ "movdqa %%xmm1, (%3);\n\t" // store
+
+ :
+ : "r" (mat), "r" (clampMax), "r" (&floatScale), "r" (input)
+ : "memory"
+/* older versions of gcc don't know about these registers so only include them as constraints
+ if gcc knows about them */
+#ifdef __SSE2__
+ , "%xmm0", "%xmm1", "%xmm2", "%xmm3", "%xmm4", "%xmm5", "%xmm6", "%xmm7"
+#endif
+ );
+#elif defined(_MSC_VER) && defined(_M_IX86)
+ __asm {
+ mov eax, mat
+ mov ecx, clampMax
+ mov edx, floatScaleAddr
+ mov ebx, input
+
+ movaps xmm1, [eax]
+ movaps xmm2, [eax + 16]
+ movaps xmm3, [eax + 32]
+ movaps xmm0, [ebx]
+
+ movaps xmm4, xmm0
+ shufps xmm4, xmm4, 0
+ mulps xmm1, xmm4
+ movaps xmm5, xmm0
+ shufps xmm5, xmm5, 0x55
+ mulps xmm2, xmm5
+ movaps xmm6, xmm0
+ shufps xmm6, xmm6, 0xAA
+ mulps xmm3, xmm6
+
+ addps xmm2, xmm3
+ addps xmm1, xmm2
+
+ movss xmm7, [ecx]
+ shufps xmm7, xmm7, 0
+ minps xmm1, xmm7
+ xorps xmm6, xmm6
+ maxps xmm1, xmm6
+ movss xmm5, [edx]
+ shufps xmm5, xmm5, 0
+ mulps xmm1, xmm5
+ cvtps2dq xmm1, xmm1
+ movdqa [ebx], xmm1
+ }
+#elif defined(_MSC_VER) && defined(_M_AMD64)
+ {
+ __m128 xmm0, xmm1, xmm2, xmm3, xmm5, xmm6, xmm7;
+
+ xmm1 = _mm_load_ps((__m128*)mat);
+ xmm2 = _mm_load_ps(((__m128*)mat) + 1);
+ xmm3 = _mm_load_ps(((__m128*)mat) + 2);
+ xmm0 = _mm_load_ps((__m128*)input);
+
+ xmm1 = _mm_mul_ps(xmm1, _mm_shuffle_ps(xmm0, xmm0, _MM_SHUFFLE(0,0,0,0)));
+ xmm2 = _mm_mul_ps(xmm2, _mm_shuffle_ps(xmm0, xmm0, _MM_SHUFFLE(1,1,1,1)));
+ xmm3 = _mm_mul_ps(xmm3, _mm_shuffle_ps(xmm0, xmm0, _MM_SHUFFLE(2,2,2,2)));
+
+ xmm1 = _mm_add_ps(xmm1, _mm_add_ps(xmm2, xmm3));
+
+ xmm7 = _mm_load_ss(clampMax);
+ xmm7 = _mm_shuffle_ps(xmm7, xmm7, _MM_SHUFFLE(0,0,0,0));
+ xmm1 = _mm_min_ps(xmm1, xmm7);
+ xmm6 = _mm_xor_ps(xmm6, xmm6);
+ xmm1 = _mm_max_ps(xmm1, xmm6);
+ xmm5 = _mm_load_ss(&floatScale);
+ xmm5 = _mm_shuffle_ps(xmm5, xmm5, _MM_SHUFFLE(0,0,0,0));
+ xmm1 = _mm_mul_ps(xmm1, xmm5);
+ _mm_store_si128((__m128i*)input, _mm_cvtps_epi32(xmm1));
+ }
+#else
+#error "Unknown platform"
+#endif
+
+ *dest++ = transform->output_table_r->data[output[0]];
+ *dest++ = transform->output_table_g->data[output[1]];
+ *dest++ = transform->output_table_b->data[output[2]];
+ *dest++ = alpha;
+ }
+}
+#endif
+
+static void qcms_transform_data_rgb_out_lut_precache(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length)
+{
+ int i;
+ float (*mat)[4] = transform->matrix;
+ for (i = 0; i < length; i++) {
+ unsigned char device_r = *src++;
+ unsigned char device_g = *src++;
+ unsigned char device_b = *src++;
+ uint16_t r, g, b;
+
+ float linear_r = transform->input_gamma_table_r[device_r];
+ float linear_g = transform->input_gamma_table_g[device_g];
+ float linear_b = transform->input_gamma_table_b[device_b];
+
+ float out_linear_r = mat[0][0]*linear_r + mat[1][0]*linear_g + mat[2][0]*linear_b;
+ float out_linear_g = mat[0][1]*linear_r + mat[1][1]*linear_g + mat[2][1]*linear_b;
+ float out_linear_b = mat[0][2]*linear_r + mat[1][2]*linear_g + mat[2][2]*linear_b;
+
+ out_linear_r = clamp_float(out_linear_r);
+ out_linear_g = clamp_float(out_linear_g);
+ out_linear_b = clamp_float(out_linear_b);
+
+ /* we could round here... */
+ r = out_linear_r * 65535.;
+ g = out_linear_g * 65535.;
+ b = out_linear_b * 65535.;
+
+ *dest++ = transform->output_table_r->data[r];
+ *dest++ = transform->output_table_g->data[g];
+ *dest++ = transform->output_table_b->data[b];
+ }
+}
+
+static void qcms_transform_data_rgba_out_lut_precache(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length)
+{
+ int i;
+ float (*mat)[4] = transform->matrix;
+ for (i = 0; i < length; i++) {
+ unsigned char device_r = *src++;
+ unsigned char device_g = *src++;
+ unsigned char device_b = *src++;
+ unsigned char alpha = *src++;
+ uint16_t r, g, b;
+
+ float linear_r = transform->input_gamma_table_r[device_r];
+ float linear_g = transform->input_gamma_table_g[device_g];
+ float linear_b = transform->input_gamma_table_b[device_b];
+
+ float out_linear_r = mat[0][0]*linear_r + mat[1][0]*linear_g + mat[2][0]*linear_b;
+ float out_linear_g = mat[0][1]*linear_r + mat[1][1]*linear_g + mat[2][1]*linear_b;
+ float out_linear_b = mat[0][2]*linear_r + mat[1][2]*linear_g + mat[2][2]*linear_b;
+
+ out_linear_r = clamp_float(out_linear_r);
+ out_linear_g = clamp_float(out_linear_g);
+ out_linear_b = clamp_float(out_linear_b);
+
+ /* we could round here... */
+ r = out_linear_r * 65535.;
+ g = out_linear_g * 65535.;
+ b = out_linear_b * 65535.;
+
+ *dest++ = transform->output_table_r->data[r];
+ *dest++ = transform->output_table_g->data[g];
+ *dest++ = transform->output_table_b->data[b];
+ *dest++ = alpha;
+ }
+}
+
+static void qcms_transform_data_rgb_out_lut(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length)
+{
+ int i;
+ float (*mat)[4] = transform->matrix;
+ for (i = 0; i < length; i++) {
+ unsigned char device_r = *src++;
+ unsigned char device_g = *src++;
+ unsigned char device_b = *src++;
+ float out_device_r, out_device_g, out_device_b;
+
+ float linear_r = transform->input_gamma_table_r[device_r];
+ float linear_g = transform->input_gamma_table_g[device_g];
+ float linear_b = transform->input_gamma_table_b[device_b];
+
+ float out_linear_r = mat[0][0]*linear_r + mat[1][0]*linear_g + mat[2][0]*linear_b;
+ float out_linear_g = mat[0][1]*linear_r + mat[1][1]*linear_g + mat[2][1]*linear_b;
+ float out_linear_b = mat[0][2]*linear_r + mat[1][2]*linear_g + mat[2][2]*linear_b;
+
+ out_linear_r = clamp_float(out_linear_r);
+ out_linear_g = clamp_float(out_linear_g);
+ out_linear_b = clamp_float(out_linear_b);
+
+ out_device_r = lut_interp_linear(out_linear_r, transform->output_gamma_lut_r, transform->output_gamma_lut_r_length);
+ out_device_g = lut_interp_linear(out_linear_g, transform->output_gamma_lut_g, transform->output_gamma_lut_g_length);
+ out_device_b = lut_interp_linear(out_linear_b, transform->output_gamma_lut_b, transform->output_gamma_lut_b_length);
+
+ *dest++ = clamp_u8(out_device_r*255);
+ *dest++ = clamp_u8(out_device_g*255);
+ *dest++ = clamp_u8(out_device_b*255);
+ }
+}
+
+static void qcms_transform_data_rgba_out_lut(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length)
+{
+ int i;
+ float (*mat)[4] = transform->matrix;
+ for (i = 0; i < length; i++) {
+ unsigned char device_r = *src++;
+ unsigned char device_g = *src++;
+ unsigned char device_b = *src++;
+ unsigned char alpha = *src++;
+ float out_device_r, out_device_g, out_device_b;
+
+ float linear_r = transform->input_gamma_table_r[device_r];
+ float linear_g = transform->input_gamma_table_g[device_g];
+ float linear_b = transform->input_gamma_table_b[device_b];
+
+ float out_linear_r = mat[0][0]*linear_r + mat[1][0]*linear_g + mat[2][0]*linear_b;
+ float out_linear_g = mat[0][1]*linear_r + mat[1][1]*linear_g + mat[2][1]*linear_b;
+ float out_linear_b = mat[0][2]*linear_r + mat[1][2]*linear_g + mat[2][2]*linear_b;
+
+ out_linear_r = clamp_float(out_linear_r);
+ out_linear_g = clamp_float(out_linear_g);
+ out_linear_b = clamp_float(out_linear_b);
+
+ out_device_r = lut_interp_linear(out_linear_r, transform->output_gamma_lut_r, transform->output_gamma_lut_r_length);
+ out_device_g = lut_interp_linear(out_linear_g, transform->output_gamma_lut_g, transform->output_gamma_lut_g_length);
+ out_device_b = lut_interp_linear(out_linear_b, transform->output_gamma_lut_b, transform->output_gamma_lut_b_length);
+
+ *dest++ = clamp_u8(out_device_r*255);
+ *dest++ = clamp_u8(out_device_g*255);
+ *dest++ = clamp_u8(out_device_b*255);
+ *dest++ = alpha;
+ }
+}
+
+#if 0
+static void qcms_transform_data_rgb_out_linear(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length)
+{
+ int i;
+ float (*mat)[4] = transform->matrix;
+ for (i = 0; i < length; i++) {
+ unsigned char device_r = *src++;
+ unsigned char device_g = *src++;
+ unsigned char device_b = *src++;
+
+ float linear_r = transform->input_gamma_table_r[device_r];
+ float linear_g = transform->input_gamma_table_g[device_g];
+ float linear_b = transform->input_gamma_table_b[device_b];
+
+ float out_linear_r = mat[0][0]*linear_r + mat[1][0]*linear_g + mat[2][0]*linear_b;
+ float out_linear_g = mat[0][1]*linear_r + mat[1][1]*linear_g + mat[2][1]*linear_b;
+ float out_linear_b = mat[0][2]*linear_r + mat[1][2]*linear_g + mat[2][2]*linear_b;
+
+ *dest++ = clamp_u8(out_linear_r*255);
+ *dest++ = clamp_u8(out_linear_g*255);
+ *dest++ = clamp_u8(out_linear_b*255);
+ }
+}
+#endif
+
+static struct precache_output *precache_reference(struct precache_output *p)
+{
+ p->ref_count++;
+ return p;
+}
+
+static struct precache_output *precache_create()
+{
+ struct precache_output *p = malloc(sizeof(struct precache_output));
+ if (p)
+ p->ref_count = 1;
+ return p;
+}
+
+void precache_release(struct precache_output *p)
+{
+ if (--p->ref_count == 0) {
+ free(p);
+ }
+}
+
+#ifdef HAS_POSIX_MEMALIGN
+static qcms_transform *transform_alloc(void)
+{
+ qcms_transform *t;
+ if (!posix_memalign(&t, 16, sizeof(*t))) {
+ return t;
+ } else {
+ return NULL;
+ }
+}
+static void transform_free(qcms_transform *t)
+{
+ free(t);
+}
+#else
+static qcms_transform *transform_alloc(void)
+{
+ /* transform needs to be aligned on a 16byte boundrary */
+ char *original_block = calloc(sizeof(qcms_transform) + sizeof(void*) + 16, 1);
+ /* make room for a pointer to the block returned by calloc */
+ void *transform_start = original_block + sizeof(void*);
+ /* align transform_start */
+ qcms_transform *transform_aligned = (qcms_transform*)(((uintptr_t)transform_start + 15) & ~0xf);
+
+ /* store a pointer to the block returned by calloc so that we can free it later */
+ void **(original_block_ptr) = (void**)transform_aligned;
+ if (!original_block)
+ return NULL;
+ original_block_ptr--;
+ *original_block_ptr = original_block;
+
+ return transform_aligned;
+}
+static void transform_free(qcms_transform *t)
+{
+ /* get at the pointer to the unaligned block returned by calloc */
+ void **p = (void**)t;
+ p--;
+ free(*p);
+}
+#endif
+
+void qcms_transform_release(qcms_transform *t)
+{
+ /* ensure we only free the gamma tables once even if there are
+ * multiple references to the same data */
+
+ if (t->output_table_r)
+ precache_release(t->output_table_r);
+ if (t->output_table_g)
+ precache_release(t->output_table_g);
+ if (t->output_table_b)
+ precache_release(t->output_table_b);
+
+ free(t->input_gamma_table_r);
+ if (t->input_gamma_table_g != t->input_gamma_table_r)
+ free(t->input_gamma_table_g);
+ if (t->input_gamma_table_g != t->input_gamma_table_r &&
+ t->input_gamma_table_g != t->input_gamma_table_b)
+ free(t->input_gamma_table_b);
+
+ free(t->input_gamma_table_gray);
+
+ free(t->output_gamma_lut_r);
+ free(t->output_gamma_lut_g);
+ free(t->output_gamma_lut_b);
+
+ transform_free(t);
+}
+
+static void compute_precache_pow(uint8_t *output, float gamma)
+{
+ uint32_t v = 0;
+ for (v = 0; v <= 0xffff; v++) {
+ //XXX: don't do integer/float conversion... and round?
+ output[v] = 255. * pow(v/65535., gamma);
+ }
+}
+
+void compute_precache_lut(uint8_t *output, uint16_t *table, int length)
+{
+ uint32_t v = 0;
+ for (v = 0; v <= 0xffff; v++) {
+ //XXX: don't do integer/float conversion... round?
+ output[v] = lut_interp_linear16(v, table, length) >> 8;
+ }
+}
+
+void compute_precache_linear(uint8_t *output)
+{
+ uint32_t v = 0;
+ for (v = 0; v <= 0xffff; v++) {
+ //XXX: round?
+ output[v] = v >> 8;
+ }
+}
+
+qcms_bool compute_precache(struct curveType *trc, uint8_t *output)
+{
+ if (trc->count == 0) {
+ compute_precache_linear(output);
+ } else if (trc->count == 1) {
+ compute_precache_pow(output, 1./u8Fixed8Number_to_float(trc->data[0]));
+ } else {
+ uint16_t *inverted = invert_lut(trc->data, trc->count);
+ if (!inverted)
+ return false;
+ compute_precache_lut(output, inverted, trc->count);
+ free(inverted);
+ }
+ return true;
+}
+
+
+// Determine if we can build with SSE2 (this was partly copied from jmorecfg.h in
+// mozilla/jpeg)
+ // -------------------------------------------------------------------------
+#if defined(_M_IX86) && defined(_MSC_VER)
+#define HAS_CPUID
+/* Get us a CPUID function. Avoid clobbering EBX because sometimes it's the PIC
+ register - I'm not sure if that ever happens on windows, but cpuid isn't
+ on the critical path so we just preserve the register to be safe and to be
+ consistent with the non-windows version. */
+static void cpuid(uint32_t fxn, uint32_t *a, uint32_t *b, uint32_t *c, uint32_t *d) {
+ uint32_t a_, b_, c_, d_;
+ __asm {
+ xchg ebx, esi
+ mov eax, fxn
+ cpuid
+ mov a_, eax
+ mov b_, ebx
+ mov c_, ecx
+ mov d_, edx
+ xchg ebx, esi
+ }
+ *a = a_;
+ *b = b_;
+ *c = c_;
+ *d = d_;
+}
+#elif defined(__GNUC__) && defined(__i386__)
+#define HAS_CPUID
+/* Get us a CPUID function. We can't use ebx because it's the PIC register on
+ some platforms, so we use ESI instead and save ebx to avoid clobbering it. */
+static void cpuid(uint32_t fxn, uint32_t *a, uint32_t *b, uint32_t *c, uint32_t *d) {
+
+ uint32_t a_, b_, c_, d_;
+ __asm__ __volatile__ ("xchgl %%ebx, %%esi; cpuid; xchgl %%ebx, %%esi;"
+ : "=a" (a_), "=S" (b_), "=c" (c_), "=d" (d_) : "a" (fxn));
+ *a = a_;
+ *b = b_;
+ *c = c_;
+ *d = d_;
+}
+#endif
+
+// -------------------------Runtime SSE2 Detection-----------------------------
+
+#define SSE2_EDX_MASK (1UL << 26)
+static qcms_bool sse2_available(void)
+{
+#if defined(__x86_64__) || defined(_M_AMD64)
+ return true;
+#elif defined(HAS_CPUID)
+ static int has_sse2 = -1;
+ uint32_t a, b, c, d;
+ uint32_t function = 0x00000001;
+
+ if (has_sse2 == -1) {
+ has_sse2 = 0;
+ cpuid(function, &a, &b, &c, &d);
+ if (d & SSE2_EDX_MASK)
+ has_sse2 = 1;
+ else
+ has_sse2 = 0;
+ }
+
+ return has_sse2;
+#endif
+ return false;
+}
+
+
+void build_output_lut(struct curveType *trc,
+ uint16_t **output_gamma_lut, size_t *output_gamma_lut_length)
+{
+ if (trc->count == 0) {
+ *output_gamma_lut = build_linear_table(4096);
+ *output_gamma_lut_length = 4096;
+ } else if (trc->count == 1) {
+ float gamma = 1./u8Fixed8Number_to_float(trc->data[0]);
+ *output_gamma_lut = build_pow_table(gamma, 4096);
+ *output_gamma_lut_length = 4096;
+ } else {
+ *output_gamma_lut = invert_lut(trc->data, trc->count);
+ *output_gamma_lut_length = trc->count;
+ }
+
+}
+
+void qcms_profile_precache_output_transform(qcms_profile *profile)
+{
+ /* we only support precaching on rgb profiles */
+ if (profile->color_space != RGB_SIGNATURE)
+ return;
+
+ if (!profile->output_table_r) {
+ profile->output_table_r = precache_create();
+ if (profile->output_table_r &&
+ !compute_precache(profile->redTRC, profile->output_table_r->data)) {
+ precache_release(profile->output_table_r);
+ profile->output_table_r = NULL;
+ }
+ }
+ if (!profile->output_table_g) {
+ profile->output_table_g = precache_create();
+ if (profile->output_table_g &&
+ !compute_precache(profile->greenTRC, profile->output_table_g->data)) {
+ precache_release(profile->output_table_g);
+ profile->output_table_g = NULL;
+ }
+ }
+ if (!profile->output_table_b) {
+ profile->output_table_b = precache_create();
+ if (profile->output_table_b &&
+ !compute_precache(profile->blueTRC, profile->output_table_b->data)) {
+ precache_release(profile->output_table_g);
+ profile->output_table_g = NULL;
+ }
+ }
+}
+
+#define NO_MEM_TRANSFORM NULL
+
+qcms_transform* qcms_transform_create(
+ qcms_profile *in, qcms_data_type in_type,
+ qcms_profile* out, qcms_data_type out_type,
+ qcms_intent intent)
+{
+ bool precache = false;
+
+ qcms_transform *transform = transform_alloc();
+ if (!transform) {
+ return NULL;
+ }
+ if (out_type != QCMS_DATA_RGB_8 &&
+ out_type != QCMS_DATA_RGBA_8) {
+ assert(0 && "output type");
+ free(transform);
+ return NULL;
+ }
+
+ if (out->output_table_r &&
+ out->output_table_g &&
+ out->output_table_b) {
+ precache = true;
+ }
+
+ if (precache) {
+ transform->output_table_r = precache_reference(out->output_table_r);
+ transform->output_table_g = precache_reference(out->output_table_g);
+ transform->output_table_b = precache_reference(out->output_table_b);
+ } else {
+ build_output_lut(out->redTRC, &transform->output_gamma_lut_r, &transform->output_gamma_lut_r_length);
+ build_output_lut(out->greenTRC, &transform->output_gamma_lut_g, &transform->output_gamma_lut_g_length);
+ build_output_lut(out->blueTRC, &transform->output_gamma_lut_b, &transform->output_gamma_lut_b_length);
+ if (!transform->output_gamma_lut_r || !transform->output_gamma_lut_g || !transform->output_gamma_lut_b) {
+ qcms_transform_release(transform);
+ return NO_MEM_TRANSFORM;
+ }
+ }
+
+ if (in->color_space == RGB_SIGNATURE) {
+ struct matrix in_matrix, out_matrix, result;
+
+ if (in_type != QCMS_DATA_RGB_8 &&
+ in_type != QCMS_DATA_RGBA_8){
+ assert(0 && "input type");
+ free(transform);
+ return NULL;
+ }
+ if (precache) {
+#ifdef X86
+ if (sse2_available()) {
+ if (in_type == QCMS_DATA_RGB_8)
+ transform->transform_fn = qcms_transform_data_rgb_out_lut_sse;
+ else
+ transform->transform_fn = qcms_transform_data_rgba_out_lut_sse;
+
+ } else
+#endif
+ {
+ if (in_type == QCMS_DATA_RGB_8)
+ transform->transform_fn = qcms_transform_data_rgb_out_lut_precache;
+ else
+ transform->transform_fn = qcms_transform_data_rgba_out_lut_precache;
+ }
+ } else {
+ if (in_type == QCMS_DATA_RGB_8)
+ transform->transform_fn = qcms_transform_data_rgb_out_lut;
+ else
+ transform->transform_fn = qcms_transform_data_rgba_out_lut;
+ }
+
+ //XXX: avoid duplicating tables if we can
+ transform->input_gamma_table_r = build_input_gamma_table(in->redTRC);
+ transform->input_gamma_table_g = build_input_gamma_table(in->greenTRC);
+ transform->input_gamma_table_b = build_input_gamma_table(in->blueTRC);
+
+ if (!transform->input_gamma_table_r || !transform->input_gamma_table_g || !transform->input_gamma_table_b) {
+ qcms_transform_release(transform);
+ return NO_MEM_TRANSFORM;
+ }
+
+ /* build combined colorant matrix */
+ in_matrix = build_colorant_matrix(in);
+ out_matrix = build_colorant_matrix(out);
+ out_matrix = matrix_invert(out_matrix);
+ if (out_matrix.invalid) {
+ qcms_transform_release(transform);
+ return NULL;
+ }
+ result = matrix_multiply(out_matrix, in_matrix);
+
+ /* store the results in column major mode
+ * this makes doing the multiplication with sse easier */
+ transform->matrix[0][0] = result.m[0][0];
+ transform->matrix[1][0] = result.m[0][1];
+ transform->matrix[2][0] = result.m[0][2];
+ transform->matrix[0][1] = result.m[1][0];
+ transform->matrix[1][1] = result.m[1][1];
+ transform->matrix[2][1] = result.m[1][2];
+ transform->matrix[0][2] = result.m[2][0];
+ transform->matrix[1][2] = result.m[2][1];
+ transform->matrix[2][2] = result.m[2][2];
+
+ } else if (in->color_space == GRAY_SIGNATURE) {
+ if (in_type != QCMS_DATA_GRAY_8 &&
+ in_type != QCMS_DATA_GRAYA_8){
+ assert(0 && "input type");
+ free(transform);
+ return NULL;
+ }
+
+ transform->input_gamma_table_gray = build_input_gamma_table(in->grayTRC);
+ if (!transform->input_gamma_table_gray) {
+ qcms_transform_release(transform);
+ return NO_MEM_TRANSFORM;
+ }
+
+ if (precache) {
+ if (in_type == QCMS_DATA_GRAY_8) {
+ transform->transform_fn = qcms_transform_data_gray_out_precache;
+ } else {
+ transform->transform_fn = qcms_transform_data_graya_out_precache;
+ }
+ } else {
+ if (in_type == QCMS_DATA_GRAY_8) {
+ transform->transform_fn = qcms_transform_data_gray_out_lut;
+ } else {
+ transform->transform_fn = qcms_transform_data_graya_out_lut;
+ }
+ }
+ } else {
+ assert(0 && "unexpected colorspace");
+ }
+ return transform;
+}
+
+void qcms_transform_data(qcms_transform *transform, void *src, void *dest, size_t length)
+{
+ transform->transform_fn(transform, src, dest, length);
+}