diff options
author | Robert O'Callahan <robert@ocallahan.org> | 2010-05-11 13:58:10 -0400 |
---|---|---|
committer | Jeff Muizelaar <jmuizelaar@mozilla.com> | 2010-05-11 13:58:10 -0400 |
commit | 8302952dcff20a1d2de194152ace810c7056f994 (patch) | |
tree | 9fbff1e45dd7716c3acb3cb5a3c374c108352549 | |
parent | 1bda2334b32394a821e6286fbc76617e68da3895 (diff) |
quartz: Don't fallback to pixman for repeating radial gradients.
Figuring out where the outer circle should move to is tricky. I hope the
algebra in there is understandable.
This is a nice performance improvement, probably because we avoid painting the
gradient over the entire clipBox (which is usually the entire surface).
I tried to write reftests that compared a repeating radial gradient to a
non-repeating gradient with manually repeated stops, but it didn't work because
the rasterization was slightly different --- I'm not sure why.
This patch also forces us to use pixman for all degenerate cases where the
circles intersect. This at least makes us consistent across platforms.
From https://bugzilla.mozilla.org/show_bug.cgi?id=508227
-rw-r--r-- | src/cairo-quartz-surface.c | 203 |
1 files changed, 180 insertions, 23 deletions
diff --git a/src/cairo-quartz-surface.c b/src/cairo-quartz-surface.c index ff039cd5..5a5a791b 100644 --- a/src/cairo-quartz-surface.c +++ b/src/cairo-quartz-surface.c @@ -818,10 +818,10 @@ CreateGradientFunction (const cairo_gradient_pattern_t *gpat) } static CGFunctionRef -CreateRepeatingGradientFunction (cairo_quartz_surface_t *surface, - const cairo_gradient_pattern_t *gpat, - CGPoint *start, CGPoint *end, - CGAffineTransform matrix) +CreateRepeatingLinearGradientFunction (cairo_quartz_surface_t *surface, + const cairo_gradient_pattern_t *gpat, + CGPoint *start, CGPoint *end, + CGAffineTransform matrix) { cairo_pattern_t *pat; cairo_quartz_float_t input_value_range[2]; @@ -901,6 +901,146 @@ CreateRepeatingGradientFunction (cairo_quartz_surface_t *surface, &callbacks); } +static void +UpdateRadialParameterToIncludePoint(double *max_t, CGPoint *center, + double dr, double dx, double dy, + double x, double y) +{ + /* Compute a parameter t such that a circle centered at + (center->x + dx*t, center->y + dy*t) with radius dr*t contains the + point (x,y). + + Let px = x - center->x, py = y - center->y. + Parameter values for which t is on the circle are given by + (px - dx*t)^2 + (py - dy*t)^2 = (t*dr)^2 + + Solving for t using the quadratic formula, and simplifying, we get + numerator = dx*px + dy*py +- + sqrt( dr^2*(px^2 + py^2) - (dx*py - dy*px)^2 ) + denominator = dx^2 + dy^2 - dr^2 + t = numerator/denominator + + In CreateRepeatingRadialGradientFunction we know the outer circle + contains the inner circle. Therefore the distance between the circle + centers plus the radius of the inner circle is less than the radius of + the outer circle. (This is checked in _cairo_quartz_setup_radial_source.) + Therefore + dx^2 + dy^2 < dr^2 + So the denominator is negative and the larger solution for t is given by + numerator = dx*px + dy*py - + sqrt( dr^2*(px^2 + py^2) - (dx*py - dy*px)^2 ) + denominator = dx^2 + dy^2 - dr^2 + t = numerator/denominator + dx^2 + dy^2 < dr^2 also ensures that the operand of sqrt is positive. + */ + double px = x - center->x; + double py = y - center->y; + double dx_py_minus_dy_px = dx*py - dy*px; + double numerator = dx*px + dy*py - + sqrt (dr*dr*(px*px + py*py) - dx_py_minus_dy_px*dx_py_minus_dy_px); + double denominator = dx*dx + dy*dy - dr*dr; + double t = numerator/denominator; + + if (*max_t < t) { + *max_t = t; + } +} + +/* This must only be called when one of the circles properly contains the other */ +static CGFunctionRef +CreateRepeatingRadialGradientFunction (cairo_quartz_surface_t *surface, + const cairo_gradient_pattern_t *gpat, + CGPoint *start, double *start_radius, + CGPoint *end, double *end_radius) +{ + CGRect clip = CGContextGetClipBoundingBox (surface->cgContext); + CGAffineTransform transform; + cairo_pattern_t *pat; + float input_value_range[2]; + float output_value_ranges[8] = { 0.f, 1.f, 0.f, 1.f, 0.f, 1.f, 0.f, 1.f }; + CGFunctionCallbacks callbacks = { + 0, ComputeGradientValue, (CGFunctionReleaseInfoCallback) cairo_pattern_destroy + }; + CGPoint *inner; + double *inner_radius; + CGPoint *outer; + double *outer_radius; + /* minimum and maximum t-parameter values that will make our gradient + cover the clipBox */ + double t_min, t_max, t_temp; + /* outer minus inner */ + double dr, dx, dy; + + _cairo_quartz_cairo_matrix_to_quartz (&gpat->base.matrix, &transform); + /* clip is in cairo device coordinates; get it into cairo user space */ + clip = CGRectApplyAffineTransform (clip, transform); + + if (*start_radius < *end_radius) { + /* end circle contains start circle */ + inner = start; + outer = end; + inner_radius = start_radius; + outer_radius = end_radius; + } else { + /* start circle contains end circle */ + inner = end; + outer = start; + inner_radius = end_radius; + outer_radius = start_radius; + } + + dr = *outer_radius - *inner_radius; + dx = outer->x - inner->x; + dy = outer->y - inner->y; + + t_min = -(*inner_radius/dr); + inner->x += t_min*dx; + inner->y += t_min*dy; + *inner_radius = 0.; + + t_temp = 0.; + UpdateRadialParameterToIncludePoint(&t_temp, inner, dr, dx, dy, + clip.origin.x, clip.origin.y); + UpdateRadialParameterToIncludePoint(&t_temp, inner, dr, dx, dy, + clip.origin.x + clip.size.width, clip.origin.y); + UpdateRadialParameterToIncludePoint(&t_temp, inner, dr, dx, dy, + clip.origin.x + clip.size.width, clip.origin.y + clip.size.height); + UpdateRadialParameterToIncludePoint(&t_temp, inner, dr, dx, dy, + clip.origin.x, clip.origin.y + clip.size.height); + /* UpdateRadialParameterToIncludePoint assumes t=0 means radius 0. + But for the parameter values we use with Quartz, t_min means radius 0. + Also, add a small fudge factor to avoid rounding issues. Since the + circles are alway expanding and containing the earlier circles, this is + OK. */ + t_temp += 1e-6; + t_max = t_min + t_temp; + outer->x = inner->x + t_temp*dx; + outer->y = inner->y + t_temp*dy; + *outer_radius = t_temp*dr; + + /* set the input range for the function -- the function knows how to + map values outside of 0.0 .. 1.0 to that range for REPEAT/REFLECT. */ + if (*start_radius < *end_radius) { + input_value_range[0] = t_min; + input_value_range[1] = t_max; + } else { + input_value_range[0] = -t_max; + input_value_range[1] = -t_min; + } + + if (_cairo_pattern_create_copy (&pat, &gpat->base)) + /* quartz doesn't deal very well with malloc failing, so there's + * not much point in us trying either */ + return NULL; + + return CGFunctionCreate (pat, + 1, + input_value_range, + 4, + output_value_ranges, + &callbacks); +} + /* Obtain a CGImageRef from a #cairo_surface_t * */ typedef struct { @@ -1240,13 +1380,14 @@ _cairo_quartz_setup_linear_source (cairo_quartz_surface_t *surface, _cairo_fixed_to_double (lpat->p2.y)); if (abspat->extend == CAIRO_EXTEND_NONE || - abspat->extend == CAIRO_EXTEND_PAD) + abspat->extend == CAIRO_EXTEND_PAD) { gradFunc = CreateGradientFunction (&lpat->base); } else { - gradFunc = CreateRepeatingGradientFunction (surface, - &lpat->base, - &start, &end, surface->sourceTransform); + gradFunc = CreateRepeatingLinearGradientFunction (surface, + &lpat->base, + &start, &end, + surface->sourceTransform); } surface->sourceShading = CGShadingCreateAxial (rgb, @@ -1270,6 +1411,15 @@ _cairo_quartz_setup_radial_source (cairo_quartz_surface_t *surface, CGFunctionRef gradFunc; CGColorSpaceRef rgb; bool extend = abspat->extend == CAIRO_EXTEND_PAD; + double c1x = _cairo_fixed_to_double (rpat->c1.x); + double c1y = _cairo_fixed_to_double (rpat->c1.y); + double c2x = _cairo_fixed_to_double (rpat->c2.x); + double c2y = _cairo_fixed_to_double (rpat->c2.y); + double r1 = _cairo_fixed_to_double (rpat->r1); + double r2 = _cairo_fixed_to_double (rpat->r2); + double dx = c1x - c2x; + double dy = c1y - c2y; + double centerDistance = sqrt (dx*dx + dy*dy); if (rpat->base.n_stops == 0) { CGContextSetRGBStrokeColor (surface->cgContext, 0., 0., 0., 0.); @@ -1277,15 +1427,15 @@ _cairo_quartz_setup_radial_source (cairo_quartz_surface_t *surface, return DO_SOLID; } - if (abspat->extend == CAIRO_EXTEND_REPEAT || - abspat->extend == CAIRO_EXTEND_REFLECT) - { - /* I started trying to map these to Quartz, but it's much harder - * then the linear case (I think it would involve doing multiple - * Radial shadings). So, instead, let's just render an image - * for pixman to draw the shading into, and use that. + if (r2 <= centerDistance + r1 + 1e-6 && /* circle 2 doesn't contain circle 1 */ + r1 <= centerDistance + r2 + 1e-6) { /* circle 1 doesn't contain circle 2 */ + /* Quartz handles cases where neither circle contains the other very + * differently from pixman. + * Whatever the correct behaviour is, let's at least have only pixman's + * implementation to worry about. + * Note that this also catches the cases where r1 == r2. */ - return _cairo_quartz_setup_fallback_source (surface, &rpat->base.base); + return _cairo_quartz_setup_fallback_source (surface, abspat); } mat = abspat->matrix; @@ -1294,18 +1444,25 @@ _cairo_quartz_setup_radial_source (cairo_quartz_surface_t *surface, rgb = CGColorSpaceCreateDeviceRGB(); - start = CGPointMake (_cairo_fixed_to_double (rpat->c1.x), - _cairo_fixed_to_double (rpat->c1.y)); - end = CGPointMake (_cairo_fixed_to_double (rpat->c2.x), - _cairo_fixed_to_double (rpat->c2.y)); + start = CGPointMake (c1x, c1y); + end = CGPointMake (c2x, c2y); - gradFunc = CreateGradientFunction (&rpat->base); + if (abspat->extend == CAIRO_EXTEND_NONE || + abspat->extend == CAIRO_EXTEND_PAD) + { + gradFunc = CreateGradientFunction (&rpat->base); + } else { + gradFunc = CreateRepeatingRadialGradientFunction (surface, + &rpat->base, + &start, &r1, + &end, &r2); + } surface->sourceShading = CGShadingCreateRadial (rgb, start, - _cairo_fixed_to_double (rpat->r1), + r1, end, - _cairo_fixed_to_double (rpat->r2), + r2, gradFunc, extend, extend); |