diff options
Diffstat (limited to 'Documentation/nvdimm')
-rw-r--r-- | Documentation/nvdimm/btt.txt | 273 |
1 files changed, 273 insertions, 0 deletions
diff --git a/Documentation/nvdimm/btt.txt b/Documentation/nvdimm/btt.txt new file mode 100644 index 000000000000..95134d5ec4a0 --- /dev/null +++ b/Documentation/nvdimm/btt.txt @@ -0,0 +1,273 @@ +BTT - Block Translation Table +============================= + + +1. Introduction +--------------- + +Persistent memory based storage is able to perform IO at byte (or more +accurately, cache line) granularity. However, we often want to expose such +storage as traditional block devices. The block drivers for persistent memory +will do exactly this. However, they do not provide any atomicity guarantees. +Traditional SSDs typically provide protection against torn sectors in hardware, +using stored energy in capacitors to complete in-flight block writes, or perhaps +in firmware. We don't have this luxury with persistent memory - if a write is in +progress, and we experience a power failure, the block will contain a mix of old +and new data. Applications may not be prepared to handle such a scenario. + +The Block Translation Table (BTT) provides atomic sector update semantics for +persistent memory devices, so that applications that rely on sector writes not +being torn can continue to do so. The BTT manifests itself as a stacked block +device, and reserves a portion of the underlying storage for its metadata. At +the heart of it, is an indirection table that re-maps all the blocks on the +volume. It can be thought of as an extremely simple file system that only +provides atomic sector updates. + + +2. Static Layout +---------------- + +The underlying storage on which a BTT can be laid out is not limited in any way. +The BTT, however, splits the available space into chunks of up to 512 GiB, +called "Arenas". + +Each arena follows the same layout for its metadata, and all references in an +arena are internal to it (with the exception of one field that points to the +next arena). The following depicts the "On-disk" metadata layout: + + + Backing Store +-------> Arena ++---------------+ | +------------------+ +| | | | Arena info block | +| Arena 0 +---+ | 4K | +| 512G | +------------------+ +| | | | ++---------------+ | | +| | | | +| Arena 1 | | Data Blocks | +| 512G | | | +| | | | ++---------------+ | | +| . | | | +| . | | | +| . | | | +| | | | +| | | | ++---------------+ +------------------+ + | | + | BTT Map | + | | + | | + +------------------+ + | | + | BTT Flog | + | | + +------------------+ + | Info block copy | + | 4K | + +------------------+ + + +3. Theory of Operation +---------------------- + + +a. The BTT Map +-------------- + +The map is a simple lookup/indirection table that maps an LBA to an internal +block. Each map entry is 32 bits. The two most significant bits are special +flags, and the remaining form the internal block number. + +Bit Description +31 : TRIM flag - marks if the block was trimmed or discarded +30 : ERROR flag - marks an error block. Cleared on write. +29 - 0 : Mappings to internal 'postmap' blocks + + +Some of the terminology that will be subsequently used: + +External LBA : LBA as made visible to upper layers. +ABA : Arena Block Address - Block offset/number within an arena +Premap ABA : The block offset into an arena, which was decided upon by range + checking the External LBA +Postmap ABA : The block number in the "Data Blocks" area obtained after + indirection from the map +nfree : The number of free blocks that are maintained at any given time. + This is the number of concurrent writes that can happen to the + arena. + + +For example, after adding a BTT, we surface a disk of 1024G. We get a read for +the external LBA at 768G. This falls into the second arena, and of the 512G +worth of blocks that this arena contributes, this block is at 256G. Thus, the +premap ABA is 256G. We now refer to the map, and find out the mapping for block +'X' (256G) points to block 'Y', say '64'. Thus the postmap ABA is 64. + + +b. The BTT Flog +--------------- + +The BTT provides sector atomicity by making every write an "allocating write", +i.e. Every write goes to a "free" block. A running list of free blocks is +maintained in the form of the BTT flog. 'Flog' is a combination of the words +"free list" and "log". The flog contains 'nfree' entries, and an entry contains: + +lba : The premap ABA that is being written to +old_map : The old postmap ABA - after 'this' write completes, this will be a + free block. +new_map : The new postmap ABA. The map will up updated to reflect this + lba->postmap_aba mapping, but we log it here in case we have to + recover. +seq : Sequence number to mark which of the 2 sections of this flog entry is + valid/newest. It cycles between 01->10->11->01 (binary) under normal + operation, with 00 indicating an uninitialized state. +lba' : alternate lba entry +old_map': alternate old postmap entry +new_map': alternate new postmap entry +seq' : alternate sequence number. + +Each of the above fields is 32-bit, making one entry 16 bytes. Flog updates are +done such that for any entry being written, it: +a. overwrites the 'old' section in the entry based on sequence numbers +b. writes the new entry such that the sequence number is written last. + + +c. The concept of lanes +----------------------- + +While 'nfree' describes the number of concurrent IOs an arena can process +concurrently, 'nlanes' is the number of IOs the BTT device as a whole can +process. + nlanes = min(nfree, num_cpus) +A lane number is obtained at the start of any IO, and is used for indexing into +all the on-disk and in-memory data structures for the duration of the IO. It is +protected by a spinlock. + + +d. In-memory data structure: Read Tracking Table (RTT) +------------------------------------------------------ + +Consider a case where we have two threads, one doing reads and the other, +writes. We can hit a condition where the writer thread grabs a free block to do +a new IO, but the (slow) reader thread is still reading from it. In other words, +the reader consulted a map entry, and started reading the corresponding block. A +writer started writing to the same external LBA, and finished the write updating +the map for that external LBA to point to its new postmap ABA. At this point the +internal, postmap block that the reader is (still) reading has been inserted +into the list of free blocks. If another write comes in for the same LBA, it can +grab this free block, and start writing to it, causing the reader to read +incorrect data. To prevent this, we introduce the RTT. + +The RTT is a simple, per arena table with 'nfree' entries. Every reader inserts +into rtt[lane_number], the postmap ABA it is reading, and clears it after the +read is complete. Every writer thread, after grabbing a free block, checks the +RTT for its presence. If the postmap free block is in the RTT, it waits till the +reader clears the RTT entry, and only then starts writing to it. + + +e. In-memory data structure: map locks +-------------------------------------- + +Consider a case where two writer threads are writing to the same LBA. There can +be a race in the following sequence of steps: + +free[lane] = map[premap_aba] +map[premap_aba] = postmap_aba + +Both threads can update their respective free[lane] with the same old, freed +postmap_aba. This has made the layout inconsistent by losing a free entry, and +at the same time, duplicating another free entry for two lanes. + +To solve this, we could have a single map lock (per arena) that has to be taken +before performing the above sequence, but we feel that could be too contentious. +Instead we use an array of (nfree) map_locks that is indexed by +(premap_aba modulo nfree). + + +f. Reconstruction from the Flog +------------------------------- + +On startup, we analyze the BTT flog to create our list of free blocks. We walk +through all the entries, and for each lane, of the set of two possible +'sections', we always look at the most recent one only (based on the sequence +number). The reconstruction rules/steps are simple: +- Read map[log_entry.lba]. +- If log_entry.new matches the map entry, then log_entry.old is free. +- If log_entry.new does not match the map entry, then log_entry.new is free. + (This case can only be caused by power-fails/unsafe shutdowns) + + +g. Summarizing - Read and Write flows +------------------------------------- + +Read: + +1. Convert external LBA to arena number + pre-map ABA +2. Get a lane (and take lane_lock) +3. Read map to get the entry for this pre-map ABA +4. Enter post-map ABA into RTT[lane] +5. If TRIM flag set in map, return zeroes, and end IO (go to step 8) +6. If ERROR flag set in map, end IO with EIO (go to step 8) +7. Read data from this block +8. Remove post-map ABA entry from RTT[lane] +9. Release lane (and lane_lock) + +Write: + +1. Convert external LBA to Arena number + pre-map ABA +2. Get a lane (and take lane_lock) +3. Use lane to index into in-memory free list and obtain a new block, next flog + index, next sequence number +4. Scan the RTT to check if free block is present, and spin/wait if it is. +5. Write data to this free block +6. Read map to get the existing post-map ABA entry for this pre-map ABA +7. Write flog entry: [premap_aba / old postmap_aba / new postmap_aba / seq_num] +8. Write new post-map ABA into map. +9. Write old post-map entry into the free list +10. Calculate next sequence number and write into the free list entry +11. Release lane (and lane_lock) + + +4. Error Handling +================= + +An arena would be in an error state if any of the metadata is corrupted +irrecoverably, either due to a bug or a media error. The following conditions +indicate an error: +- Info block checksum does not match (and recovering from the copy also fails) +- All internal available blocks are not uniquely and entirely addressed by the + sum of mapped blocks and free blocks (from the BTT flog). +- Rebuilding free list from the flog reveals missing/duplicate/impossible + entries +- A map entry is out of bounds + +If any of these error conditions are encountered, the arena is put into a read +only state using a flag in the info block. + + +5. In-kernel usage +================== + +Any block driver that supports byte granularity IO to the storage may register +with the BTT. It will have to provide the rw_bytes interface in its +block_device_operations struct: + + int (*rw_bytes)(struct gendisk *, void *, size_t, off_t, int rw); + +It may register with the BTT after it adds its own gendisk, using btt_init: + + struct btt *btt_init(struct gendisk *disk, unsigned long long rawsize, + u32 lbasize, u8 uuid[], int maxlane); + +note that maxlane is the maximum amount of concurrency the driver wishes to +allow the BTT to use. + +The BTT 'disk' appears as a stacked block device that grabs the underlying block +device in the O_EXCL mode. + +When the driver wishes to remove the backing disk, it should similarly call +btt_fini using the same struct btt* handle that was provided to it by btt_init. + + void btt_fini(struct btt *btt); + |