/* * Copyright © 2018 Valve Corporation * * SPDX-License-Identifier: MIT */ #include "aco_builder.h" #include "aco_ir.h" #include "util/half_float.h" #include "util/memstream.h" #include #include #include namespace aco { namespace { /** * The optimizer works in 4 phases: * (1) The first pass collects information for each ssa-def, * propagates reg->reg operands of the same type, inline constants * and neg/abs input modifiers. * (2) The second pass combines instructions like mad, omod, clamp and * propagates sgpr's on VALU instructions. * This pass depends on information collected in the first pass. * (3) The third pass goes backwards, and selects instructions, * i.e. decides if a mad instruction is profitable and eliminates dead code. * (4) The fourth pass cleans up the sequence: literals get applied and dead * instructions are removed from the sequence. */ struct mad_info { aco_ptr add_instr; uint32_t mul_temp_id; uint16_t literal_mask; uint16_t fp16_mask; mad_info(aco_ptr instr, uint32_t id) : add_instr(std::move(instr)), mul_temp_id(id), literal_mask(0), fp16_mask(0) {} }; enum Label { label_vec = 1 << 0, label_constant_32bit = 1 << 1, /* label_{abs,neg,mul,omod2,omod4,omod5,clamp} are used for both 16 and * 32-bit operations but this shouldn't cause any issues because we don't * look through any conversions */ label_abs = 1 << 2, label_neg = 1 << 3, label_mul = 1 << 4, label_temp = 1 << 5, label_literal = 1 << 6, label_mad = 1 << 7, label_omod2 = 1 << 8, label_omod4 = 1 << 9, label_omod5 = 1 << 10, label_clamp = 1 << 12, label_b2f = 1 << 16, label_add_sub = 1 << 17, label_bitwise = 1 << 18, label_minmax = 1 << 19, label_vopc = 1 << 20, label_uniform_bool = 1 << 21, label_constant_64bit = 1 << 22, label_uniform_bitwise = 1 << 23, label_scc_invert = 1 << 24, label_scc_needed = 1 << 26, label_b2i = 1 << 27, label_fcanonicalize = 1 << 28, label_constant_16bit = 1 << 29, label_usedef = 1 << 30, /* generic label */ label_vop3p = 1ull << 31, /* 1ull to prevent sign extension */ label_canonicalized = 1ull << 32, label_extract = 1ull << 33, label_insert = 1ull << 34, label_dpp16 = 1ull << 35, label_dpp8 = 1ull << 36, label_f2f32 = 1ull << 37, label_f2f16 = 1ull << 38, label_split = 1ull << 39, }; static constexpr uint64_t instr_usedef_labels = label_vec | label_mul | label_add_sub | label_vop3p | label_bitwise | label_uniform_bitwise | label_minmax | label_vopc | label_usedef | label_extract | label_dpp16 | label_dpp8 | label_f2f32; static constexpr uint64_t instr_mod_labels = label_omod2 | label_omod4 | label_omod5 | label_clamp | label_insert | label_f2f16; static constexpr uint64_t instr_labels = instr_usedef_labels | instr_mod_labels | label_split; static constexpr uint64_t temp_labels = label_abs | label_neg | label_temp | label_b2f | label_uniform_bool | label_scc_invert | label_b2i | label_fcanonicalize; static constexpr uint32_t val_labels = label_constant_32bit | label_constant_64bit | label_constant_16bit | label_literal | label_mad; static_assert((instr_labels & temp_labels) == 0, "labels cannot intersect"); static_assert((instr_labels & val_labels) == 0, "labels cannot intersect"); static_assert((temp_labels & val_labels) == 0, "labels cannot intersect"); struct ssa_info { uint64_t label; union { uint32_t val; Temp temp; Instruction* instr; }; ssa_info() : label(0) {} void add_label(Label new_label) { /* Since all the instr_usedef_labels use instr for the same thing * (indicating the defining instruction), there is usually no need to * clear any other instr labels. */ if (new_label & instr_usedef_labels) label &= ~(instr_mod_labels | temp_labels | val_labels); /* instr, temp and val alias */ if (new_label & instr_mod_labels) { label &= ~instr_labels; label &= ~(temp_labels | val_labels); /* instr, temp and val alias */ } if (new_label & temp_labels) { label &= ~temp_labels; label &= ~(instr_labels | val_labels); /* instr, temp and val alias */ } uint32_t const_labels = label_literal | label_constant_32bit | label_constant_64bit | label_constant_16bit; if (new_label & const_labels) { label &= ~val_labels | const_labels; label &= ~(instr_labels | temp_labels); /* instr, temp and val alias */ } else if (new_label & val_labels) { label &= ~val_labels; label &= ~(instr_labels | temp_labels); /* instr, temp and val alias */ } label |= new_label; } void set_vec(Instruction* vec) { add_label(label_vec); instr = vec; } bool is_vec() { return label & label_vec; } void set_constant(amd_gfx_level gfx_level, uint64_t constant) { Operand op16 = Operand::c16(constant); Operand op32 = Operand::get_const(gfx_level, constant, 4); add_label(label_literal); val = constant; /* check that no upper bits are lost in case of packed 16bit constants */ if (gfx_level >= GFX8 && !op16.isLiteral() && op16.constantValue16(true) == ((constant >> 16) & 0xffff)) add_label(label_constant_16bit); if (!op32.isLiteral()) add_label(label_constant_32bit); if (Operand::is_constant_representable(constant, 8)) add_label(label_constant_64bit); if (label & label_constant_64bit) { val = Operand::c64(constant).constantValue(); if (val != constant) label &= ~(label_literal | label_constant_16bit | label_constant_32bit); } } bool is_constant(unsigned bits) { switch (bits) { case 8: return label & label_literal; case 16: return label & label_constant_16bit; case 32: return label & label_constant_32bit; case 64: return label & label_constant_64bit; } return false; } bool is_literal(unsigned bits) { bool is_lit = label & label_literal; switch (bits) { case 8: return false; case 16: return is_lit && ~(label & label_constant_16bit); case 32: return is_lit && ~(label & label_constant_32bit); case 64: return false; } return false; } bool is_constant_or_literal(unsigned bits) { if (bits == 64) return label & label_constant_64bit; else return label & label_literal; } void set_abs(Temp abs_temp) { add_label(label_abs); temp = abs_temp; } bool is_abs() { return label & label_abs; } void set_neg(Temp neg_temp) { add_label(label_neg); temp = neg_temp; } bool is_neg() { return label & label_neg; } void set_neg_abs(Temp neg_abs_temp) { add_label((Label)((uint32_t)label_abs | (uint32_t)label_neg)); temp = neg_abs_temp; } void set_mul(Instruction* mul) { add_label(label_mul); instr = mul; } bool is_mul() { return label & label_mul; } void set_temp(Temp tmp) { add_label(label_temp); temp = tmp; } bool is_temp() { return label & label_temp; } void set_mad(uint32_t mad_info_idx) { add_label(label_mad); val = mad_info_idx; } bool is_mad() { return label & label_mad; } void set_omod2(Instruction* mul) { if (label & temp_labels) return; add_label(label_omod2); instr = mul; } bool is_omod2() { return label & label_omod2; } void set_omod4(Instruction* mul) { if (label & temp_labels) return; add_label(label_omod4); instr = mul; } bool is_omod4() { return label & label_omod4; } void set_omod5(Instruction* mul) { if (label & temp_labels) return; add_label(label_omod5); instr = mul; } bool is_omod5() { return label & label_omod5; } void set_clamp(Instruction* med3) { if (label & temp_labels) return; add_label(label_clamp); instr = med3; } bool is_clamp() { return label & label_clamp; } void set_f2f16(Instruction* conv) { if (label & temp_labels) return; add_label(label_f2f16); instr = conv; } bool is_f2f16() { return label & label_f2f16; } void set_b2f(Temp b2f_val) { add_label(label_b2f); temp = b2f_val; } bool is_b2f() { return label & label_b2f; } void set_add_sub(Instruction* add_sub_instr) { add_label(label_add_sub); instr = add_sub_instr; } bool is_add_sub() { return label & label_add_sub; } void set_bitwise(Instruction* bitwise_instr) { add_label(label_bitwise); instr = bitwise_instr; } bool is_bitwise() { return label & label_bitwise; } void set_uniform_bitwise() { add_label(label_uniform_bitwise); } bool is_uniform_bitwise() { return label & label_uniform_bitwise; } void set_minmax(Instruction* minmax_instr) { add_label(label_minmax); instr = minmax_instr; } bool is_minmax() { return label & label_minmax; } void set_vopc(Instruction* vopc_instr) { add_label(label_vopc); instr = vopc_instr; } bool is_vopc() { return label & label_vopc; } void set_scc_needed() { add_label(label_scc_needed); } bool is_scc_needed() { return label & label_scc_needed; } void set_scc_invert(Temp scc_inv) { add_label(label_scc_invert); temp = scc_inv; } bool is_scc_invert() { return label & label_scc_invert; } void set_uniform_bool(Temp uniform_bool) { add_label(label_uniform_bool); temp = uniform_bool; } bool is_uniform_bool() { return label & label_uniform_bool; } void set_b2i(Temp b2i_val) { add_label(label_b2i); temp = b2i_val; } bool is_b2i() { return label & label_b2i; } void set_usedef(Instruction* label_instr) { add_label(label_usedef); instr = label_instr; } bool is_usedef() { return label & label_usedef; } void set_vop3p(Instruction* vop3p_instr) { add_label(label_vop3p); instr = vop3p_instr; } bool is_vop3p() { return label & label_vop3p; } void set_fcanonicalize(Temp tmp) { add_label(label_fcanonicalize); temp = tmp; } bool is_fcanonicalize() { return label & label_fcanonicalize; } void set_canonicalized() { add_label(label_canonicalized); } bool is_canonicalized() { return label & label_canonicalized; } void set_f2f32(Instruction* cvt) { add_label(label_f2f32); instr = cvt; } bool is_f2f32() { return label & label_f2f32; } void set_extract(Instruction* extract) { add_label(label_extract); instr = extract; } bool is_extract() { return label & label_extract; } void set_insert(Instruction* insert) { if (label & temp_labels) return; add_label(label_insert); instr = insert; } bool is_insert() { return label & label_insert; } void set_dpp16(Instruction* mov) { add_label(label_dpp16); instr = mov; } void set_dpp8(Instruction* mov) { add_label(label_dpp8); instr = mov; } bool is_dpp() { return label & (label_dpp16 | label_dpp8); } bool is_dpp16() { return label & label_dpp16; } bool is_dpp8() { return label & label_dpp8; } void set_split(Instruction* split) { add_label(label_split); instr = split; } bool is_split() { return label & label_split; } }; struct opt_ctx { Program* program; float_mode fp_mode; std::vector> instructions; std::vector info; std::pair last_literal; std::vector mad_infos; std::vector uses; }; bool can_use_VOP3(opt_ctx& ctx, const aco_ptr& instr) { if (instr->isVOP3()) return true; if (instr->isVOP3P()) return false; if (instr->operands.size() && instr->operands[0].isLiteral() && ctx.program->gfx_level < GFX10) return false; if (instr->isSDWA()) return false; if (instr->isDPP() && ctx.program->gfx_level < GFX11) return false; return instr->opcode != aco_opcode::v_madmk_f32 && instr->opcode != aco_opcode::v_madak_f32 && instr->opcode != aco_opcode::v_madmk_f16 && instr->opcode != aco_opcode::v_madak_f16 && instr->opcode != aco_opcode::v_fmamk_f32 && instr->opcode != aco_opcode::v_fmaak_f32 && instr->opcode != aco_opcode::v_fmamk_f16 && instr->opcode != aco_opcode::v_fmaak_f16 && instr->opcode != aco_opcode::v_permlane64_b32 && instr->opcode != aco_opcode::v_readlane_b32 && instr->opcode != aco_opcode::v_writelane_b32 && instr->opcode != aco_opcode::v_readfirstlane_b32; } bool pseudo_propagate_temp(opt_ctx& ctx, aco_ptr& instr, Temp temp, unsigned index) { if (instr->definitions.empty()) return false; const bool vgpr = instr->opcode == aco_opcode::p_as_uniform || std::all_of(instr->definitions.begin(), instr->definitions.end(), [](const Definition& def) { return def.regClass().type() == RegType::vgpr; }); /* don't propagate VGPRs into SGPR instructions */ if (temp.type() == RegType::vgpr && !vgpr) return false; bool can_accept_sgpr = ctx.program->gfx_level >= GFX9 || std::none_of(instr->definitions.begin(), instr->definitions.end(), [](const Definition& def) { return def.regClass().is_subdword(); }); switch (instr->opcode) { case aco_opcode::p_phi: case aco_opcode::p_linear_phi: case aco_opcode::p_parallelcopy: case aco_opcode::p_create_vector: case aco_opcode::p_start_linear_vgpr: if (temp.bytes() != instr->operands[index].bytes()) return false; break; case aco_opcode::p_extract_vector: case aco_opcode::p_extract: if (temp.type() == RegType::sgpr && !can_accept_sgpr) return false; break; case aco_opcode::p_split_vector: { if (temp.type() == RegType::sgpr && !can_accept_sgpr) return false; /* don't increase the vector size */ if (temp.bytes() > instr->operands[index].bytes()) return false; /* We can decrease the vector size as smaller temporaries are only * propagated by p_as_uniform instructions. * If this propagation leads to invalid IR or hits the assertion below, * it means that some undefined bytes within a dword are begin accessed * and a bug in instruction_selection is likely. */ int decrease = instr->operands[index].bytes() - temp.bytes(); while (decrease > 0) { decrease -= instr->definitions.back().bytes(); instr->definitions.pop_back(); } assert(decrease == 0); break; } case aco_opcode::p_as_uniform: if (temp.regClass() == instr->definitions[0].regClass()) instr->opcode = aco_opcode::p_parallelcopy; break; default: return false; } instr->operands[index].setTemp(temp); return true; } /* This expects the DPP modifier to be removed. */ bool can_apply_sgprs(opt_ctx& ctx, aco_ptr& instr) { assert(instr->isVALU()); if (instr->isSDWA() && ctx.program->gfx_level < GFX9) return false; return instr->opcode != aco_opcode::v_readfirstlane_b32 && instr->opcode != aco_opcode::v_readlane_b32 && instr->opcode != aco_opcode::v_readlane_b32_e64 && instr->opcode != aco_opcode::v_writelane_b32 && instr->opcode != aco_opcode::v_writelane_b32_e64 && instr->opcode != aco_opcode::v_permlane16_b32 && instr->opcode != aco_opcode::v_permlanex16_b32 && instr->opcode != aco_opcode::v_permlane64_b32 && instr->opcode != aco_opcode::v_interp_p1_f32 && instr->opcode != aco_opcode::v_interp_p2_f32 && instr->opcode != aco_opcode::v_interp_mov_f32 && instr->opcode != aco_opcode::v_interp_p1ll_f16 && instr->opcode != aco_opcode::v_interp_p1lv_f16 && instr->opcode != aco_opcode::v_interp_p2_legacy_f16 && instr->opcode != aco_opcode::v_interp_p2_f16 && instr->opcode != aco_opcode::v_interp_p2_hi_f16 && instr->opcode != aco_opcode::v_interp_p10_f32_inreg && instr->opcode != aco_opcode::v_interp_p2_f32_inreg && instr->opcode != aco_opcode::v_interp_p10_f16_f32_inreg && instr->opcode != aco_opcode::v_interp_p2_f16_f32_inreg && instr->opcode != aco_opcode::v_interp_p10_rtz_f16_f32_inreg && instr->opcode != aco_opcode::v_interp_p2_rtz_f16_f32_inreg && instr->opcode != aco_opcode::v_wmma_f32_16x16x16_f16 && instr->opcode != aco_opcode::v_wmma_f32_16x16x16_bf16 && instr->opcode != aco_opcode::v_wmma_f16_16x16x16_f16 && instr->opcode != aco_opcode::v_wmma_bf16_16x16x16_bf16 && instr->opcode != aco_opcode::v_wmma_i32_16x16x16_iu8 && instr->opcode != aco_opcode::v_wmma_i32_16x16x16_iu4; } /* only covers special cases */ bool alu_can_accept_constant(const aco_ptr& instr, unsigned operand) { /* Fixed operands can't accept constants because we need them * to be in their fixed register. */ assert(instr->operands.size() > operand); if (instr->operands[operand].isFixed()) return false; /* SOPP instructions can't use constants. */ if (instr->isSOPP()) return false; switch (instr->opcode) { case aco_opcode::s_fmac_f16: case aco_opcode::s_fmac_f32: case aco_opcode::v_mac_f32: case aco_opcode::v_writelane_b32: case aco_opcode::v_writelane_b32_e64: case aco_opcode::v_cndmask_b32: return operand != 2; case aco_opcode::s_addk_i32: case aco_opcode::s_mulk_i32: case aco_opcode::p_extract_vector: case aco_opcode::p_split_vector: case aco_opcode::v_readlane_b32: case aco_opcode::v_readlane_b32_e64: case aco_opcode::v_readfirstlane_b32: case aco_opcode::p_extract: case aco_opcode::p_insert: return operand != 0; case aco_opcode::p_bpermute_readlane: case aco_opcode::p_bpermute_shared_vgpr: case aco_opcode::p_bpermute_permlane: case aco_opcode::p_interp_gfx11: case aco_opcode::p_dual_src_export_gfx11: case aco_opcode::v_interp_p1_f32: case aco_opcode::v_interp_p2_f32: case aco_opcode::v_interp_mov_f32: case aco_opcode::v_interp_p1ll_f16: case aco_opcode::v_interp_p1lv_f16: case aco_opcode::v_interp_p2_legacy_f16: case aco_opcode::v_interp_p10_f32_inreg: case aco_opcode::v_interp_p2_f32_inreg: case aco_opcode::v_interp_p10_f16_f32_inreg: case aco_opcode::v_interp_p2_f16_f32_inreg: case aco_opcode::v_interp_p10_rtz_f16_f32_inreg: case aco_opcode::v_interp_p2_rtz_f16_f32_inreg: case aco_opcode::v_wmma_f32_16x16x16_f16: case aco_opcode::v_wmma_f32_16x16x16_bf16: case aco_opcode::v_wmma_f16_16x16x16_f16: case aco_opcode::v_wmma_bf16_16x16x16_bf16: case aco_opcode::v_wmma_i32_16x16x16_iu8: case aco_opcode::v_wmma_i32_16x16x16_iu4: return false; default: return true; } } bool valu_can_accept_vgpr(aco_ptr& instr, unsigned operand) { if (instr->opcode == aco_opcode::v_writelane_b32 || instr->opcode == aco_opcode::v_writelane_b32_e64) return operand == 2; if (instr->opcode == aco_opcode::v_permlane16_b32 || instr->opcode == aco_opcode::v_permlanex16_b32 || instr->opcode == aco_opcode::v_readlane_b32 || instr->opcode == aco_opcode::v_readlane_b32_e64) return operand == 0; return instr_info.classes[(int)instr->opcode] != instr_class::valu_pseudo_scalar_trans; } /* check constant bus and literal limitations */ bool check_vop3_operands(opt_ctx& ctx, unsigned num_operands, Operand* operands) { int limit = ctx.program->gfx_level >= GFX10 ? 2 : 1; Operand literal32(s1); Operand literal64(s2); unsigned num_sgprs = 0; unsigned sgpr[] = {0, 0}; for (unsigned i = 0; i < num_operands; i++) { Operand op = operands[i]; if (op.hasRegClass() && op.regClass().type() == RegType::sgpr) { /* two reads of the same SGPR count as 1 to the limit */ if (op.tempId() != sgpr[0] && op.tempId() != sgpr[1]) { if (num_sgprs < 2) sgpr[num_sgprs++] = op.tempId(); limit--; if (limit < 0) return false; } } else if (op.isLiteral()) { if (ctx.program->gfx_level < GFX10) return false; if (!literal32.isUndefined() && literal32.constantValue() != op.constantValue()) return false; if (!literal64.isUndefined() && literal64.constantValue() != op.constantValue()) return false; /* Any number of 32-bit literals counts as only 1 to the limit. Same * (but separately) for 64-bit literals. */ if (op.size() == 1 && literal32.isUndefined()) { limit--; literal32 = op; } else if (op.size() == 2 && literal64.isUndefined()) { limit--; literal64 = op; } if (limit < 0) return false; } } return true; } bool parse_base_offset(opt_ctx& ctx, Instruction* instr, unsigned op_index, Temp* base, uint32_t* offset, bool prevent_overflow) { Operand op = instr->operands[op_index]; if (!op.isTemp()) return false; Temp tmp = op.getTemp(); if (!ctx.info[tmp.id()].is_add_sub()) return false; Instruction* add_instr = ctx.info[tmp.id()].instr; unsigned mask = 0x3; bool is_sub = false; switch (add_instr->opcode) { case aco_opcode::v_add_u32: case aco_opcode::v_add_co_u32: case aco_opcode::v_add_co_u32_e64: case aco_opcode::s_add_i32: case aco_opcode::s_add_u32: break; case aco_opcode::v_sub_u32: case aco_opcode::v_sub_i32: case aco_opcode::v_sub_co_u32: case aco_opcode::v_sub_co_u32_e64: case aco_opcode::s_sub_u32: case aco_opcode::s_sub_i32: mask = 0x2; is_sub = true; break; case aco_opcode::v_subrev_u32: case aco_opcode::v_subrev_co_u32: case aco_opcode::v_subrev_co_u32_e64: mask = 0x1; is_sub = true; break; default: return false; } if (prevent_overflow && !add_instr->definitions[0].isNUW()) return false; if (add_instr->usesModifiers()) return false; u_foreach_bit (i, mask) { if (add_instr->operands[i].isConstant()) { *offset = add_instr->operands[i].constantValue() * (uint32_t)(is_sub ? -1 : 1); } else if (add_instr->operands[i].isTemp() && ctx.info[add_instr->operands[i].tempId()].is_constant_or_literal(32)) { *offset = ctx.info[add_instr->operands[i].tempId()].val * (uint32_t)(is_sub ? -1 : 1); } else { continue; } if (!add_instr->operands[!i].isTemp()) continue; uint32_t offset2 = 0; if (parse_base_offset(ctx, add_instr, !i, base, &offset2, prevent_overflow)) { *offset += offset2; } else { *base = add_instr->operands[!i].getTemp(); } return true; } return false; } void skip_smem_offset_align(opt_ctx& ctx, SMEM_instruction* smem) { bool soe = smem->operands.size() >= (!smem->definitions.empty() ? 3 : 4); if (soe && !smem->operands[1].isConstant()) return; /* We don't need to check the constant offset because the address seems to be calculated with * (offset&-4 + const_offset&-4), not (offset+const_offset)&-4. */ Operand& op = smem->operands[soe ? smem->operands.size() - 1 : 1]; if (!op.isTemp() || !ctx.info[op.tempId()].is_bitwise()) return; Instruction* bitwise_instr = ctx.info[op.tempId()].instr; if (bitwise_instr->opcode != aco_opcode::s_and_b32) return; if (bitwise_instr->operands[0].constantEquals(-4) && bitwise_instr->operands[1].isOfType(op.regClass().type())) op.setTemp(bitwise_instr->operands[1].getTemp()); else if (bitwise_instr->operands[1].constantEquals(-4) && bitwise_instr->operands[0].isOfType(op.regClass().type())) op.setTemp(bitwise_instr->operands[0].getTemp()); } void smem_combine(opt_ctx& ctx, aco_ptr& instr) { /* skip &-4 before offset additions: load((a + 16) & -4, 0) */ if (!instr->operands.empty()) skip_smem_offset_align(ctx, &instr->smem()); /* propagate constants and combine additions */ if (!instr->operands.empty() && instr->operands[1].isTemp()) { SMEM_instruction& smem = instr->smem(); ssa_info info = ctx.info[instr->operands[1].tempId()]; Temp base; uint32_t offset; if (info.is_constant_or_literal(32) && ((ctx.program->gfx_level == GFX6 && info.val <= 0x3FF) || (ctx.program->gfx_level == GFX7 && info.val <= 0xFFFFFFFF) || (ctx.program->gfx_level >= GFX8 && info.val <= 0xFFFFF))) { instr->operands[1] = Operand::c32(info.val); } else if (parse_base_offset(ctx, instr.get(), 1, &base, &offset, true) && base.regClass() == s1 && offset <= 0xFFFFF && ctx.program->gfx_level >= GFX9 && offset % 4u == 0) { bool soe = smem.operands.size() >= (!smem.definitions.empty() ? 3 : 4); if (soe) { if (ctx.info[smem.operands.back().tempId()].is_constant_or_literal(32) && ctx.info[smem.operands.back().tempId()].val == 0) { smem.operands[1] = Operand::c32(offset); smem.operands.back() = Operand(base); } } else { Instruction* new_instr = create_instruction( smem.opcode, Format::SMEM, smem.operands.size() + 1, smem.definitions.size()); new_instr->operands[0] = smem.operands[0]; new_instr->operands[1] = Operand::c32(offset); if (smem.definitions.empty()) new_instr->operands[2] = smem.operands[2]; new_instr->operands.back() = Operand(base); if (!smem.definitions.empty()) new_instr->definitions[0] = smem.definitions[0]; new_instr->smem().sync = smem.sync; new_instr->smem().cache = smem.cache; instr.reset(new_instr); } } } /* skip &-4 after offset additions: load(a & -4, 16) */ if (!instr->operands.empty()) skip_smem_offset_align(ctx, &instr->smem()); } Operand get_constant_op(opt_ctx& ctx, ssa_info info, uint32_t bits) { if (bits == 64) return Operand::c32_or_c64(info.val, true); return Operand::get_const(ctx.program->gfx_level, info.val, bits / 8u); } void propagate_constants_vop3p(opt_ctx& ctx, aco_ptr& instr, ssa_info& info, unsigned i) { if (!info.is_constant_or_literal(32)) return; assert(instr->operands[i].isTemp()); unsigned bits = get_operand_size(instr, i); if (info.is_constant(bits)) { instr->operands[i] = get_constant_op(ctx, info, bits); return; } /* The accumulation operand of dot product instructions ignores opsel. */ bool cannot_use_opsel = (instr->opcode == aco_opcode::v_dot4_i32_i8 || instr->opcode == aco_opcode::v_dot2_i32_i16 || instr->opcode == aco_opcode::v_dot4_i32_iu8 || instr->opcode == aco_opcode::v_dot4_u32_u8 || instr->opcode == aco_opcode::v_dot2_u32_u16) && i == 2; if (cannot_use_opsel) return; /* try to fold inline constants */ VALU_instruction* vop3p = &instr->valu(); bool opsel_lo = vop3p->opsel_lo[i]; bool opsel_hi = vop3p->opsel_hi[i]; Operand const_op[2]; bool const_opsel[2] = {false, false}; for (unsigned j = 0; j < 2; j++) { if ((unsigned)opsel_lo != j && (unsigned)opsel_hi != j) continue; /* this half is unused */ uint16_t val = info.val >> (j ? 16 : 0); Operand op = Operand::get_const(ctx.program->gfx_level, val, bits / 8u); if (bits == 32 && op.isLiteral()) /* try sign extension */ op = Operand::get_const(ctx.program->gfx_level, val | 0xffff0000, 4); if (bits == 32 && op.isLiteral()) { /* try shifting left */ op = Operand::get_const(ctx.program->gfx_level, val << 16, 4); const_opsel[j] = true; } if (op.isLiteral()) return; const_op[j] = op; } Operand const_lo = const_op[0]; Operand const_hi = const_op[1]; bool const_lo_opsel = const_opsel[0]; bool const_hi_opsel = const_opsel[1]; if (opsel_lo == opsel_hi) { /* use the single 16bit value */ instr->operands[i] = opsel_lo ? const_hi : const_lo; /* opsel must point the same for both halves */ opsel_lo = opsel_lo ? const_hi_opsel : const_lo_opsel; opsel_hi = opsel_lo; } else if (const_lo == const_hi) { /* both constants are the same */ instr->operands[i] = const_lo; /* opsel must point the same for both halves */ opsel_lo = const_lo_opsel; opsel_hi = const_lo_opsel; } else if (const_lo.constantValue16(const_lo_opsel) == const_hi.constantValue16(!const_hi_opsel)) { instr->operands[i] = const_hi; /* redirect opsel selection */ opsel_lo = opsel_lo ? const_hi_opsel : !const_hi_opsel; opsel_hi = opsel_hi ? const_hi_opsel : !const_hi_opsel; } else if (const_hi.constantValue16(const_hi_opsel) == const_lo.constantValue16(!const_lo_opsel)) { instr->operands[i] = const_lo; /* redirect opsel selection */ opsel_lo = opsel_lo ? !const_lo_opsel : const_lo_opsel; opsel_hi = opsel_hi ? !const_lo_opsel : const_lo_opsel; } else if (bits == 16 && const_lo.constantValue() == (const_hi.constantValue() ^ (1 << 15))) { assert(const_lo_opsel == false && const_hi_opsel == false); /* const_lo == -const_hi */ if (!can_use_input_modifiers(ctx.program->gfx_level, instr->opcode, i)) return; instr->operands[i] = Operand::c16(const_lo.constantValue() & 0x7FFF); bool neg_lo = const_lo.constantValue() & (1 << 15); vop3p->neg_lo[i] ^= opsel_lo ^ neg_lo; vop3p->neg_hi[i] ^= opsel_hi ^ neg_lo; /* opsel must point to lo for both operands */ opsel_lo = false; opsel_hi = false; } vop3p->opsel_lo[i] = opsel_lo; vop3p->opsel_hi[i] = opsel_hi; } bool fixed_to_exec(Operand op) { return op.isFixed() && op.physReg() == exec; } SubdwordSel parse_extract(Instruction* instr) { if (instr->opcode == aco_opcode::p_extract) { unsigned size = instr->operands[2].constantValue() / 8; unsigned offset = instr->operands[1].constantValue() * size; bool sext = instr->operands[3].constantEquals(1); return SubdwordSel(size, offset, sext); } else if (instr->opcode == aco_opcode::p_insert && instr->operands[1].constantEquals(0)) { return instr->operands[2].constantEquals(8) ? SubdwordSel::ubyte : SubdwordSel::uword; } else if (instr->opcode == aco_opcode::p_extract_vector) { unsigned size = instr->definitions[0].bytes(); unsigned offset = instr->operands[1].constantValue() * size; if (size <= 2) return SubdwordSel(size, offset, false); } else if (instr->opcode == aco_opcode::p_split_vector) { assert(instr->operands[0].bytes() == 4 && instr->definitions[1].bytes() == 2); return SubdwordSel(2, 2, false); } return SubdwordSel(); } SubdwordSel parse_insert(Instruction* instr) { if (instr->opcode == aco_opcode::p_extract && instr->operands[3].constantEquals(0) && instr->operands[1].constantEquals(0)) { return instr->operands[2].constantEquals(8) ? SubdwordSel::ubyte : SubdwordSel::uword; } else if (instr->opcode == aco_opcode::p_insert) { unsigned size = instr->operands[2].constantValue() / 8; unsigned offset = instr->operands[1].constantValue() * size; return SubdwordSel(size, offset, false); } else { return SubdwordSel(); } } bool can_apply_extract(opt_ctx& ctx, aco_ptr& instr, unsigned idx, ssa_info& info) { Temp tmp = info.instr->operands[0].getTemp(); SubdwordSel sel = parse_extract(info.instr); if (!sel) { return false; } else if (sel.size() == 4) { return true; } else if ((instr->opcode == aco_opcode::v_cvt_f32_u32 || instr->opcode == aco_opcode::v_cvt_f32_i32) && sel.size() == 1 && !sel.sign_extend()) { return true; } else if (instr->opcode == aco_opcode::v_lshlrev_b32 && instr->operands[0].isConstant() && sel.offset() == 0 && ((sel.size() == 2 && instr->operands[0].constantValue() >= 16u) || (sel.size() == 1 && instr->operands[0].constantValue() >= 24u))) { return true; } else if (instr->opcode == aco_opcode::v_mul_u32_u24 && ctx.program->gfx_level >= GFX10 && !instr->usesModifiers() && sel.size() == 2 && !sel.sign_extend() && (instr->operands[!idx].is16bit() || (instr->operands[!idx].isConstant() && instr->operands[!idx].constantValue() <= UINT16_MAX))) { return true; } else if (idx < 2 && can_use_SDWA(ctx.program->gfx_level, instr, true) && (tmp.type() == RegType::vgpr || ctx.program->gfx_level >= GFX9)) { if (instr->isSDWA() && instr->sdwa().sel[idx] != SubdwordSel::dword) return false; return true; } else if (instr->isVALU() && sel.size() == 2 && !instr->valu().opsel[idx] && can_use_opsel(ctx.program->gfx_level, instr->opcode, idx)) { return true; } else if (instr->opcode == aco_opcode::s_pack_ll_b32_b16 && sel.size() == 2 && (idx == 1 || ctx.program->gfx_level >= GFX11 || !sel.offset())) { return true; } else if (sel.size() == 2 && ((instr->opcode == aco_opcode::s_pack_lh_b32_b16 && idx == 0) || (instr->opcode == aco_opcode::s_pack_hl_b32_b16 && idx == 1))) { return true; } else if (instr->opcode == aco_opcode::p_extract) { SubdwordSel instrSel = parse_extract(instr.get()); /* the outer offset must be within extracted range */ if (instrSel.offset() >= sel.size()) return false; /* don't remove the sign-extension when increasing the size further */ if (instrSel.size() > sel.size() && !instrSel.sign_extend() && sel.sign_extend()) return false; return true; } return false; } /* Combine an p_extract (or p_insert, in some cases) instruction with instr. * instr(p_extract(...)) -> instr() */ void apply_extract(opt_ctx& ctx, aco_ptr& instr, unsigned idx, ssa_info& info) { Temp tmp = info.instr->operands[0].getTemp(); SubdwordSel sel = parse_extract(info.instr); assert(sel); instr->operands[idx].set16bit(false); instr->operands[idx].set24bit(false); ctx.info[tmp.id()].label &= ~label_insert; if (sel.size() == 4) { /* full dword selection */ } else if ((instr->opcode == aco_opcode::v_cvt_f32_u32 || instr->opcode == aco_opcode::v_cvt_f32_i32) && sel.size() == 1 && !sel.sign_extend()) { switch (sel.offset()) { case 0: instr->opcode = aco_opcode::v_cvt_f32_ubyte0; break; case 1: instr->opcode = aco_opcode::v_cvt_f32_ubyte1; break; case 2: instr->opcode = aco_opcode::v_cvt_f32_ubyte2; break; case 3: instr->opcode = aco_opcode::v_cvt_f32_ubyte3; break; } } else if (instr->opcode == aco_opcode::v_lshlrev_b32 && instr->operands[0].isConstant() && sel.offset() == 0 && ((sel.size() == 2 && instr->operands[0].constantValue() >= 16u) || (sel.size() == 1 && instr->operands[0].constantValue() >= 24u))) { /* The undesirable upper bits are already shifted out. */ return; } else if (instr->opcode == aco_opcode::v_mul_u32_u24 && ctx.program->gfx_level >= GFX10 && !instr->usesModifiers() && sel.size() == 2 && !sel.sign_extend() && (instr->operands[!idx].is16bit() || instr->operands[!idx].constantValue() <= UINT16_MAX)) { Instruction* mad = create_instruction(aco_opcode::v_mad_u32_u16, Format::VOP3, 3, 1); mad->definitions[0] = instr->definitions[0]; mad->operands[0] = instr->operands[0]; mad->operands[1] = instr->operands[1]; mad->operands[2] = Operand::zero(); mad->valu().opsel[idx] = sel.offset(); mad->pass_flags = instr->pass_flags; instr.reset(mad); } else if (can_use_SDWA(ctx.program->gfx_level, instr, true) && (tmp.type() == RegType::vgpr || ctx.program->gfx_level >= GFX9)) { convert_to_SDWA(ctx.program->gfx_level, instr); instr->sdwa().sel[idx] = sel; } else if (instr->isVALU()) { if (sel.offset()) { instr->valu().opsel[idx] = true; /* VOP12C cannot use opsel with SGPRs. */ if (!instr->isVOP3() && !instr->isVINTERP_INREG() && !info.instr->operands[0].isOfType(RegType::vgpr)) instr->format = asVOP3(instr->format); } } else if (instr->opcode == aco_opcode::s_pack_ll_b32_b16) { if (sel.offset()) instr->opcode = idx ? aco_opcode::s_pack_lh_b32_b16 : aco_opcode::s_pack_hl_b32_b16; } else if (instr->opcode == aco_opcode::s_pack_lh_b32_b16 || instr->opcode == aco_opcode::s_pack_hl_b32_b16) { if (sel.offset()) instr->opcode = aco_opcode::s_pack_hh_b32_b16; } else if (instr->opcode == aco_opcode::p_extract) { SubdwordSel instrSel = parse_extract(instr.get()); unsigned size = std::min(sel.size(), instrSel.size()); unsigned offset = sel.offset() + instrSel.offset(); unsigned sign_extend = instrSel.sign_extend() && (sel.sign_extend() || instrSel.size() <= sel.size()); instr->operands[1] = Operand::c32(offset / size); instr->operands[2] = Operand::c32(size * 8u); instr->operands[3] = Operand::c32(sign_extend); return; } /* These are the only labels worth keeping at the moment. */ for (Definition& def : instr->definitions) { ctx.info[def.tempId()].label &= (label_mul | label_minmax | label_usedef | label_vopc | label_f2f32 | instr_mod_labels); if (ctx.info[def.tempId()].label & instr_usedef_labels) ctx.info[def.tempId()].instr = instr.get(); } } void check_sdwa_extract(opt_ctx& ctx, aco_ptr& instr) { for (unsigned i = 0; i < instr->operands.size(); i++) { Operand op = instr->operands[i]; if (!op.isTemp()) continue; ssa_info& info = ctx.info[op.tempId()]; if (info.is_extract() && (info.instr->operands[0].getTemp().type() == RegType::vgpr || op.getTemp().type() == RegType::sgpr)) { if (!can_apply_extract(ctx, instr, i, info)) info.label &= ~label_extract; } } } bool does_fp_op_flush_denorms(opt_ctx& ctx, aco_opcode op) { switch (op) { case aco_opcode::v_min_f32: case aco_opcode::v_max_f32: case aco_opcode::v_med3_f32: case aco_opcode::v_min3_f32: case aco_opcode::v_max3_f32: case aco_opcode::v_min_f16: case aco_opcode::v_max_f16: return ctx.program->gfx_level > GFX8; case aco_opcode::v_cndmask_b32: case aco_opcode::v_cndmask_b16: case aco_opcode::v_mov_b32: case aco_opcode::v_mov_b16: return false; default: return true; } } bool can_eliminate_fcanonicalize(opt_ctx& ctx, aco_ptr& instr, Temp tmp, unsigned idx) { float_mode* fp = &ctx.fp_mode; if (ctx.info[tmp.id()].is_canonicalized() || (tmp.bytes() == 4 ? fp->denorm32 : fp->denorm16_64) == fp_denorm_keep) return true; aco_opcode op = instr->opcode; return can_use_input_modifiers(ctx.program->gfx_level, instr->opcode, idx) && does_fp_op_flush_denorms(ctx, op); } bool can_eliminate_and_exec(opt_ctx& ctx, Temp tmp, unsigned pass_flags) { if (ctx.info[tmp.id()].is_vopc()) { Instruction* vopc_instr = ctx.info[tmp.id()].instr; /* Remove superfluous s_and when the VOPC instruction uses the same exec and thus * already produces the same result */ return vopc_instr->pass_flags == pass_flags; } if (ctx.info[tmp.id()].is_bitwise()) { Instruction* instr = ctx.info[tmp.id()].instr; if (instr->operands.size() != 2 || instr->pass_flags != pass_flags) return false; if (!(instr->operands[0].isTemp() && instr->operands[1].isTemp())) return false; if (instr->opcode == aco_opcode::s_and_b32 || instr->opcode == aco_opcode::s_and_b64) { return can_eliminate_and_exec(ctx, instr->operands[0].getTemp(), pass_flags) || can_eliminate_and_exec(ctx, instr->operands[1].getTemp(), pass_flags); } else { return can_eliminate_and_exec(ctx, instr->operands[0].getTemp(), pass_flags) && can_eliminate_and_exec(ctx, instr->operands[1].getTemp(), pass_flags); } } return false; } bool is_copy_label(opt_ctx& ctx, aco_ptr& instr, ssa_info& info, unsigned idx) { return info.is_temp() || (info.is_fcanonicalize() && can_eliminate_fcanonicalize(ctx, instr, info.temp, idx)); } bool is_op_canonicalized(opt_ctx& ctx, Operand op) { float_mode* fp = &ctx.fp_mode; if ((op.isTemp() && ctx.info[op.tempId()].is_canonicalized()) || (op.bytes() == 4 ? fp->denorm32 : fp->denorm16_64) == fp_denorm_keep) return true; if (op.isConstant() || (op.isTemp() && ctx.info[op.tempId()].is_constant_or_literal(32))) { uint32_t val = op.isTemp() ? ctx.info[op.tempId()].val : op.constantValue(); if (op.bytes() == 2) return (val & 0x7fff) == 0 || (val & 0x7fff) > 0x3ff; else if (op.bytes() == 4) return (val & 0x7fffffff) == 0 || (val & 0x7fffffff) > 0x7fffff; } return false; } bool is_scratch_offset_valid(opt_ctx& ctx, Instruction* instr, int64_t offset0, int64_t offset1) { bool negative_unaligned_scratch_offset_bug = ctx.program->gfx_level == GFX10; int32_t min = ctx.program->dev.scratch_global_offset_min; int32_t max = ctx.program->dev.scratch_global_offset_max; int64_t offset = offset0 + offset1; bool has_vgpr_offset = instr && !instr->operands[0].isUndefined(); if (negative_unaligned_scratch_offset_bug && has_vgpr_offset && offset < 0 && offset % 4) return false; return offset >= min && offset <= max; } bool detect_clamp(Instruction* instr, unsigned* clamped_idx) { VALU_instruction& valu = instr->valu(); if (valu.omod != 0 || valu.opsel != 0) return false; unsigned idx = 0; bool found_zero = false, found_one = false; bool is_fp16 = instr->opcode == aco_opcode::v_med3_f16; for (unsigned i = 0; i < 3; i++) { if (!valu.neg[i] && instr->operands[i].constantEquals(0)) found_zero = true; else if (!valu.neg[i] && instr->operands[i].constantEquals(is_fp16 ? 0x3c00 : 0x3f800000)) /* 1.0 */ found_one = true; else idx = i; } if (found_zero && found_one && instr->operands[idx].isTemp()) { *clamped_idx = idx; return true; } else { return false; } } void label_instruction(opt_ctx& ctx, aco_ptr& instr) { if (instr->isSMEM()) smem_combine(ctx, instr); for (unsigned i = 0; i < instr->operands.size(); i++) { if (!instr->operands[i].isTemp()) continue; ssa_info info = ctx.info[instr->operands[i].tempId()]; /* propagate reg->reg of same type */ while (info.is_temp() && info.temp.regClass() == instr->operands[i].getTemp().regClass()) { instr->operands[i].setTemp(ctx.info[instr->operands[i].tempId()].temp); info = ctx.info[info.temp.id()]; } /* PSEUDO: propagate temporaries */ if (instr->isPseudo()) { while (info.is_temp()) { pseudo_propagate_temp(ctx, instr, info.temp, i); info = ctx.info[info.temp.id()]; } } /* SALU / PSEUDO: propagate inline constants */ if (instr->isSALU() || instr->isPseudo()) { unsigned bits = get_operand_size(instr, i); if ((info.is_constant(bits) || (info.is_literal(bits) && instr->isPseudo())) && alu_can_accept_constant(instr, i)) { instr->operands[i] = get_constant_op(ctx, info, bits); continue; } } /* VALU: propagate neg, abs & inline constants */ else if (instr->isVALU()) { if (is_copy_label(ctx, instr, info, i) && info.temp.type() == RegType::vgpr && valu_can_accept_vgpr(instr, i)) { instr->operands[i].setTemp(info.temp); info = ctx.info[info.temp.id()]; } /* applying SGPRs to VOP1 doesn't increase code size and DCE is helped by doing it earlier */ if (info.is_temp() && info.temp.type() == RegType::sgpr && can_apply_sgprs(ctx, instr) && instr->operands.size() == 1) { instr->format = withoutDPP(instr->format); instr->operands[i].setTemp(info.temp); info = ctx.info[info.temp.id()]; } /* for instructions other than v_cndmask_b32, the size of the instruction should match the * operand size */ bool can_use_mod = instr->opcode != aco_opcode::v_cndmask_b32 || instr->operands[i].getTemp().bytes() == 4; can_use_mod &= can_use_input_modifiers(ctx.program->gfx_level, instr->opcode, i); bool packed_math = instr->isVOP3P() && instr->opcode != aco_opcode::v_fma_mix_f32 && instr->opcode != aco_opcode::v_fma_mixlo_f16 && instr->opcode != aco_opcode::v_fma_mixhi_f16; if (instr->isSDWA()) can_use_mod &= instr->sdwa().sel[i].size() == 4; else if (instr->isVOP3P()) can_use_mod &= !packed_math || !info.is_abs(); else can_use_mod &= instr->isDPP16() || can_use_VOP3(ctx, instr); unsigned bits = get_operand_size(instr, i); can_use_mod &= instr->operands[i].bytes() * 8 == bits; if (info.is_neg() && can_use_mod && can_eliminate_fcanonicalize(ctx, instr, info.temp, i)) { instr->operands[i].setTemp(info.temp); if (!packed_math && instr->valu().abs[i]) { /* fabs(fneg(a)) -> fabs(a) */ } else if (instr->opcode == aco_opcode::v_add_f32) { instr->opcode = i ? aco_opcode::v_sub_f32 : aco_opcode::v_subrev_f32; } else if (instr->opcode == aco_opcode::v_add_f16) { instr->opcode = i ? aco_opcode::v_sub_f16 : aco_opcode::v_subrev_f16; } else if (packed_math) { /* Bit size compat should ensure this. */ assert(!instr->valu().opsel_lo[i] && !instr->valu().opsel_hi[i]); instr->valu().neg_lo[i] ^= true; instr->valu().neg_hi[i] ^= true; } else { if (!instr->isDPP16() && can_use_VOP3(ctx, instr)) instr->format = asVOP3(instr->format); instr->valu().neg[i] ^= true; } } if (info.is_abs() && can_use_mod && can_eliminate_fcanonicalize(ctx, instr, info.temp, i)) { if (!instr->isDPP16() && can_use_VOP3(ctx, instr)) instr->format = asVOP3(instr->format); instr->operands[i] = Operand(info.temp); instr->valu().abs[i] = true; continue; } if (instr->isVOP3P()) { propagate_constants_vop3p(ctx, instr, info, i); continue; } if (info.is_constant(bits) && alu_can_accept_constant(instr, i) && (!instr->isSDWA() || ctx.program->gfx_level >= GFX9) && (!instr->isDPP() || i != 1)) { Operand op = get_constant_op(ctx, info, bits); if (i == 0 || instr->isSDWA() || instr->opcode == aco_opcode::v_readlane_b32 || instr->opcode == aco_opcode::v_writelane_b32) { instr->format = withoutDPP(instr->format); instr->operands[i] = op; continue; } else if (!instr->isVOP3() && can_swap_operands(instr, &instr->opcode)) { instr->operands[i] = op; instr->valu().swapOperands(0, i); continue; } else if (can_use_VOP3(ctx, instr)) { instr->format = asVOP3(instr->format); instr->operands[i] = op; continue; } } } /* MUBUF: propagate constants and combine additions */ else if (instr->isMUBUF()) { MUBUF_instruction& mubuf = instr->mubuf(); Temp base; uint32_t offset; while (info.is_temp()) info = ctx.info[info.temp.id()]; bool swizzled = ctx.program->gfx_level >= GFX12 ? mubuf.cache.gfx12.swizzled : (mubuf.cache.value & ac_swizzled); /* According to AMDGPUDAGToDAGISel::SelectMUBUFScratchOffen(), vaddr * overflow for scratch accesses works only on GFX9+ and saddr overflow * never works. Since swizzling is the only thing that separates * scratch accesses and other accesses and swizzling changing how * addressing works significantly, this probably applies to swizzled * MUBUF accesses. */ bool vaddr_prevent_overflow = swizzled && ctx.program->gfx_level < GFX9; if (mubuf.offen && mubuf.idxen && i == 1 && info.is_vec() && info.instr->operands.size() == 2 && info.instr->operands[0].isTemp() && info.instr->operands[0].regClass() == v1 && info.instr->operands[1].isConstant() && mubuf.offset + info.instr->operands[1].constantValue() < 4096) { instr->operands[1] = info.instr->operands[0]; mubuf.offset += info.instr->operands[1].constantValue(); mubuf.offen = false; continue; } else if (mubuf.offen && i == 1 && info.is_constant_or_literal(32) && mubuf.offset + info.val < 4096) { assert(!mubuf.idxen); instr->operands[1] = Operand(v1); mubuf.offset += info.val; mubuf.offen = false; continue; } else if (i == 2 && info.is_constant_or_literal(32) && mubuf.offset + info.val < 4096) { instr->operands[2] = Operand::c32(0); mubuf.offset += info.val; continue; } else if (mubuf.offen && i == 1 && parse_base_offset(ctx, instr.get(), i, &base, &offset, vaddr_prevent_overflow) && base.regClass() == v1 && mubuf.offset + offset < 4096) { assert(!mubuf.idxen); instr->operands[1].setTemp(base); mubuf.offset += offset; continue; } else if (i == 2 && parse_base_offset(ctx, instr.get(), i, &base, &offset, true) && base.regClass() == s1 && mubuf.offset + offset < 4096 && !swizzled) { instr->operands[i].setTemp(base); mubuf.offset += offset; continue; } } else if (instr->isMTBUF()) { MTBUF_instruction& mtbuf = instr->mtbuf(); while (info.is_temp()) info = ctx.info[info.temp.id()]; if (mtbuf.offen && mtbuf.idxen && i == 1 && info.is_vec() && info.instr->operands.size() == 2 && info.instr->operands[0].isTemp() && info.instr->operands[0].regClass() == v1 && info.instr->operands[1].isConstant() && mtbuf.offset + info.instr->operands[1].constantValue() < 4096) { instr->operands[1] = info.instr->operands[0]; mtbuf.offset += info.instr->operands[1].constantValue(); mtbuf.offen = false; continue; } } /* SCRATCH: propagate constants and combine additions */ else if (instr->isScratch()) { FLAT_instruction& scratch = instr->scratch(); Temp base; uint32_t offset; while (info.is_temp()) info = ctx.info[info.temp.id()]; /* The hardware probably does: 'scratch_base + u2u64(saddr) + i2i64(offset)'. This means * we can't combine the addition if the unsigned addition overflows and offset is * positive. In theory, there is also issues if * 'ilt(offset, 0) && ige(saddr, 0) && ilt(saddr + offset, 0)', but that just * replaces an already out-of-bounds access with a larger one since 'saddr + offset' * would be larger than INT32_MAX. */ if (i <= 1 && parse_base_offset(ctx, instr.get(), i, &base, &offset, true) && base.regClass() == instr->operands[i].regClass() && is_scratch_offset_valid(ctx, instr.get(), scratch.offset, (int32_t)offset)) { instr->operands[i].setTemp(base); scratch.offset += (int32_t)offset; continue; } else if (i <= 1 && parse_base_offset(ctx, instr.get(), i, &base, &offset, false) && base.regClass() == instr->operands[i].regClass() && (int32_t)offset < 0 && is_scratch_offset_valid(ctx, instr.get(), scratch.offset, (int32_t)offset)) { instr->operands[i].setTemp(base); scratch.offset += (int32_t)offset; continue; } else if (i <= 1 && info.is_constant_or_literal(32) && ctx.program->gfx_level >= GFX10_3 && is_scratch_offset_valid(ctx, NULL, scratch.offset, (int32_t)info.val)) { /* GFX10.3+ can disable both SADDR and ADDR. */ instr->operands[i] = Operand(instr->operands[i].regClass()); scratch.offset += (int32_t)info.val; continue; } } /* DS: combine additions */ else if (instr->isDS()) { DS_instruction& ds = instr->ds(); Temp base; uint32_t offset; bool has_usable_ds_offset = ctx.program->gfx_level >= GFX7; if (has_usable_ds_offset && i == 0 && parse_base_offset(ctx, instr.get(), i, &base, &offset, false) && base.regClass() == instr->operands[i].regClass() && instr->opcode != aco_opcode::ds_swizzle_b32) { if (instr->opcode == aco_opcode::ds_write2_b32 || instr->opcode == aco_opcode::ds_read2_b32 || instr->opcode == aco_opcode::ds_write2_b64 || instr->opcode == aco_opcode::ds_read2_b64 || instr->opcode == aco_opcode::ds_write2st64_b32 || instr->opcode == aco_opcode::ds_read2st64_b32 || instr->opcode == aco_opcode::ds_write2st64_b64 || instr->opcode == aco_opcode::ds_read2st64_b64) { bool is64bit = instr->opcode == aco_opcode::ds_write2_b64 || instr->opcode == aco_opcode::ds_read2_b64 || instr->opcode == aco_opcode::ds_write2st64_b64 || instr->opcode == aco_opcode::ds_read2st64_b64; bool st64 = instr->opcode == aco_opcode::ds_write2st64_b32 || instr->opcode == aco_opcode::ds_read2st64_b32 || instr->opcode == aco_opcode::ds_write2st64_b64 || instr->opcode == aco_opcode::ds_read2st64_b64; unsigned shifts = (is64bit ? 3 : 2) + (st64 ? 6 : 0); unsigned mask = BITFIELD_MASK(shifts); if ((offset & mask) == 0 && ds.offset0 + (offset >> shifts) <= 255 && ds.offset1 + (offset >> shifts) <= 255) { instr->operands[i].setTemp(base); ds.offset0 += offset >> shifts; ds.offset1 += offset >> shifts; } } else { if (ds.offset0 + offset <= 65535) { instr->operands[i].setTemp(base); ds.offset0 += offset; } } } } else if (instr->isBranch()) { if (ctx.info[instr->operands[0].tempId()].is_scc_invert()) { /* Flip the branch instruction to get rid of the scc_invert instruction */ instr->opcode = instr->opcode == aco_opcode::p_cbranch_z ? aco_opcode::p_cbranch_nz : aco_opcode::p_cbranch_z; instr->operands[0].setTemp(ctx.info[instr->operands[0].tempId()].temp); } } } /* if this instruction doesn't define anything, return */ if (instr->definitions.empty()) { check_sdwa_extract(ctx, instr); return; } if (instr->isVALU() || instr->isVINTRP()) { if (instr_info.can_use_output_modifiers[(int)instr->opcode] || instr->isVINTRP() || instr->opcode == aco_opcode::v_cndmask_b32) { bool canonicalized = true; if (!does_fp_op_flush_denorms(ctx, instr->opcode)) { unsigned ops = instr->opcode == aco_opcode::v_cndmask_b32 ? 2 : instr->operands.size(); for (unsigned i = 0; canonicalized && (i < ops); i++) canonicalized = is_op_canonicalized(ctx, instr->operands[i]); } if (canonicalized) ctx.info[instr->definitions[0].tempId()].set_canonicalized(); } if (instr->isVOPC()) { ctx.info[instr->definitions[0].tempId()].set_vopc(instr.get()); check_sdwa_extract(ctx, instr); return; } if (instr->isVOP3P()) { ctx.info[instr->definitions[0].tempId()].set_vop3p(instr.get()); return; } } switch (instr->opcode) { case aco_opcode::p_create_vector: { bool copy_prop = instr->operands.size() == 1 && instr->operands[0].isTemp() && instr->operands[0].regClass() == instr->definitions[0].regClass(); if (copy_prop) { ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[0].getTemp()); break; } /* expand vector operands */ std::vector ops; unsigned offset = 0; for (const Operand& op : instr->operands) { /* ensure that any expanded operands are properly aligned */ bool aligned = offset % 4 == 0 || op.bytes() < 4; offset += op.bytes(); if (aligned && op.isTemp() && ctx.info[op.tempId()].is_vec()) { Instruction* vec = ctx.info[op.tempId()].instr; for (const Operand& vec_op : vec->operands) ops.emplace_back(vec_op); } else { ops.emplace_back(op); } } /* combine expanded operands to new vector */ if (ops.size() != instr->operands.size()) { assert(ops.size() > instr->operands.size()); Definition def = instr->definitions[0]; instr.reset( create_instruction(aco_opcode::p_create_vector, Format::PSEUDO, ops.size(), 1)); for (unsigned i = 0; i < ops.size(); i++) { if (ops[i].isTemp() && ctx.info[ops[i].tempId()].is_temp() && ops[i].regClass() == ctx.info[ops[i].tempId()].temp.regClass()) ops[i].setTemp(ctx.info[ops[i].tempId()].temp); instr->operands[i] = ops[i]; } instr->definitions[0] = def; } else { for (unsigned i = 0; i < ops.size(); i++) { assert(instr->operands[i] == ops[i]); } } ctx.info[instr->definitions[0].tempId()].set_vec(instr.get()); if (instr->operands.size() == 2) { /* check if this is created from split_vector */ if (instr->operands[1].isTemp() && ctx.info[instr->operands[1].tempId()].is_split()) { Instruction* split = ctx.info[instr->operands[1].tempId()].instr; if (instr->operands[0].isTemp() && instr->operands[0].getTemp() == split->definitions[0].getTemp()) ctx.info[instr->definitions[0].tempId()].set_temp(split->operands[0].getTemp()); } } break; } case aco_opcode::p_split_vector: { ssa_info& info = ctx.info[instr->operands[0].tempId()]; if (info.is_constant_or_literal(32)) { uint64_t val = info.val; for (Definition def : instr->definitions) { uint32_t mask = u_bit_consecutive(0, def.bytes() * 8u); ctx.info[def.tempId()].set_constant(ctx.program->gfx_level, val & mask); val >>= def.bytes() * 8u; } break; } else if (!info.is_vec()) { if (instr->definitions.size() == 2 && instr->operands[0].isTemp() && instr->definitions[0].bytes() == instr->definitions[1].bytes()) { ctx.info[instr->definitions[1].tempId()].set_split(instr.get()); if (instr->operands[0].bytes() == 4) { /* D16 subdword split */ ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[0].getTemp()); ctx.info[instr->definitions[1].tempId()].set_extract(instr.get()); } } break; } Instruction* vec = ctx.info[instr->operands[0].tempId()].instr; unsigned split_offset = 0; unsigned vec_offset = 0; unsigned vec_index = 0; for (unsigned i = 0; i < instr->definitions.size(); split_offset += instr->definitions[i++].bytes()) { while (vec_offset < split_offset && vec_index < vec->operands.size()) vec_offset += vec->operands[vec_index++].bytes(); if (vec_offset != split_offset || vec->operands[vec_index].bytes() != instr->definitions[i].bytes()) continue; Operand vec_op = vec->operands[vec_index]; if (vec_op.isConstant()) { ctx.info[instr->definitions[i].tempId()].set_constant(ctx.program->gfx_level, vec_op.constantValue64()); } else if (vec_op.isTemp()) { ctx.info[instr->definitions[i].tempId()].set_temp(vec_op.getTemp()); } } break; } case aco_opcode::p_extract_vector: { /* mov */ const unsigned index = instr->operands[1].constantValue(); if (instr->operands[0].isTemp()) { ssa_info& info = ctx.info[instr->operands[0].tempId()]; const unsigned dst_offset = index * instr->definitions[0].bytes(); if (info.is_vec()) { /* check if we index directly into a vector element */ Instruction* vec = info.instr; unsigned offset = 0; for (const Operand& op : vec->operands) { if (offset < dst_offset) { offset += op.bytes(); continue; } else if (offset != dst_offset || op.bytes() != instr->definitions[0].bytes()) { break; } instr->operands[0] = op; break; } } else if (info.is_constant_or_literal(32)) { /* propagate constants */ uint32_t mask = u_bit_consecutive(0, instr->definitions[0].bytes() * 8u); uint32_t val = (info.val >> (dst_offset * 8u)) & mask; instr->operands[0] = Operand::get_const(ctx.program->gfx_level, val, instr->definitions[0].bytes()); ; } } if (instr->operands[0].bytes() != instr->definitions[0].bytes()) { if (instr->operands[0].size() != 1 || !instr->operands[0].isTemp()) break; if (index == 0) ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[0].getTemp()); else ctx.info[instr->definitions[0].tempId()].set_extract(instr.get()); break; } /* convert this extract into a copy instruction */ instr->opcode = aco_opcode::p_parallelcopy; instr->operands.pop_back(); FALLTHROUGH; } case aco_opcode::p_parallelcopy: /* propagate */ if (instr->operands[0].isTemp() && ctx.info[instr->operands[0].tempId()].is_vec() && instr->operands[0].regClass() != instr->definitions[0].regClass()) { /* We might not be able to copy-propagate if it's a SGPR->VGPR copy, so * duplicate the vector instead. */ Instruction* vec = ctx.info[instr->operands[0].tempId()].instr; aco_ptr old_copy = std::move(instr); instr.reset(create_instruction(aco_opcode::p_create_vector, Format::PSEUDO, vec->operands.size(), 1)); instr->definitions[0] = old_copy->definitions[0]; std::copy(vec->operands.begin(), vec->operands.end(), instr->operands.begin()); for (unsigned i = 0; i < vec->operands.size(); i++) { Operand& op = instr->operands[i]; if (op.isTemp() && ctx.info[op.tempId()].is_temp() && ctx.info[op.tempId()].temp.type() == instr->definitions[0].regClass().type()) op.setTemp(ctx.info[op.tempId()].temp); } ctx.info[instr->definitions[0].tempId()].set_vec(instr.get()); break; } FALLTHROUGH; case aco_opcode::p_as_uniform: if (instr->definitions[0].isFixed()) { /* don't copy-propagate copies into fixed registers */ } else if (instr->operands[0].isConstant()) { ctx.info[instr->definitions[0].tempId()].set_constant( ctx.program->gfx_level, instr->operands[0].constantValue64()); } else if (instr->operands[0].isTemp()) { ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[0].getTemp()); if (ctx.info[instr->operands[0].tempId()].is_canonicalized()) ctx.info[instr->definitions[0].tempId()].set_canonicalized(); } else { assert(instr->operands[0].isFixed()); } break; case aco_opcode::v_mov_b32: if (instr->isDPP16()) { /* anything else doesn't make sense in SSA */ assert(instr->dpp16().row_mask == 0xf && instr->dpp16().bank_mask == 0xf); ctx.info[instr->definitions[0].tempId()].set_dpp16(instr.get()); } else if (instr->isDPP8()) { ctx.info[instr->definitions[0].tempId()].set_dpp8(instr.get()); } break; case aco_opcode::p_is_helper: if (!ctx.program->needs_wqm) ctx.info[instr->definitions[0].tempId()].set_constant(ctx.program->gfx_level, 0u); break; case aco_opcode::v_mul_f64_e64: case aco_opcode::v_mul_f64: ctx.info[instr->definitions[0].tempId()].set_mul(instr.get()); break; case aco_opcode::v_mul_f16: case aco_opcode::v_mul_f32: case aco_opcode::v_mul_legacy_f32: { /* omod */ ctx.info[instr->definitions[0].tempId()].set_mul(instr.get()); /* TODO: try to move the negate/abs modifier to the consumer instead */ bool uses_mods = instr->usesModifiers(); bool fp16 = instr->opcode == aco_opcode::v_mul_f16; for (unsigned i = 0; i < 2; i++) { if (instr->operands[!i].isConstant() && instr->operands[i].isTemp()) { if (!instr->isDPP() && !instr->isSDWA() && !instr->valu().opsel && (instr->operands[!i].constantEquals(fp16 ? 0x3c00 : 0x3f800000) || /* 1.0 */ instr->operands[!i].constantEquals(fp16 ? 0xbc00 : 0xbf800000u))) { /* -1.0 */ bool neg1 = instr->operands[!i].constantEquals(fp16 ? 0xbc00 : 0xbf800000u); VALU_instruction* valu = &instr->valu(); if (valu->abs[!i] || valu->neg[!i] || valu->omod) continue; bool abs = valu->abs[i]; bool neg = neg1 ^ valu->neg[i]; Temp other = instr->operands[i].getTemp(); if (valu->clamp) { if (!abs && !neg && other.type() == RegType::vgpr) ctx.info[other.id()].set_clamp(instr.get()); continue; } if (abs && neg && other.type() == RegType::vgpr) ctx.info[instr->definitions[0].tempId()].set_neg_abs(other); else if (abs && !neg && other.type() == RegType::vgpr) ctx.info[instr->definitions[0].tempId()].set_abs(other); else if (!abs && neg && other.type() == RegType::vgpr) ctx.info[instr->definitions[0].tempId()].set_neg(other); else if (!abs && !neg) ctx.info[instr->definitions[0].tempId()].set_fcanonicalize(other); } else if (uses_mods || ((fp16 ? ctx.fp_mode.preserve_signed_zero_inf_nan16_64 : ctx.fp_mode.preserve_signed_zero_inf_nan32) && instr->opcode != aco_opcode::v_mul_legacy_f32)) { continue; /* omod uses a legacy multiplication. */ } else if (instr->operands[!i].constantValue() == 0u) { /* 0.0 */ ctx.info[instr->definitions[0].tempId()].set_constant(ctx.program->gfx_level, 0u); } else if ((fp16 ? ctx.fp_mode.denorm16_64 : ctx.fp_mode.denorm32) != fp_denorm_flush) { /* omod has no effect if denormals are enabled. */ continue; } else if (instr->operands[!i].constantValue() == (fp16 ? 0x4000 : 0x40000000)) { /* 2.0 */ ctx.info[instr->operands[i].tempId()].set_omod2(instr.get()); } else if (instr->operands[!i].constantValue() == (fp16 ? 0x4400 : 0x40800000)) { /* 4.0 */ ctx.info[instr->operands[i].tempId()].set_omod4(instr.get()); } else if (instr->operands[!i].constantValue() == (fp16 ? 0x3800 : 0x3f000000)) { /* 0.5 */ ctx.info[instr->operands[i].tempId()].set_omod5(instr.get()); } else { continue; } break; } } break; } case aco_opcode::v_mul_lo_u16: case aco_opcode::v_mul_lo_u16_e64: case aco_opcode::v_mul_u32_u24: ctx.info[instr->definitions[0].tempId()].set_usedef(instr.get()); break; case aco_opcode::v_med3_f16: case aco_opcode::v_med3_f32: { /* clamp */ unsigned idx; if (detect_clamp(instr.get(), &idx) && !instr->valu().abs && !instr->valu().neg) ctx.info[instr->operands[idx].tempId()].set_clamp(instr.get()); break; } case aco_opcode::v_cndmask_b32: if (instr->operands[0].constantEquals(0) && instr->operands[1].constantEquals(0x3f800000u)) ctx.info[instr->definitions[0].tempId()].set_b2f(instr->operands[2].getTemp()); else if (instr->operands[0].constantEquals(0) && instr->operands[1].constantEquals(1)) ctx.info[instr->definitions[0].tempId()].set_b2i(instr->operands[2].getTemp()); break; case aco_opcode::v_add_u32: case aco_opcode::v_add_co_u32: case aco_opcode::v_add_co_u32_e64: case aco_opcode::s_add_i32: case aco_opcode::s_add_u32: case aco_opcode::v_subbrev_co_u32: case aco_opcode::v_sub_u32: case aco_opcode::v_sub_i32: case aco_opcode::v_sub_co_u32: case aco_opcode::v_sub_co_u32_e64: case aco_opcode::s_sub_u32: case aco_opcode::s_sub_i32: case aco_opcode::v_subrev_u32: case aco_opcode::v_subrev_co_u32: case aco_opcode::v_subrev_co_u32_e64: ctx.info[instr->definitions[0].tempId()].set_add_sub(instr.get()); break; case aco_opcode::s_not_b32: case aco_opcode::s_not_b64: if (!instr->operands[0].isTemp()) { } else if (ctx.info[instr->operands[0].tempId()].is_uniform_bool()) { ctx.info[instr->definitions[0].tempId()].set_uniform_bitwise(); ctx.info[instr->definitions[1].tempId()].set_scc_invert( ctx.info[instr->operands[0].tempId()].temp); } else if (ctx.info[instr->operands[0].tempId()].is_uniform_bitwise()) { ctx.info[instr->definitions[0].tempId()].set_uniform_bitwise(); ctx.info[instr->definitions[1].tempId()].set_scc_invert( ctx.info[instr->operands[0].tempId()].instr->definitions[1].getTemp()); } ctx.info[instr->definitions[0].tempId()].set_bitwise(instr.get()); break; case aco_opcode::s_and_b32: case aco_opcode::s_and_b64: if (fixed_to_exec(instr->operands[1]) && instr->operands[0].isTemp()) { if (ctx.info[instr->operands[0].tempId()].is_uniform_bool()) { /* Try to get rid of the superfluous s_cselect + s_and_b64 that comes from turning a * uniform bool into divergent */ ctx.info[instr->definitions[1].tempId()].set_temp( ctx.info[instr->operands[0].tempId()].temp); ctx.info[instr->definitions[0].tempId()].set_uniform_bool( ctx.info[instr->operands[0].tempId()].temp); break; } else if (ctx.info[instr->operands[0].tempId()].is_uniform_bitwise()) { /* Try to get rid of the superfluous s_and_b64, since the uniform bitwise instruction * already produces the same SCC */ ctx.info[instr->definitions[1].tempId()].set_temp( ctx.info[instr->operands[0].tempId()].instr->definitions[1].getTemp()); ctx.info[instr->definitions[0].tempId()].set_uniform_bool( ctx.info[instr->operands[0].tempId()].instr->definitions[1].getTemp()); break; } else if ((ctx.program->stage.num_sw_stages() > 1 || ctx.program->stage.hw == AC_HW_NEXT_GEN_GEOMETRY_SHADER) && instr->pass_flags == 1) { /* In case of merged shaders, pass_flags=1 means that all lanes are active (exec=-1), so * s_and is unnecessary. */ ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[0].getTemp()); break; } } FALLTHROUGH; case aco_opcode::s_or_b32: case aco_opcode::s_or_b64: case aco_opcode::s_xor_b32: case aco_opcode::s_xor_b64: if (std::all_of(instr->operands.begin(), instr->operands.end(), [&ctx](const Operand& op) { return op.isTemp() && (ctx.info[op.tempId()].is_uniform_bool() || ctx.info[op.tempId()].is_uniform_bitwise()); })) { ctx.info[instr->definitions[0].tempId()].set_uniform_bitwise(); } ctx.info[instr->definitions[0].tempId()].set_bitwise(instr.get()); break; case aco_opcode::s_lshl_b32: case aco_opcode::v_or_b32: case aco_opcode::v_lshlrev_b32: case aco_opcode::v_bcnt_u32_b32: case aco_opcode::v_and_b32: case aco_opcode::v_xor_b32: case aco_opcode::v_not_b32: ctx.info[instr->definitions[0].tempId()].set_usedef(instr.get()); break; case aco_opcode::v_min_f32: case aco_opcode::v_min_f16: case aco_opcode::v_min_u32: case aco_opcode::v_min_i32: case aco_opcode::v_min_u16: case aco_opcode::v_min_i16: case aco_opcode::v_min_u16_e64: case aco_opcode::v_min_i16_e64: case aco_opcode::v_max_f32: case aco_opcode::v_max_f16: case aco_opcode::v_max_u32: case aco_opcode::v_max_i32: case aco_opcode::v_max_u16: case aco_opcode::v_max_i16: case aco_opcode::v_max_u16_e64: case aco_opcode::v_max_i16_e64: ctx.info[instr->definitions[0].tempId()].set_minmax(instr.get()); break; case aco_opcode::s_cselect_b64: case aco_opcode::s_cselect_b32: if (instr->operands[0].constantEquals((unsigned)-1) && instr->operands[1].constantEquals(0)) { /* Found a cselect that operates on a uniform bool that comes from eg. s_cmp */ ctx.info[instr->definitions[0].tempId()].set_uniform_bool(instr->operands[2].getTemp()); } if (instr->operands[2].isTemp() && ctx.info[instr->operands[2].tempId()].is_scc_invert()) { /* Flip the operands to get rid of the scc_invert instruction */ std::swap(instr->operands[0], instr->operands[1]); instr->operands[2].setTemp(ctx.info[instr->operands[2].tempId()].temp); } break; case aco_opcode::s_mul_i32: /* Testing every uint32_t shows that 0x3f800000*n is never a denormal. * This pattern is created from a uniform nir_op_b2f. */ if (instr->operands[0].constantEquals(0x3f800000u)) ctx.info[instr->definitions[0].tempId()].set_canonicalized(); break; case aco_opcode::p_extract: { if (instr->definitions[0].bytes() == 4 && instr->operands[0].isTemp()) { ctx.info[instr->definitions[0].tempId()].set_extract(instr.get()); if (instr->operands[0].regClass() == v1 && parse_insert(instr.get())) ctx.info[instr->operands[0].tempId()].set_insert(instr.get()); } break; } case aco_opcode::p_insert: { if (instr->operands[0].bytes() == 4 && instr->operands[0].isTemp()) { if (instr->operands[0].regClass() == v1) ctx.info[instr->operands[0].tempId()].set_insert(instr.get()); if (parse_extract(instr.get())) ctx.info[instr->definitions[0].tempId()].set_extract(instr.get()); ctx.info[instr->definitions[0].tempId()].set_bitwise(instr.get()); } break; } case aco_opcode::ds_read_u8: case aco_opcode::ds_read_u8_d16: case aco_opcode::ds_read_u16: case aco_opcode::ds_read_u16_d16: { ctx.info[instr->definitions[0].tempId()].set_usedef(instr.get()); break; } case aco_opcode::v_cvt_f16_f32: { if (instr->operands[0].isTemp()) ctx.info[instr->operands[0].tempId()].set_f2f16(instr.get()); break; } case aco_opcode::v_cvt_f32_f16: { if (instr->operands[0].isTemp()) ctx.info[instr->definitions[0].tempId()].set_f2f32(instr.get()); break; } default: break; } /* Don't remove label_extract if we can't apply the extract to * neg/abs instructions because we'll likely combine it into another valu. */ if (!(ctx.info[instr->definitions[0].tempId()].label & (label_neg | label_abs))) check_sdwa_extract(ctx, instr); } unsigned original_temp_id(opt_ctx& ctx, Temp tmp) { if (ctx.info[tmp.id()].is_temp()) return ctx.info[tmp.id()].temp.id(); else return tmp.id(); } void decrease_op_uses_if_dead(opt_ctx& ctx, Instruction* instr) { if (is_dead(ctx.uses, instr)) { for (const Operand& op : instr->operands) { if (op.isTemp()) ctx.uses[op.tempId()]--; } } } void decrease_uses(opt_ctx& ctx, Instruction* instr) { ctx.uses[instr->definitions[0].tempId()]--; decrease_op_uses_if_dead(ctx, instr); } Operand copy_operand(opt_ctx& ctx, Operand op) { if (op.isTemp()) ctx.uses[op.tempId()]++; return op; } Instruction* follow_operand(opt_ctx& ctx, Operand op, bool ignore_uses = false) { if (!op.isTemp() || !(ctx.info[op.tempId()].label & instr_usedef_labels)) return nullptr; if (!ignore_uses && ctx.uses[op.tempId()] > 1) return nullptr; Instruction* instr = ctx.info[op.tempId()].instr; if (instr->definitions.size() == 2) { unsigned idx = ctx.info[op.tempId()].label & label_split ? 1 : 0; assert(instr->definitions[idx].isTemp() && instr->definitions[idx].tempId() == op.tempId()); if (instr->definitions[!idx].isTemp() && ctx.uses[instr->definitions[!idx].tempId()]) return nullptr; } for (Operand& operand : instr->operands) { if (fixed_to_exec(operand)) return nullptr; } return instr; } bool is_operand_constant(opt_ctx& ctx, Operand op, unsigned bit_size, uint64_t* value) { if (op.isConstant()) { *value = op.constantValue64(); return true; } else if (op.isTemp()) { unsigned id = original_temp_id(ctx, op.getTemp()); if (!ctx.info[id].is_constant_or_literal(bit_size)) return false; *value = get_constant_op(ctx, ctx.info[id], bit_size).constantValue64(); return true; } return false; } /* s_not(cmp(a, b)) -> get_vcmp_inverse(cmp)(a, b) */ bool combine_inverse_comparison(opt_ctx& ctx, aco_ptr& instr) { if (ctx.uses[instr->definitions[1].tempId()]) return false; if (!instr->operands[0].isTemp() || ctx.uses[instr->operands[0].tempId()] != 1) return false; Instruction* cmp = follow_operand(ctx, instr->operands[0]); if (!cmp) return false; aco_opcode new_opcode = get_vcmp_inverse(cmp->opcode); if (new_opcode == aco_opcode::num_opcodes) return false; /* Invert compare instruction and assign this instruction's definition */ cmp->opcode = new_opcode; ctx.info[instr->definitions[0].tempId()] = ctx.info[cmp->definitions[0].tempId()]; std::swap(instr->definitions[0], cmp->definitions[0]); ctx.uses[instr->operands[0].tempId()]--; return true; } /* op1(op2(1, 2), 0) if swap = false * op1(0, op2(1, 2)) if swap = true */ bool match_op3_for_vop3(opt_ctx& ctx, aco_opcode op1, aco_opcode op2, Instruction* op1_instr, bool swap, const char* shuffle_str, Operand operands[3], bitarray8& neg, bitarray8& abs, bitarray8& opsel, bool* op1_clamp, uint8_t* op1_omod, bool* inbetween_neg, bool* inbetween_abs, bool* inbetween_opsel, bool* precise) { /* checks */ if (op1_instr->opcode != op1) return false; Instruction* op2_instr = follow_operand(ctx, op1_instr->operands[swap]); if (!op2_instr || op2_instr->opcode != op2) return false; VALU_instruction* op1_valu = op1_instr->isVALU() ? &op1_instr->valu() : NULL; VALU_instruction* op2_valu = op2_instr->isVALU() ? &op2_instr->valu() : NULL; if (op1_instr->isSDWA() || op2_instr->isSDWA()) return false; if (op1_instr->isDPP() || op2_instr->isDPP()) return false; /* don't support inbetween clamp/omod */ if (op2_valu && (op2_valu->clamp || op2_valu->omod)) return false; /* get operands and modifiers and check inbetween modifiers */ *op1_clamp = op1_valu ? (bool)op1_valu->clamp : false; *op1_omod = op1_valu ? (unsigned)op1_valu->omod : 0u; if (inbetween_neg) *inbetween_neg = op1_valu ? op1_valu->neg[swap] : false; else if (op1_valu && op1_valu->neg[swap]) return false; if (inbetween_abs) *inbetween_abs = op1_valu ? op1_valu->abs[swap] : false; else if (op1_valu && op1_valu->abs[swap]) return false; if (inbetween_opsel) *inbetween_opsel = op1_valu ? op1_valu->opsel[swap] : false; else if (op1_valu && op1_valu->opsel[swap]) return false; *precise = op1_instr->definitions[0].isPrecise() || op2_instr->definitions[0].isPrecise(); int shuffle[3]; shuffle[shuffle_str[0] - '0'] = 0; shuffle[shuffle_str[1] - '0'] = 1; shuffle[shuffle_str[2] - '0'] = 2; operands[shuffle[0]] = op1_instr->operands[!swap]; neg[shuffle[0]] = op1_valu ? op1_valu->neg[!swap] : false; abs[shuffle[0]] = op1_valu ? op1_valu->abs[!swap] : false; opsel[shuffle[0]] = op1_valu ? op1_valu->opsel[!swap] : false; for (unsigned i = 0; i < 2; i++) { operands[shuffle[i + 1]] = op2_instr->operands[i]; neg[shuffle[i + 1]] = op2_valu ? op2_valu->neg[i] : false; abs[shuffle[i + 1]] = op2_valu ? op2_valu->abs[i] : false; opsel[shuffle[i + 1]] = op2_valu ? op2_valu->opsel[i] : false; } /* check operands */ if (!check_vop3_operands(ctx, 3, operands)) return false; return true; } void create_vop3_for_op3(opt_ctx& ctx, aco_opcode opcode, aco_ptr& instr, Operand operands[3], uint8_t neg, uint8_t abs, uint8_t opsel, bool clamp, unsigned omod) { Instruction* new_instr = create_instruction(opcode, Format::VOP3, 3, 1); new_instr->valu().neg = neg; new_instr->valu().abs = abs; new_instr->valu().clamp = clamp; new_instr->valu().omod = omod; new_instr->valu().opsel = opsel; new_instr->operands[0] = operands[0]; new_instr->operands[1] = operands[1]; new_instr->operands[2] = operands[2]; new_instr->definitions[0] = instr->definitions[0]; new_instr->pass_flags = instr->pass_flags; ctx.info[instr->definitions[0].tempId()].label = 0; instr.reset(new_instr); } bool combine_three_valu_op(opt_ctx& ctx, aco_ptr& instr, aco_opcode op2, aco_opcode new_op, const char* shuffle, uint8_t ops) { for (unsigned swap = 0; swap < 2; swap++) { if (!((1 << swap) & ops)) continue; Operand operands[3]; bool clamp, precise; bitarray8 neg = 0, abs = 0, opsel = 0; uint8_t omod = 0; if (match_op3_for_vop3(ctx, instr->opcode, op2, instr.get(), swap, shuffle, operands, neg, abs, opsel, &clamp, &omod, NULL, NULL, NULL, &precise)) { ctx.uses[instr->operands[swap].tempId()]--; create_vop3_for_op3(ctx, new_op, instr, operands, neg, abs, opsel, clamp, omod); return true; } } return false; } /* creates v_lshl_add_u32, v_lshl_or_b32 or v_and_or_b32 */ bool combine_add_or_then_and_lshl(opt_ctx& ctx, aco_ptr& instr) { bool is_or = instr->opcode == aco_opcode::v_or_b32; aco_opcode new_op_lshl = is_or ? aco_opcode::v_lshl_or_b32 : aco_opcode::v_lshl_add_u32; if (is_or && combine_three_valu_op(ctx, instr, aco_opcode::s_and_b32, aco_opcode::v_and_or_b32, "120", 1 | 2)) return true; if (is_or && combine_three_valu_op(ctx, instr, aco_opcode::v_and_b32, aco_opcode::v_and_or_b32, "120", 1 | 2)) return true; if (combine_three_valu_op(ctx, instr, aco_opcode::s_lshl_b32, new_op_lshl, "120", 1 | 2)) return true; if (combine_three_valu_op(ctx, instr, aco_opcode::v_lshlrev_b32, new_op_lshl, "210", 1 | 2)) return true; if (instr->isSDWA() || instr->isDPP()) return false; /* v_or_b32(p_extract(a, 0, 8/16, 0), b) -> v_and_or_b32(a, 0xff/0xffff, b) * v_or_b32(p_insert(a, 0, 8/16), b) -> v_and_or_b32(a, 0xff/0xffff, b) * v_or_b32(p_insert(a, 24/16, 8/16), b) -> v_lshl_or_b32(a, 24/16, b) * v_add_u32(p_insert(a, 24/16, 8/16), b) -> v_lshl_add_b32(a, 24/16, b) */ for (unsigned i = 0; i < 2; i++) { Instruction* extins = follow_operand(ctx, instr->operands[i]); if (!extins) continue; aco_opcode op; Operand operands[3]; if (extins->opcode == aco_opcode::p_insert && (extins->operands[1].constantValue() + 1) * extins->operands[2].constantValue() == 32) { op = new_op_lshl; operands[1] = Operand::c32(extins->operands[1].constantValue() * extins->operands[2].constantValue()); } else if (is_or && (extins->opcode == aco_opcode::p_insert || (extins->opcode == aco_opcode::p_extract && extins->operands[3].constantEquals(0))) && extins->operands[1].constantEquals(0)) { op = aco_opcode::v_and_or_b32; operands[1] = Operand::c32(extins->operands[2].constantEquals(8) ? 0xffu : 0xffffu); } else { continue; } operands[0] = extins->operands[0]; operands[2] = instr->operands[!i]; if (!check_vop3_operands(ctx, 3, operands)) continue; uint8_t neg = 0, abs = 0, opsel = 0, omod = 0; bool clamp = false; if (instr->isVOP3()) clamp = instr->valu().clamp; ctx.uses[instr->operands[i].tempId()]--; create_vop3_for_op3(ctx, op, instr, operands, neg, abs, opsel, clamp, omod); return true; } return false; } /* v_xor(a, s_not(b)) -> v_xnor(a, b) * v_xor(a, v_not(b)) -> v_xnor(a, b) */ bool combine_xor_not(opt_ctx& ctx, aco_ptr& instr) { if (instr->usesModifiers()) return false; for (unsigned i = 0; i < 2; i++) { Instruction* op_instr = follow_operand(ctx, instr->operands[i], true); if (!op_instr || (op_instr->opcode != aco_opcode::v_not_b32 && op_instr->opcode != aco_opcode::s_not_b32) || op_instr->usesModifiers() || op_instr->operands[0].isLiteral()) continue; instr->opcode = aco_opcode::v_xnor_b32; instr->operands[i] = copy_operand(ctx, op_instr->operands[0]); decrease_uses(ctx, op_instr); if (instr->operands[0].isOfType(RegType::vgpr)) std::swap(instr->operands[0], instr->operands[1]); if (!instr->operands[1].isOfType(RegType::vgpr)) instr->format = asVOP3(instr->format); return true; } return false; } /* v_not(v_xor(a, b)) -> v_xnor(a, b) */ bool combine_not_xor(opt_ctx& ctx, aco_ptr& instr) { if (instr->usesModifiers()) return false; Instruction* op_instr = follow_operand(ctx, instr->operands[0]); if (!op_instr || op_instr->opcode != aco_opcode::v_xor_b32 || op_instr->isSDWA()) return false; ctx.uses[instr->operands[0].tempId()]--; std::swap(instr->definitions[0], op_instr->definitions[0]); op_instr->opcode = aco_opcode::v_xnor_b32; ctx.info[op_instr->definitions[0].tempId()].label = 0; return true; } bool combine_minmax(opt_ctx& ctx, aco_ptr& instr, aco_opcode opposite, aco_opcode op3src, aco_opcode minmax) { /* TODO: this can handle SDWA min/max instructions by using opsel */ /* min(min(a, b), c) -> min3(a, b, c) * max(max(a, b), c) -> max3(a, b, c) * gfx11: min(-min(a, b), c) -> maxmin(-a, -b, c) * gfx11: max(-max(a, b), c) -> minmax(-a, -b, c) */ for (unsigned swap = 0; swap < 2; swap++) { Operand operands[3]; bool clamp, precise; bitarray8 opsel = 0, neg = 0, abs = 0; uint8_t omod = 0; bool inbetween_neg; if (match_op3_for_vop3(ctx, instr->opcode, instr->opcode, instr.get(), swap, "120", operands, neg, abs, opsel, &clamp, &omod, &inbetween_neg, NULL, NULL, &precise) && (!inbetween_neg || (minmax != aco_opcode::num_opcodes && ctx.program->gfx_level >= GFX11))) { ctx.uses[instr->operands[swap].tempId()]--; if (inbetween_neg) { neg[0] = !neg[0]; neg[1] = !neg[1]; create_vop3_for_op3(ctx, minmax, instr, operands, neg, abs, opsel, clamp, omod); } else { create_vop3_for_op3(ctx, op3src, instr, operands, neg, abs, opsel, clamp, omod); } return true; } } /* min(-max(a, b), c) -> min3(-a, -b, c) * max(-min(a, b), c) -> max3(-a, -b, c) * gfx11: min(max(a, b), c) -> maxmin(a, b, c) * gfx11: max(min(a, b), c) -> minmax(a, b, c) */ for (unsigned swap = 0; swap < 2; swap++) { Operand operands[3]; bool clamp, precise; bitarray8 opsel = 0, neg = 0, abs = 0; uint8_t omod = 0; bool inbetween_neg; if (match_op3_for_vop3(ctx, instr->opcode, opposite, instr.get(), swap, "120", operands, neg, abs, opsel, &clamp, &omod, &inbetween_neg, NULL, NULL, &precise) && (inbetween_neg || (minmax != aco_opcode::num_opcodes && ctx.program->gfx_level >= GFX11))) { ctx.uses[instr->operands[swap].tempId()]--; if (inbetween_neg) { neg[0] = !neg[0]; neg[1] = !neg[1]; create_vop3_for_op3(ctx, op3src, instr, operands, neg, abs, opsel, clamp, omod); } else { create_vop3_for_op3(ctx, minmax, instr, operands, neg, abs, opsel, clamp, omod); } return true; } } return false; } /* s_not_b32(s_and_b32(a, b)) -> s_nand_b32(a, b) * s_not_b32(s_or_b32(a, b)) -> s_nor_b32(a, b) * s_not_b32(s_xor_b32(a, b)) -> s_xnor_b32(a, b) * s_not_b64(s_and_b64(a, b)) -> s_nand_b64(a, b) * s_not_b64(s_or_b64(a, b)) -> s_nor_b64(a, b) * s_not_b64(s_xor_b64(a, b)) -> s_xnor_b64(a, b) */ bool combine_salu_not_bitwise(opt_ctx& ctx, aco_ptr& instr) { /* checks */ if (!instr->operands[0].isTemp()) return false; if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()]) return false; Instruction* op2_instr = follow_operand(ctx, instr->operands[0]); if (!op2_instr) return false; switch (op2_instr->opcode) { case aco_opcode::s_and_b32: case aco_opcode::s_or_b32: case aco_opcode::s_xor_b32: case aco_opcode::s_and_b64: case aco_opcode::s_or_b64: case aco_opcode::s_xor_b64: break; default: return false; } /* create instruction */ std::swap(instr->definitions[0], op2_instr->definitions[0]); std::swap(instr->definitions[1], op2_instr->definitions[1]); ctx.uses[instr->operands[0].tempId()]--; ctx.info[op2_instr->definitions[0].tempId()].label = 0; switch (op2_instr->opcode) { case aco_opcode::s_and_b32: op2_instr->opcode = aco_opcode::s_nand_b32; break; case aco_opcode::s_or_b32: op2_instr->opcode = aco_opcode::s_nor_b32; break; case aco_opcode::s_xor_b32: op2_instr->opcode = aco_opcode::s_xnor_b32; break; case aco_opcode::s_and_b64: op2_instr->opcode = aco_opcode::s_nand_b64; break; case aco_opcode::s_or_b64: op2_instr->opcode = aco_opcode::s_nor_b64; break; case aco_opcode::s_xor_b64: op2_instr->opcode = aco_opcode::s_xnor_b64; break; default: break; } return true; } /* s_and_b32(a, s_not_b32(b)) -> s_andn2_b32(a, b) * s_or_b32(a, s_not_b32(b)) -> s_orn2_b32(a, b) * s_and_b64(a, s_not_b64(b)) -> s_andn2_b64(a, b) * s_or_b64(a, s_not_b64(b)) -> s_orn2_b64(a, b) */ bool combine_salu_n2(opt_ctx& ctx, aco_ptr& instr) { if (instr->definitions[0].isTemp() && ctx.info[instr->definitions[0].tempId()].is_uniform_bool()) return false; for (unsigned i = 0; i < 2; i++) { Instruction* op2_instr = follow_operand(ctx, instr->operands[i]); if (!op2_instr || (op2_instr->opcode != aco_opcode::s_not_b32 && op2_instr->opcode != aco_opcode::s_not_b64)) continue; if (ctx.uses[op2_instr->definitions[1].tempId()]) continue; if (instr->operands[!i].isLiteral() && op2_instr->operands[0].isLiteral() && instr->operands[!i].constantValue() != op2_instr->operands[0].constantValue()) continue; ctx.uses[instr->operands[i].tempId()]--; instr->operands[0] = instr->operands[!i]; instr->operands[1] = op2_instr->operands[0]; ctx.info[instr->definitions[0].tempId()].label = 0; switch (instr->opcode) { case aco_opcode::s_and_b32: instr->opcode = aco_opcode::s_andn2_b32; break; case aco_opcode::s_or_b32: instr->opcode = aco_opcode::s_orn2_b32; break; case aco_opcode::s_and_b64: instr->opcode = aco_opcode::s_andn2_b64; break; case aco_opcode::s_or_b64: instr->opcode = aco_opcode::s_orn2_b64; break; default: break; } return true; } return false; } /* s_add_{i32,u32}(a, s_lshl_b32(b, )) -> s_lshl_add_u32(a, b) */ bool combine_salu_lshl_add(opt_ctx& ctx, aco_ptr& instr) { if (instr->opcode == aco_opcode::s_add_i32 && ctx.uses[instr->definitions[1].tempId()]) return false; for (unsigned i = 0; i < 2; i++) { Instruction* op2_instr = follow_operand(ctx, instr->operands[i], true); if (!op2_instr || op2_instr->opcode != aco_opcode::s_lshl_b32 || ctx.uses[op2_instr->definitions[1].tempId()]) continue; if (!op2_instr->operands[1].isConstant()) continue; uint32_t shift = op2_instr->operands[1].constantValue(); if (shift < 1 || shift > 4) continue; if (instr->operands[!i].isLiteral() && op2_instr->operands[0].isLiteral() && instr->operands[!i].constantValue() != op2_instr->operands[0].constantValue()) continue; instr->operands[1] = instr->operands[!i]; instr->operands[0] = copy_operand(ctx, op2_instr->operands[0]); decrease_uses(ctx, op2_instr); ctx.info[instr->definitions[0].tempId()].label = 0; instr->opcode = std::array{ aco_opcode::s_lshl1_add_u32, aco_opcode::s_lshl2_add_u32, aco_opcode::s_lshl3_add_u32, aco_opcode::s_lshl4_add_u32}[shift - 1]; return true; } return false; } /* s_abs_i32(s_sub_[iu]32(a, b)) -> s_absdiff_i32(a, b) * s_abs_i32(s_add_[iu]32(a, #b)) -> s_absdiff_i32(a, -b) */ bool combine_sabsdiff(opt_ctx& ctx, aco_ptr& instr) { if (!instr->operands[0].isTemp() || !ctx.info[instr->operands[0].tempId()].is_add_sub()) return false; Instruction* op_instr = follow_operand(ctx, instr->operands[0], false); if (!op_instr) return false; if (op_instr->opcode == aco_opcode::s_add_i32 || op_instr->opcode == aco_opcode::s_add_u32) { for (unsigned i = 0; i < 2; i++) { uint64_t constant; if (op_instr->operands[!i].isLiteral() || !is_operand_constant(ctx, op_instr->operands[i], 32, &constant)) continue; if (op_instr->operands[i].isTemp()) ctx.uses[op_instr->operands[i].tempId()]--; op_instr->operands[0] = op_instr->operands[!i]; op_instr->operands[1] = Operand::c32(-int32_t(constant)); goto use_absdiff; } return false; } use_absdiff: op_instr->opcode = aco_opcode::s_absdiff_i32; std::swap(instr->definitions[0], op_instr->definitions[0]); std::swap(instr->definitions[1], op_instr->definitions[1]); ctx.uses[instr->operands[0].tempId()]--; ctx.info[op_instr->definitions[0].tempId()].label = 0; return true; } bool combine_add_sub_b2i(opt_ctx& ctx, aco_ptr& instr, aco_opcode new_op, uint8_t ops) { if (instr->usesModifiers()) return false; for (unsigned i = 0; i < 2; i++) { if (!((1 << i) & ops)) continue; if (instr->operands[i].isTemp() && ctx.info[instr->operands[i].tempId()].is_b2i() && ctx.uses[instr->operands[i].tempId()] == 1) { aco_ptr new_instr; if (instr->operands[!i].isTemp() && instr->operands[!i].getTemp().type() == RegType::vgpr) { new_instr.reset(create_instruction(new_op, Format::VOP2, 3, 2)); } else if (ctx.program->gfx_level >= GFX10 || (instr->operands[!i].isConstant() && !instr->operands[!i].isLiteral())) { new_instr.reset(create_instruction(new_op, asVOP3(Format::VOP2), 3, 2)); } else { return false; } ctx.uses[instr->operands[i].tempId()]--; new_instr->definitions[0] = instr->definitions[0]; if (instr->definitions.size() == 2) { new_instr->definitions[1] = instr->definitions[1]; } else { new_instr->definitions[1] = Definition(ctx.program->allocateTmp(ctx.program->lane_mask)); /* Make sure the uses vector is large enough and the number of * uses properly initialized to 0. */ ctx.uses.push_back(0); ctx.info.push_back(ssa_info{}); } new_instr->operands[0] = Operand::zero(); new_instr->operands[1] = instr->operands[!i]; new_instr->operands[2] = Operand(ctx.info[instr->operands[i].tempId()].temp); new_instr->pass_flags = instr->pass_flags; instr = std::move(new_instr); ctx.info[instr->definitions[0].tempId()].set_add_sub(instr.get()); return true; } } return false; } bool combine_add_bcnt(opt_ctx& ctx, aco_ptr& instr) { if (instr->usesModifiers()) return false; for (unsigned i = 0; i < 2; i++) { Instruction* op_instr = follow_operand(ctx, instr->operands[i]); if (op_instr && op_instr->opcode == aco_opcode::v_bcnt_u32_b32 && !op_instr->usesModifiers() && op_instr->operands[0].isTemp() && op_instr->operands[0].getTemp().type() == RegType::vgpr && op_instr->operands[1].constantEquals(0)) { aco_ptr new_instr{ create_instruction(aco_opcode::v_bcnt_u32_b32, Format::VOP3, 2, 1)}; ctx.uses[instr->operands[i].tempId()]--; new_instr->operands[0] = op_instr->operands[0]; new_instr->operands[1] = instr->operands[!i]; new_instr->definitions[0] = instr->definitions[0]; new_instr->pass_flags = instr->pass_flags; instr = std::move(new_instr); ctx.info[instr->definitions[0].tempId()].label = 0; return true; } } return false; } bool get_minmax_info(aco_opcode op, aco_opcode* min, aco_opcode* max, aco_opcode* min3, aco_opcode* max3, aco_opcode* med3, aco_opcode* minmax, bool* some_gfx9_only) { switch (op) { #define MINMAX(type, gfx9) \ case aco_opcode::v_min_##type: \ case aco_opcode::v_max_##type: \ *min = aco_opcode::v_min_##type; \ *max = aco_opcode::v_max_##type; \ *med3 = aco_opcode::v_med3_##type; \ *min3 = aco_opcode::v_min3_##type; \ *max3 = aco_opcode::v_max3_##type; \ *minmax = op == *min ? aco_opcode::v_maxmin_##type : aco_opcode::v_minmax_##type; \ *some_gfx9_only = gfx9; \ return true; #define MINMAX_INT16(type, gfx9) \ case aco_opcode::v_min_##type: \ case aco_opcode::v_max_##type: \ *min = aco_opcode::v_min_##type; \ *max = aco_opcode::v_max_##type; \ *med3 = aco_opcode::v_med3_##type; \ *min3 = aco_opcode::v_min3_##type; \ *max3 = aco_opcode::v_max3_##type; \ *minmax = aco_opcode::num_opcodes; \ *some_gfx9_only = gfx9; \ return true; #define MINMAX_INT16_E64(type, gfx9) \ case aco_opcode::v_min_##type##_e64: \ case aco_opcode::v_max_##type##_e64: \ *min = aco_opcode::v_min_##type##_e64; \ *max = aco_opcode::v_max_##type##_e64; \ *med3 = aco_opcode::v_med3_##type; \ *min3 = aco_opcode::v_min3_##type; \ *max3 = aco_opcode::v_max3_##type; \ *minmax = aco_opcode::num_opcodes; \ *some_gfx9_only = gfx9; \ return true; MINMAX(f32, false) MINMAX(u32, false) MINMAX(i32, false) MINMAX(f16, true) MINMAX_INT16(u16, true) MINMAX_INT16(i16, true) MINMAX_INT16_E64(u16, true) MINMAX_INT16_E64(i16, true) #undef MINMAX_INT16_E64 #undef MINMAX_INT16 #undef MINMAX default: return false; } } /* when ub > lb: * v_min_{f,u,i}{16,32}(v_max_{f,u,i}{16,32}(a, lb), ub) -> v_med3_{f,u,i}{16,32}(a, lb, ub) * v_max_{f,u,i}{16,32}(v_min_{f,u,i}{16,32}(a, ub), lb) -> v_med3_{f,u,i}{16,32}(a, lb, ub) */ bool combine_clamp(opt_ctx& ctx, aco_ptr& instr, aco_opcode min, aco_opcode max, aco_opcode med) { /* TODO: GLSL's clamp(x, minVal, maxVal) and SPIR-V's * FClamp(x, minVal, maxVal)/NClamp(x, minVal, maxVal) are undefined if * minVal > maxVal, which means we can always select it to a v_med3_f32 */ aco_opcode other_op; if (instr->opcode == min) other_op = max; else if (instr->opcode == max) other_op = min; else return false; for (unsigned swap = 0; swap < 2; swap++) { Operand operands[3]; bool clamp, precise; bitarray8 opsel = 0, neg = 0, abs = 0; uint8_t omod = 0; if (match_op3_for_vop3(ctx, instr->opcode, other_op, instr.get(), swap, "012", operands, neg, abs, opsel, &clamp, &omod, NULL, NULL, NULL, &precise)) { /* max(min(src, upper), lower) returns upper if src is NaN, but * med3(src, lower, upper) returns lower. */ if (precise && instr->opcode != min && (min == aco_opcode::v_min_f16 || min == aco_opcode::v_min_f32)) continue; int const0_idx = -1, const1_idx = -1; uint32_t const0 = 0, const1 = 0; for (int i = 0; i < 3; i++) { uint32_t val; bool hi16 = opsel & (1 << i); if (operands[i].isConstant()) { val = hi16 ? operands[i].constantValue16(true) : operands[i].constantValue(); } else if (operands[i].isTemp() && ctx.info[operands[i].tempId()].is_constant_or_literal(32)) { val = ctx.info[operands[i].tempId()].val >> (hi16 ? 16 : 0); } else { continue; } if (const0_idx >= 0) { const1_idx = i; const1 = val; } else { const0_idx = i; const0 = val; } } if (const0_idx < 0 || const1_idx < 0) continue; int lower_idx = const0_idx; switch (min) { case aco_opcode::v_min_f32: case aco_opcode::v_min_f16: { float const0_f, const1_f; if (min == aco_opcode::v_min_f32) { memcpy(&const0_f, &const0, 4); memcpy(&const1_f, &const1, 4); } else { const0_f = _mesa_half_to_float(const0); const1_f = _mesa_half_to_float(const1); } if (abs[const0_idx]) const0_f = fabsf(const0_f); if (abs[const1_idx]) const1_f = fabsf(const1_f); if (neg[const0_idx]) const0_f = -const0_f; if (neg[const1_idx]) const1_f = -const1_f; lower_idx = const0_f < const1_f ? const0_idx : const1_idx; break; } case aco_opcode::v_min_u32: { lower_idx = const0 < const1 ? const0_idx : const1_idx; break; } case aco_opcode::v_min_u16: case aco_opcode::v_min_u16_e64: { lower_idx = (uint16_t)const0 < (uint16_t)const1 ? const0_idx : const1_idx; break; } case aco_opcode::v_min_i32: { int32_t const0_i = const0 & 0x80000000u ? -2147483648 + (int32_t)(const0 & 0x7fffffffu) : const0; int32_t const1_i = const1 & 0x80000000u ? -2147483648 + (int32_t)(const1 & 0x7fffffffu) : const1; lower_idx = const0_i < const1_i ? const0_idx : const1_idx; break; } case aco_opcode::v_min_i16: case aco_opcode::v_min_i16_e64: { int16_t const0_i = const0 & 0x8000u ? -32768 + (int16_t)(const0 & 0x7fffu) : const0; int16_t const1_i = const1 & 0x8000u ? -32768 + (int16_t)(const1 & 0x7fffu) : const1; lower_idx = const0_i < const1_i ? const0_idx : const1_idx; break; } default: break; } int upper_idx = lower_idx == const0_idx ? const1_idx : const0_idx; if (instr->opcode == min) { if (upper_idx != 0 || lower_idx == 0) return false; } else { if (upper_idx == 0 || lower_idx != 0) return false; } ctx.uses[instr->operands[swap].tempId()]--; create_vop3_for_op3(ctx, med, instr, operands, neg, abs, opsel, clamp, omod); return true; } } return false; } void apply_sgprs(opt_ctx& ctx, aco_ptr& instr) { bool is_shift64 = instr->opcode == aco_opcode::v_lshlrev_b64_e64 || instr->opcode == aco_opcode::v_lshlrev_b64 || instr->opcode == aco_opcode::v_lshrrev_b64 || instr->opcode == aco_opcode::v_ashrrev_i64; /* find candidates and create the set of sgprs already read */ unsigned sgpr_ids[2] = {0, 0}; uint32_t operand_mask = 0; bool has_literal = false; for (unsigned i = 0; i < instr->operands.size(); i++) { if (instr->operands[i].isLiteral()) has_literal = true; if (!instr->operands[i].isTemp()) continue; if (instr->operands[i].getTemp().type() == RegType::sgpr) { if (instr->operands[i].tempId() != sgpr_ids[0]) sgpr_ids[!!sgpr_ids[0]] = instr->operands[i].tempId(); } ssa_info& info = ctx.info[instr->operands[i].tempId()]; if (is_copy_label(ctx, instr, info, i) && info.temp.type() == RegType::sgpr) operand_mask |= 1u << i; if (info.is_extract() && info.instr->operands[0].getTemp().type() == RegType::sgpr) operand_mask |= 1u << i; } unsigned max_sgprs = 1; if (ctx.program->gfx_level >= GFX10 && !is_shift64) max_sgprs = 2; if (has_literal) max_sgprs--; unsigned num_sgprs = !!sgpr_ids[0] + !!sgpr_ids[1]; /* keep on applying sgprs until there is nothing left to be done */ while (operand_mask) { uint32_t sgpr_idx = 0; uint32_t sgpr_info_id = 0; uint32_t mask = operand_mask; /* choose a sgpr */ while (mask) { unsigned i = u_bit_scan(&mask); uint16_t uses = ctx.uses[instr->operands[i].tempId()]; if (sgpr_info_id == 0 || uses < ctx.uses[sgpr_info_id]) { sgpr_idx = i; sgpr_info_id = instr->operands[i].tempId(); } } operand_mask &= ~(1u << sgpr_idx); ssa_info& info = ctx.info[sgpr_info_id]; /* Applying two sgprs require making it VOP3, so don't do it unless it's * definitively beneficial. * TODO: this is too conservative because later the use count could be reduced to 1 */ if (!info.is_extract() && num_sgprs && ctx.uses[sgpr_info_id] > 1 && !instr->isVOP3() && !instr->isSDWA() && instr->format != Format::VOP3P) break; Temp sgpr = info.is_extract() ? info.instr->operands[0].getTemp() : info.temp; bool new_sgpr = sgpr.id() != sgpr_ids[0] && sgpr.id() != sgpr_ids[1]; if (new_sgpr && num_sgprs >= max_sgprs) continue; if (sgpr_idx == 0) instr->format = withoutDPP(instr->format); if (sgpr_idx == 1 && instr->isDPP()) continue; if (sgpr_idx == 0 || instr->isVOP3() || instr->isSDWA() || instr->isVOP3P() || info.is_extract()) { /* can_apply_extract() checks SGPR encoding restrictions */ if (info.is_extract() && can_apply_extract(ctx, instr, sgpr_idx, info)) apply_extract(ctx, instr, sgpr_idx, info); else if (info.is_extract()) continue; instr->operands[sgpr_idx] = Operand(sgpr); } else if (can_swap_operands(instr, &instr->opcode) && !instr->valu().opsel[sgpr_idx]) { instr->operands[sgpr_idx] = instr->operands[0]; instr->operands[0] = Operand(sgpr); instr->valu().opsel[0].swap(instr->valu().opsel[sgpr_idx]); /* swap bits using a 4-entry LUT */ uint32_t swapped = (0x3120 >> (operand_mask & 0x3)) & 0xf; operand_mask = (operand_mask & ~0x3) | swapped; } else if (can_use_VOP3(ctx, instr) && !info.is_extract()) { instr->format = asVOP3(instr->format); instr->operands[sgpr_idx] = Operand(sgpr); } else { continue; } if (new_sgpr) sgpr_ids[num_sgprs++] = sgpr.id(); ctx.uses[sgpr_info_id]--; ctx.uses[sgpr.id()]++; /* TODO: handle when it's a VGPR */ if ((ctx.info[sgpr.id()].label & (label_extract | label_temp)) && ctx.info[sgpr.id()].temp.type() == RegType::sgpr) operand_mask |= 1u << sgpr_idx; } } void interp_p2_f32_inreg_to_fma_dpp(aco_ptr& instr) { static_assert(sizeof(DPP16_instruction) == sizeof(VINTERP_inreg_instruction), "Invalid instr cast."); instr->format = asVOP3(Format::DPP16); instr->opcode = aco_opcode::v_fma_f32; instr->dpp16().dpp_ctrl = dpp_quad_perm(2, 2, 2, 2); instr->dpp16().row_mask = 0xf; instr->dpp16().bank_mask = 0xf; instr->dpp16().bound_ctrl = 0; instr->dpp16().fetch_inactive = 1; } /* apply omod / clamp modifiers if the def is used only once and the instruction can have modifiers */ bool apply_omod_clamp(opt_ctx& ctx, aco_ptr& instr) { if (instr->definitions.empty() || ctx.uses[instr->definitions[0].tempId()] != 1 || !instr_info.can_use_output_modifiers[(int)instr->opcode]) return false; bool can_vop3 = can_use_VOP3(ctx, instr); bool is_mad_mix = instr->opcode == aco_opcode::v_fma_mix_f32 || instr->opcode == aco_opcode::v_fma_mixlo_f16; bool needs_vop3 = !instr->isSDWA() && !instr->isVINTERP_INREG() && !is_mad_mix; if (needs_vop3 && !can_vop3) return false; /* SDWA omod is GFX9+. */ bool can_use_omod = (can_vop3 || ctx.program->gfx_level >= GFX9) && !instr->isVOP3P() && (!instr->isVINTERP_INREG() || instr->opcode == aco_opcode::v_interp_p2_f32_inreg); ssa_info& def_info = ctx.info[instr->definitions[0].tempId()]; uint64_t omod_labels = label_omod2 | label_omod4 | label_omod5; if (!def_info.is_clamp() && !(can_use_omod && (def_info.label & omod_labels))) return false; /* if the omod/clamp instruction is dead, then the single user of this * instruction is a different instruction */ if (!ctx.uses[def_info.instr->definitions[0].tempId()]) return false; if (def_info.instr->definitions[0].bytes() != instr->definitions[0].bytes()) return false; /* MADs/FMAs are created later, so we don't have to update the original add */ assert(!ctx.info[instr->definitions[0].tempId()].is_mad()); if (!def_info.is_clamp() && (instr->valu().clamp || instr->valu().omod)) return false; if (needs_vop3) instr->format = asVOP3(instr->format); if (!def_info.is_clamp() && instr->opcode == aco_opcode::v_interp_p2_f32_inreg) interp_p2_f32_inreg_to_fma_dpp(instr); if (def_info.is_omod2()) instr->valu().omod = 1; else if (def_info.is_omod4()) instr->valu().omod = 2; else if (def_info.is_omod5()) instr->valu().omod = 3; else if (def_info.is_clamp()) instr->valu().clamp = true; instr->definitions[0].swapTemp(def_info.instr->definitions[0]); ctx.info[instr->definitions[0].tempId()].label &= label_clamp | label_insert | label_f2f16; ctx.uses[def_info.instr->definitions[0].tempId()]--; return true; } /* Combine an p_insert (or p_extract, in some cases) instruction with instr. * p_insert(instr(...)) -> instr_insert(). */ bool apply_insert(opt_ctx& ctx, aco_ptr& instr) { if (instr->definitions.empty() || ctx.uses[instr->definitions[0].tempId()] != 1) return false; ssa_info& def_info = ctx.info[instr->definitions[0].tempId()]; if (!def_info.is_insert()) return false; /* if the insert instruction is dead, then the single user of this * instruction is a different instruction */ if (!ctx.uses[def_info.instr->definitions[0].tempId()]) return false; /* MADs/FMAs are created later, so we don't have to update the original add */ assert(!ctx.info[instr->definitions[0].tempId()].is_mad()); SubdwordSel sel = parse_insert(def_info.instr); assert(sel); if (!can_use_SDWA(ctx.program->gfx_level, instr, true)) return false; convert_to_SDWA(ctx.program->gfx_level, instr); if (instr->sdwa().dst_sel.size() != 4) return false; instr->sdwa().dst_sel = sel; instr->definitions[0].swapTemp(def_info.instr->definitions[0]); ctx.info[instr->definitions[0].tempId()].label = 0; ctx.uses[def_info.instr->definitions[0].tempId()]--; return true; } /* Remove superfluous extract after ds_read like so: * p_extract(ds_read_uN(), 0, N, 0) -> ds_read_uN() */ bool apply_ds_extract(opt_ctx& ctx, aco_ptr& extract) { /* Check if p_extract has a usedef operand and is the only user. */ if (!ctx.info[extract->operands[0].tempId()].is_usedef() || ctx.uses[extract->operands[0].tempId()] > 1) return false; /* Check if the usedef is a DS instruction. */ Instruction* ds = ctx.info[extract->operands[0].tempId()].instr; if (ds->format != Format::DS) return false; unsigned extract_idx = extract->operands[1].constantValue(); unsigned bits_extracted = extract->operands[2].constantValue(); unsigned sign_ext = extract->operands[3].constantValue(); unsigned dst_bitsize = extract->definitions[0].bytes() * 8u; /* TODO: These are doable, but probably don't occur too often. */ if (extract_idx || sign_ext || dst_bitsize != 32) return false; unsigned bits_loaded = 0; if (ds->opcode == aco_opcode::ds_read_u8 || ds->opcode == aco_opcode::ds_read_u8_d16) bits_loaded = 8; else if (ds->opcode == aco_opcode::ds_read_u16 || ds->opcode == aco_opcode::ds_read_u16_d16) bits_loaded = 16; else return false; /* Shrink the DS load if the extracted bit size is smaller. */ bits_loaded = MIN2(bits_loaded, bits_extracted); /* Change the DS opcode so it writes the full register. */ if (bits_loaded == 8) ds->opcode = aco_opcode::ds_read_u8; else if (bits_loaded == 16) ds->opcode = aco_opcode::ds_read_u16; else unreachable("Forgot to add DS opcode above."); /* The DS now produces the exact same thing as the extract, remove the extract. */ std::swap(ds->definitions[0], extract->definitions[0]); ctx.uses[extract->definitions[0].tempId()] = 0; ctx.info[ds->definitions[0].tempId()].label = 0; return true; } /* v_and(a, v_subbrev_co(0, 0, vcc)) -> v_cndmask(0, a, vcc) */ bool combine_and_subbrev(opt_ctx& ctx, aco_ptr& instr) { if (instr->usesModifiers()) return false; for (unsigned i = 0; i < 2; i++) { Instruction* op_instr = follow_operand(ctx, instr->operands[i], true); if (op_instr && op_instr->opcode == aco_opcode::v_subbrev_co_u32 && op_instr->operands[0].constantEquals(0) && op_instr->operands[1].constantEquals(0) && !op_instr->usesModifiers()) { aco_ptr new_instr; if (instr->operands[!i].isTemp() && instr->operands[!i].getTemp().type() == RegType::vgpr) { new_instr.reset(create_instruction(aco_opcode::v_cndmask_b32, Format::VOP2, 3, 1)); } else if (ctx.program->gfx_level >= GFX10 || (instr->operands[!i].isConstant() && !instr->operands[!i].isLiteral())) { new_instr.reset( create_instruction(aco_opcode::v_cndmask_b32, asVOP3(Format::VOP2), 3, 1)); } else { return false; } new_instr->operands[0] = Operand::zero(); new_instr->operands[1] = instr->operands[!i]; new_instr->operands[2] = copy_operand(ctx, op_instr->operands[2]); new_instr->definitions[0] = instr->definitions[0]; new_instr->pass_flags = instr->pass_flags; instr = std::move(new_instr); decrease_uses(ctx, op_instr); ctx.info[instr->definitions[0].tempId()].label = 0; return true; } } return false; } /* v_and(a, not(b)) -> v_bfi_b32(b, 0, a) * v_or(a, not(b)) -> v_bfi_b32(b, a, -1) */ bool combine_v_andor_not(opt_ctx& ctx, aco_ptr& instr) { if (instr->usesModifiers()) return false; for (unsigned i = 0; i < 2; i++) { Instruction* op_instr = follow_operand(ctx, instr->operands[i], true); if (op_instr && !op_instr->usesModifiers() && (op_instr->opcode == aco_opcode::v_not_b32 || op_instr->opcode == aco_opcode::s_not_b32)) { Operand ops[3] = { op_instr->operands[0], Operand::zero(), instr->operands[!i], }; if (instr->opcode == aco_opcode::v_or_b32) { ops[1] = instr->operands[!i]; ops[2] = Operand::c32(-1); } if (!check_vop3_operands(ctx, 3, ops)) continue; Instruction* new_instr = create_instruction(aco_opcode::v_bfi_b32, Format::VOP3, 3, 1); if (op_instr->operands[0].isTemp()) ctx.uses[op_instr->operands[0].tempId()]++; for (unsigned j = 0; j < 3; j++) new_instr->operands[j] = ops[j]; new_instr->definitions[0] = instr->definitions[0]; new_instr->pass_flags = instr->pass_flags; instr.reset(new_instr); decrease_uses(ctx, op_instr); ctx.info[instr->definitions[0].tempId()].label = 0; return true; } } return false; } /* v_add_co(c, s_lshl(a, b)) -> v_mad_u32_u24(a, 1< v_mad_u32_u24(b, 1< v_mad_i32_i24(a, -(1< v_mad_i32_i24(b, -(1<& instr, bool is_sub) { if (instr->usesModifiers()) return false; /* Substractions: start at operand 1 to avoid mixup such as * turning v_sub(v_lshlrev(a, b), c) into v_mad_i32_i24(b, -(1<operands[i]); if (!op_instr) continue; if (op_instr->opcode != aco_opcode::s_lshl_b32 && op_instr->opcode != aco_opcode::v_lshlrev_b32) continue; int shift_op_idx = op_instr->opcode == aco_opcode::s_lshl_b32 ? 1 : 0; if (op_instr->operands[shift_op_idx].isConstant() && ((allow_24bit && op_instr->operands[!shift_op_idx].is24bit()) || op_instr->operands[!shift_op_idx].is16bit())) { uint32_t multiplier = 1 << (op_instr->operands[shift_op_idx].constantValue() % 32u); if (is_sub) multiplier = -multiplier; if (is_sub ? (multiplier < 0xff800000) : (multiplier > 0xffffff)) continue; Operand ops[3] = { op_instr->operands[!shift_op_idx], Operand::c32(multiplier), instr->operands[!i], }; if (!check_vop3_operands(ctx, 3, ops)) return false; ctx.uses[instr->operands[i].tempId()]--; aco_opcode mad_op = is_sub ? aco_opcode::v_mad_i32_i24 : aco_opcode::v_mad_u32_u24; aco_ptr new_instr{create_instruction(mad_op, Format::VOP3, 3, 1)}; for (unsigned op_idx = 0; op_idx < 3; ++op_idx) new_instr->operands[op_idx] = ops[op_idx]; new_instr->definitions[0] = instr->definitions[0]; new_instr->pass_flags = instr->pass_flags; instr = std::move(new_instr); ctx.info[instr->definitions[0].tempId()].label = 0; return true; } } return false; } void propagate_swizzles(VALU_instruction* instr, bool opsel_lo, bool opsel_hi) { /* propagate swizzles which apply to a result down to the instruction's operands: * result = a.xy + b.xx -> result.yx = a.yx + b.xx */ uint8_t tmp_lo = instr->opsel_lo; uint8_t tmp_hi = instr->opsel_hi; uint8_t neg_lo = instr->neg_lo; uint8_t neg_hi = instr->neg_hi; if (opsel_lo == 1) { instr->opsel_lo = tmp_hi; instr->neg_lo = neg_hi; } if (opsel_hi == 0) { instr->opsel_hi = tmp_lo; instr->neg_hi = neg_lo; } } void combine_vop3p(opt_ctx& ctx, aco_ptr& instr) { VALU_instruction* vop3p = &instr->valu(); /* apply clamp */ if (instr->opcode == aco_opcode::v_pk_mul_f16 && instr->operands[1].constantEquals(0x3C00) && vop3p->clamp && instr->operands[0].isTemp() && ctx.uses[instr->operands[0].tempId()] == 1 && !vop3p->opsel_lo[1] && !vop3p->opsel_hi[1]) { ssa_info& info = ctx.info[instr->operands[0].tempId()]; if (info.is_vop3p() && instr_info.can_use_output_modifiers[(int)info.instr->opcode]) { VALU_instruction* candidate = &ctx.info[instr->operands[0].tempId()].instr->valu(); candidate->clamp = true; propagate_swizzles(candidate, vop3p->opsel_lo[0], vop3p->opsel_hi[0]); instr->definitions[0].swapTemp(candidate->definitions[0]); ctx.info[candidate->definitions[0].tempId()].instr = candidate; ctx.uses[instr->definitions[0].tempId()]--; return; } } /* check for fneg modifiers */ for (unsigned i = 0; i < instr->operands.size(); i++) { if (!can_use_input_modifiers(ctx.program->gfx_level, instr->opcode, i)) continue; Operand& op = instr->operands[i]; if (!op.isTemp()) continue; ssa_info& info = ctx.info[op.tempId()]; if (info.is_vop3p() && info.instr->opcode == aco_opcode::v_pk_mul_f16 && (info.instr->operands[0].constantEquals(0x3C00) || info.instr->operands[1].constantEquals(0x3C00))) { VALU_instruction* fneg = &info.instr->valu(); unsigned fneg_src = fneg->operands[0].constantEquals(0x3C00); if (fneg->opsel_lo[1 - fneg_src] || fneg->opsel_hi[1 - fneg_src]) continue; Operand ops[3]; for (unsigned j = 0; j < instr->operands.size(); j++) ops[j] = instr->operands[j]; ops[i] = fneg->operands[fneg_src]; if (!check_vop3_operands(ctx, instr->operands.size(), ops)) continue; if (fneg->clamp) continue; instr->operands[i] = fneg->operands[fneg_src]; /* opsel_lo/hi is either 0 or 1: * if 0 - pick selection from fneg->lo * if 1 - pick selection from fneg->hi */ bool opsel_lo = vop3p->opsel_lo[i]; bool opsel_hi = vop3p->opsel_hi[i]; bool neg_lo = fneg->neg_lo[0] ^ fneg->neg_lo[1]; bool neg_hi = fneg->neg_hi[0] ^ fneg->neg_hi[1]; vop3p->neg_lo[i] ^= opsel_lo ? neg_hi : neg_lo; vop3p->neg_hi[i] ^= opsel_hi ? neg_hi : neg_lo; vop3p->opsel_lo[i] ^= opsel_lo ? !fneg->opsel_hi[fneg_src] : fneg->opsel_lo[fneg_src]; vop3p->opsel_hi[i] ^= opsel_hi ? !fneg->opsel_hi[fneg_src] : fneg->opsel_lo[fneg_src]; if (--ctx.uses[fneg->definitions[0].tempId()]) ctx.uses[fneg->operands[fneg_src].tempId()]++; } } if (instr->opcode == aco_opcode::v_pk_add_f16 || instr->opcode == aco_opcode::v_pk_add_u16) { bool fadd = instr->opcode == aco_opcode::v_pk_add_f16; if (fadd && instr->definitions[0].isPrecise()) return; if (!fadd && instr->valu().clamp) return; Instruction* mul_instr = nullptr; unsigned add_op_idx = 0; bitarray8 mul_neg_lo = 0, mul_neg_hi = 0, mul_opsel_lo = 0, mul_opsel_hi = 0; uint32_t uses = UINT32_MAX; /* find the 'best' mul instruction to combine with the add */ for (unsigned i = 0; i < 2; i++) { Instruction* op_instr = follow_operand(ctx, instr->operands[i], true); if (!op_instr) continue; if (ctx.info[instr->operands[i].tempId()].is_vop3p()) { if (fadd) { if (op_instr->opcode != aco_opcode::v_pk_mul_f16 || op_instr->definitions[0].isPrecise()) continue; } else { if (op_instr->opcode != aco_opcode::v_pk_mul_lo_u16) continue; } Operand op[3] = {op_instr->operands[0], op_instr->operands[1], instr->operands[1 - i]}; if (ctx.uses[instr->operands[i].tempId()] >= uses || !check_vop3_operands(ctx, 3, op)) continue; /* no clamp allowed between mul and add */ if (op_instr->valu().clamp) continue; mul_instr = op_instr; add_op_idx = 1 - i; uses = ctx.uses[instr->operands[i].tempId()]; mul_neg_lo = mul_instr->valu().neg_lo; mul_neg_hi = mul_instr->valu().neg_hi; mul_opsel_lo = mul_instr->valu().opsel_lo; mul_opsel_hi = mul_instr->valu().opsel_hi; } else if (instr->operands[i].bytes() == 2) { if ((fadd && (op_instr->opcode != aco_opcode::v_mul_f16 || op_instr->definitions[0].isPrecise())) || (!fadd && op_instr->opcode != aco_opcode::v_mul_lo_u16 && op_instr->opcode != aco_opcode::v_mul_lo_u16_e64)) continue; if (op_instr->valu().clamp || op_instr->valu().omod || op_instr->valu().abs) continue; if (op_instr->isDPP() || (op_instr->isSDWA() && (op_instr->sdwa().sel[0].size() < 2 || op_instr->sdwa().sel[1].size() < 2))) continue; Operand op[3] = {op_instr->operands[0], op_instr->operands[1], instr->operands[1 - i]}; if (ctx.uses[instr->operands[i].tempId()] >= uses || !check_vop3_operands(ctx, 3, op)) continue; mul_instr = op_instr; add_op_idx = 1 - i; uses = ctx.uses[instr->operands[i].tempId()]; mul_neg_lo = mul_instr->valu().neg; mul_neg_hi = mul_instr->valu().neg; if (mul_instr->isSDWA()) { for (unsigned j = 0; j < 2; j++) mul_opsel_lo[j] = mul_instr->sdwa().sel[j].offset(); } else { mul_opsel_lo = mul_instr->valu().opsel; } mul_opsel_hi = mul_opsel_lo; } } if (!mul_instr) return; /* turn mul + packed add into v_pk_fma_f16 */ aco_opcode mad = fadd ? aco_opcode::v_pk_fma_f16 : aco_opcode::v_pk_mad_u16; aco_ptr fma{create_instruction(mad, Format::VOP3P, 3, 1)}; fma->operands[0] = copy_operand(ctx, mul_instr->operands[0]); fma->operands[1] = copy_operand(ctx, mul_instr->operands[1]); fma->operands[2] = instr->operands[add_op_idx]; fma->valu().clamp = vop3p->clamp; fma->valu().neg_lo = mul_neg_lo; fma->valu().neg_hi = mul_neg_hi; fma->valu().opsel_lo = mul_opsel_lo; fma->valu().opsel_hi = mul_opsel_hi; propagate_swizzles(&fma->valu(), vop3p->opsel_lo[1 - add_op_idx], vop3p->opsel_hi[1 - add_op_idx]); fma->valu().opsel_lo[2] = vop3p->opsel_lo[add_op_idx]; fma->valu().opsel_hi[2] = vop3p->opsel_hi[add_op_idx]; fma->valu().neg_lo[2] = vop3p->neg_lo[add_op_idx]; fma->valu().neg_hi[2] = vop3p->neg_hi[add_op_idx]; fma->valu().neg_lo[1] = fma->valu().neg_lo[1] ^ vop3p->neg_lo[1 - add_op_idx]; fma->valu().neg_hi[1] = fma->valu().neg_hi[1] ^ vop3p->neg_hi[1 - add_op_idx]; fma->definitions[0] = instr->definitions[0]; fma->pass_flags = instr->pass_flags; instr = std::move(fma); ctx.info[instr->definitions[0].tempId()].set_vop3p(instr.get()); decrease_uses(ctx, mul_instr); return; } } bool can_use_mad_mix(opt_ctx& ctx, aco_ptr& instr) { if (ctx.program->gfx_level < GFX9) return false; /* v_mad_mix* on GFX9 always flushes denormals for 16-bit inputs/outputs */ if (ctx.program->gfx_level == GFX9 && ctx.fp_mode.denorm16_64) return false; if (instr->valu().omod) return false; switch (instr->opcode) { case aco_opcode::v_add_f32: case aco_opcode::v_sub_f32: case aco_opcode::v_subrev_f32: case aco_opcode::v_mul_f32: return !instr->isSDWA() && !instr->isDPP(); case aco_opcode::v_fma_f32: return ctx.program->dev.fused_mad_mix || !instr->definitions[0].isPrecise(); case aco_opcode::v_fma_mix_f32: case aco_opcode::v_fma_mixlo_f16: return true; default: return false; } } void to_mad_mix(opt_ctx& ctx, aco_ptr& instr) { ctx.info[instr->definitions[0].tempId()].label &= label_f2f16 | label_clamp | label_mul; if (instr->opcode == aco_opcode::v_fma_f32) { instr->format = (Format)((uint32_t)withoutVOP3(instr->format) | (uint32_t)(Format::VOP3P)); instr->opcode = aco_opcode::v_fma_mix_f32; return; } bool is_add = instr->opcode != aco_opcode::v_mul_f32; aco_ptr vop3p{create_instruction(aco_opcode::v_fma_mix_f32, Format::VOP3P, 3, 1)}; for (unsigned i = 0; i < instr->operands.size(); i++) { vop3p->operands[is_add + i] = instr->operands[i]; vop3p->valu().neg_lo[is_add + i] = instr->valu().neg[i]; vop3p->valu().neg_hi[is_add + i] = instr->valu().abs[i]; } if (instr->opcode == aco_opcode::v_mul_f32) { vop3p->operands[2] = Operand::zero(); vop3p->valu().neg_lo[2] = true; } else if (is_add) { vop3p->operands[0] = Operand::c32(0x3f800000); if (instr->opcode == aco_opcode::v_sub_f32) vop3p->valu().neg_lo[2] ^= true; else if (instr->opcode == aco_opcode::v_subrev_f32) vop3p->valu().neg_lo[1] ^= true; } vop3p->definitions[0] = instr->definitions[0]; vop3p->valu().clamp = instr->valu().clamp; vop3p->pass_flags = instr->pass_flags; instr = std::move(vop3p); if (ctx.info[instr->definitions[0].tempId()].label & label_mul) ctx.info[instr->definitions[0].tempId()].instr = instr.get(); } bool combine_output_conversion(opt_ctx& ctx, aco_ptr& instr) { ssa_info& def_info = ctx.info[instr->definitions[0].tempId()]; if (!def_info.is_f2f16()) return false; Instruction* conv = def_info.instr; if (!ctx.uses[conv->definitions[0].tempId()] || ctx.uses[instr->definitions[0].tempId()] != 1) return false; if (conv->usesModifiers()) return false; if (instr->opcode == aco_opcode::v_interp_p2_f32_inreg) interp_p2_f32_inreg_to_fma_dpp(instr); if (!can_use_mad_mix(ctx, instr)) return false; if (!instr->isVOP3P()) to_mad_mix(ctx, instr); instr->opcode = aco_opcode::v_fma_mixlo_f16; instr->definitions[0].swapTemp(conv->definitions[0]); if (conv->definitions[0].isPrecise()) instr->definitions[0].setPrecise(true); ctx.info[instr->definitions[0].tempId()].label &= label_clamp; ctx.uses[conv->definitions[0].tempId()]--; return true; } void combine_mad_mix(opt_ctx& ctx, aco_ptr& instr) { if (!can_use_mad_mix(ctx, instr)) return; for (unsigned i = 0; i < instr->operands.size(); i++) { if (!instr->operands[i].isTemp()) continue; Temp tmp = instr->operands[i].getTemp(); if (!ctx.info[tmp.id()].is_f2f32()) continue; Instruction* conv = ctx.info[tmp.id()].instr; if (conv->valu().clamp || conv->valu().omod) { continue; } else if (conv->isSDWA() && (conv->sdwa().dst_sel.size() != 4 || conv->sdwa().sel[0].size() != 2)) { continue; } else if (conv->isDPP()) { continue; } if (get_operand_size(instr, i) != 32) continue; /* Conversion to VOP3P will add inline constant operands, but that shouldn't affect * check_vop3_operands(). */ Operand op[3]; for (unsigned j = 0; j < instr->operands.size(); j++) op[j] = instr->operands[j]; op[i] = conv->operands[0]; if (!check_vop3_operands(ctx, instr->operands.size(), op)) continue; if (!conv->operands[0].isOfType(RegType::vgpr) && instr->isDPP()) continue; if (!instr->isVOP3P()) { bool is_add = instr->opcode != aco_opcode::v_mul_f32 && instr->opcode != aco_opcode::v_fma_f32; to_mad_mix(ctx, instr); i += is_add; } if (--ctx.uses[tmp.id()]) ctx.uses[conv->operands[0].tempId()]++; instr->operands[i].setTemp(conv->operands[0].getTemp()); if (conv->definitions[0].isPrecise()) instr->definitions[0].setPrecise(true); instr->valu().opsel_hi[i] = true; if (conv->isSDWA() && conv->sdwa().sel[0].offset() == 2) instr->valu().opsel_lo[i] = true; else instr->valu().opsel_lo[i] = conv->valu().opsel[0]; bool neg = conv->valu().neg[0]; bool abs = conv->valu().abs[0]; if (!instr->valu().abs[i]) { instr->valu().neg[i] ^= neg; instr->valu().abs[i] = abs; } } } // TODO: we could possibly move the whole label_instruction pass to combine_instruction: // this would mean that we'd have to fix the instruction uses while value propagation /* also returns true for inf */ bool is_pow_of_two(opt_ctx& ctx, Operand op) { if (op.isTemp() && ctx.info[op.tempId()].is_constant_or_literal(op.bytes() * 8)) return is_pow_of_two(ctx, get_constant_op(ctx, ctx.info[op.tempId()], op.bytes() * 8)); else if (!op.isConstant()) return false; uint64_t val = op.constantValue64(); if (op.bytes() == 4) { uint32_t exponent = (val & 0x7f800000) >> 23; uint32_t fraction = val & 0x007fffff; return (exponent >= 127) && (fraction == 0); } else if (op.bytes() == 2) { uint32_t exponent = (val & 0x7c00) >> 10; uint32_t fraction = val & 0x03ff; return (exponent >= 15) && (fraction == 0); } else { assert(op.bytes() == 8); uint64_t exponent = (val & UINT64_C(0x7ff0000000000000)) >> 52; uint64_t fraction = val & UINT64_C(0x000fffffffffffff); return (exponent >= 1023) && (fraction == 0); } } void combine_instruction(opt_ctx& ctx, aco_ptr& instr) { if (instr->definitions.empty() || is_dead(ctx.uses, instr.get())) return; if (instr->isVALU() || instr->isSALU()) { /* Apply SDWA. Do this after label_instruction() so it can remove * label_extract if not all instructions can take SDWA. */ for (unsigned i = 0; i < instr->operands.size(); i++) { Operand& op = instr->operands[i]; if (!op.isTemp()) continue; ssa_info& info = ctx.info[op.tempId()]; if (!info.is_extract()) continue; /* if there are that many uses, there are likely better combinations */ // TODO: delay applying extract to a point where we know better if (ctx.uses[op.tempId()] > 4) { info.label &= ~label_extract; continue; } if (info.is_extract() && (info.instr->operands[0].getTemp().type() == RegType::vgpr || instr->operands[i].getTemp().type() == RegType::sgpr) && can_apply_extract(ctx, instr, i, info)) { /* Increase use count of the extract's operand if the extract still has uses. */ apply_extract(ctx, instr, i, info); if (--ctx.uses[instr->operands[i].tempId()]) ctx.uses[info.instr->operands[0].tempId()]++; instr->operands[i].setTemp(info.instr->operands[0].getTemp()); } } } if (instr->isVALU()) { if (can_apply_sgprs(ctx, instr)) apply_sgprs(ctx, instr); combine_mad_mix(ctx, instr); while (apply_omod_clamp(ctx, instr) || combine_output_conversion(ctx, instr)) ; apply_insert(ctx, instr); } if (instr->isVOP3P() && instr->opcode != aco_opcode::v_fma_mix_f32 && instr->opcode != aco_opcode::v_fma_mixlo_f16) return combine_vop3p(ctx, instr); if (instr->isSDWA() || instr->isDPP()) return; if (instr->opcode == aco_opcode::p_extract) { ssa_info& info = ctx.info[instr->operands[0].tempId()]; if (info.is_extract() && can_apply_extract(ctx, instr, 0, info)) { apply_extract(ctx, instr, 0, info); if (--ctx.uses[instr->operands[0].tempId()]) ctx.uses[info.instr->operands[0].tempId()]++; instr->operands[0].setTemp(info.instr->operands[0].getTemp()); } apply_ds_extract(ctx, instr); } /* TODO: There are still some peephole optimizations that could be done: * - abs(a - b) -> s_absdiff_i32 * - various patterns for s_bitcmp{0,1}_b32 and s_bitset{0,1}_b32 * - patterns for v_alignbit_b32 and v_alignbyte_b32 * These aren't probably too interesting though. * There are also patterns for v_cmp_class_f{16,32,64}. This is difficult but * probably more useful than the previously mentioned optimizations. * The various comparison optimizations also currently only work with 32-bit * floats. */ /* neg(mul(a, b)) -> mul(neg(a), b), abs(mul(a, b)) -> mul(abs(a), abs(b)) */ if ((ctx.info[instr->definitions[0].tempId()].label & (label_neg | label_abs)) && ctx.uses[instr->operands[1].tempId()] == 1) { Temp val = ctx.info[instr->definitions[0].tempId()].temp; if (!ctx.info[val.id()].is_mul()) return; Instruction* mul_instr = ctx.info[val.id()].instr; if (mul_instr->operands[0].isLiteral()) return; if (mul_instr->valu().clamp) return; if (mul_instr->isSDWA() || mul_instr->isDPP()) return; if (mul_instr->opcode == aco_opcode::v_mul_legacy_f32 && ctx.fp_mode.preserve_signed_zero_inf_nan32) return; if (mul_instr->definitions[0].bytes() != instr->definitions[0].bytes()) return; /* convert to mul(neg(a), b), mul(abs(a), abs(b)) or mul(neg(abs(a)), abs(b)) */ ctx.uses[mul_instr->definitions[0].tempId()]--; Definition def = instr->definitions[0]; bool is_neg = ctx.info[instr->definitions[0].tempId()].is_neg(); bool is_abs = ctx.info[instr->definitions[0].tempId()].is_abs(); uint32_t pass_flags = instr->pass_flags; Format format = mul_instr->format == Format::VOP2 ? asVOP3(Format::VOP2) : mul_instr->format; instr.reset(create_instruction(mul_instr->opcode, format, mul_instr->operands.size(), 1)); std::copy(mul_instr->operands.cbegin(), mul_instr->operands.cend(), instr->operands.begin()); instr->pass_flags = pass_flags; instr->definitions[0] = def; VALU_instruction& new_mul = instr->valu(); VALU_instruction& mul = mul_instr->valu(); new_mul.neg = mul.neg; new_mul.abs = mul.abs; new_mul.omod = mul.omod; new_mul.opsel = mul.opsel; new_mul.opsel_lo = mul.opsel_lo; new_mul.opsel_hi = mul.opsel_hi; if (is_abs) { new_mul.neg[0] = new_mul.neg[1] = false; new_mul.abs[0] = new_mul.abs[1] = true; } new_mul.neg[0] ^= is_neg; new_mul.clamp = false; ctx.info[instr->definitions[0].tempId()].set_mul(instr.get()); return; } /* combine mul+add -> mad */ bool is_add_mix = (instr->opcode == aco_opcode::v_fma_mix_f32 || instr->opcode == aco_opcode::v_fma_mixlo_f16) && !instr->valu().neg_lo[0] && ((instr->operands[0].constantEquals(0x3f800000) && !instr->valu().opsel_hi[0]) || (instr->operands[0].constantEquals(0x3C00) && instr->valu().opsel_hi[0] && !instr->valu().opsel_lo[0])); bool mad32 = instr->opcode == aco_opcode::v_add_f32 || instr->opcode == aco_opcode::v_sub_f32 || instr->opcode == aco_opcode::v_subrev_f32; bool mad16 = instr->opcode == aco_opcode::v_add_f16 || instr->opcode == aco_opcode::v_sub_f16 || instr->opcode == aco_opcode::v_subrev_f16; bool mad64 = instr->opcode == aco_opcode::v_add_f64_e64 || instr->opcode == aco_opcode::v_add_f64; if (is_add_mix || mad16 || mad32 || mad64) { Instruction* mul_instr = nullptr; unsigned add_op_idx = 0; uint32_t uses = UINT32_MAX; bool emit_fma = false; /* find the 'best' mul instruction to combine with the add */ for (unsigned i = is_add_mix ? 1 : 0; i < instr->operands.size(); i++) { if (!instr->operands[i].isTemp() || !ctx.info[instr->operands[i].tempId()].is_mul()) continue; ssa_info& info = ctx.info[instr->operands[i].tempId()]; /* no clamp/omod allowed between mul and add */ if (info.instr->isVOP3() && (info.instr->valu().clamp || info.instr->valu().omod)) continue; if (info.instr->isVOP3P() && info.instr->valu().clamp) continue; /* v_fma_mix_f32/etc can't do omod */ if (info.instr->isVOP3P() && instr->isVOP3() && instr->valu().omod) continue; /* don't promote fp16 to fp32 or remove fp32->fp16->fp32 conversions */ if (is_add_mix && info.instr->definitions[0].bytes() == 2) continue; if (get_operand_size(instr, i) != info.instr->definitions[0].bytes() * 8) continue; bool legacy = info.instr->opcode == aco_opcode::v_mul_legacy_f32; bool mad_mix = is_add_mix || info.instr->isVOP3P(); /* Multiplication by power-of-two should never need rounding. 1/power-of-two also works, * but using fma removes denormal flushing (0xfffffe * 0.5 + 0x810001a2). */ bool is_fma_precise = is_pow_of_two(ctx, info.instr->operands[0]) || is_pow_of_two(ctx, info.instr->operands[1]); bool has_fma = mad16 || mad64 || (legacy && ctx.program->gfx_level >= GFX10_3) || (mad32 && !legacy && !mad_mix && ctx.program->dev.has_fast_fma32) || (mad_mix && ctx.program->dev.fused_mad_mix); bool has_mad = mad_mix ? !ctx.program->dev.fused_mad_mix : ((mad32 && ctx.program->gfx_level < GFX10_3) || (mad16 && ctx.program->gfx_level <= GFX9)); bool can_use_fma = has_fma && (!(info.instr->definitions[0].isPrecise() || instr->definitions[0].isPrecise()) || is_fma_precise); bool can_use_mad = has_mad && (mad_mix || mad32 ? ctx.fp_mode.denorm32 : ctx.fp_mode.denorm16_64) == 0; if (mad_mix && legacy) continue; if (!can_use_fma && !can_use_mad) continue; unsigned candidate_add_op_idx = is_add_mix ? (3 - i) : (1 - i); Operand op[3] = {info.instr->operands[0], info.instr->operands[1], instr->operands[candidate_add_op_idx]}; if (info.instr->isSDWA() || info.instr->isDPP() || !check_vop3_operands(ctx, 3, op) || ctx.uses[instr->operands[i].tempId()] > uses) continue; if (ctx.uses[instr->operands[i].tempId()] == uses) { unsigned cur_idx = mul_instr->definitions[0].tempId(); unsigned new_idx = info.instr->definitions[0].tempId(); if (cur_idx > new_idx) continue; } mul_instr = info.instr; add_op_idx = candidate_add_op_idx; uses = ctx.uses[instr->operands[i].tempId()]; emit_fma = !can_use_mad; } if (mul_instr) { /* turn mul+add into v_mad/v_fma */ Operand op[3] = {mul_instr->operands[0], mul_instr->operands[1], instr->operands[add_op_idx]}; ctx.uses[mul_instr->definitions[0].tempId()]--; if (ctx.uses[mul_instr->definitions[0].tempId()]) { if (op[0].isTemp()) ctx.uses[op[0].tempId()]++; if (op[1].isTemp()) ctx.uses[op[1].tempId()]++; } bool neg[3] = {false, false, false}; bool abs[3] = {false, false, false}; unsigned omod = 0; bool clamp = false; bitarray8 opsel_lo = 0; bitarray8 opsel_hi = 0; bitarray8 opsel = 0; unsigned mul_op_idx = (instr->isVOP3P() ? 3 : 1) - add_op_idx; VALU_instruction& valu_mul = mul_instr->valu(); neg[0] = valu_mul.neg[0]; neg[1] = valu_mul.neg[1]; abs[0] = valu_mul.abs[0]; abs[1] = valu_mul.abs[1]; opsel_lo = valu_mul.opsel_lo & 0x3; opsel_hi = valu_mul.opsel_hi & 0x3; opsel = valu_mul.opsel & 0x3; VALU_instruction& valu = instr->valu(); neg[2] = valu.neg[add_op_idx]; abs[2] = valu.abs[add_op_idx]; opsel_lo[2] = valu.opsel_lo[add_op_idx]; opsel_hi[2] = valu.opsel_hi[add_op_idx]; opsel[2] = valu.opsel[add_op_idx]; opsel[3] = valu.opsel[3]; omod = valu.omod; clamp = valu.clamp; /* abs of the multiplication result */ if (valu.abs[mul_op_idx]) { neg[0] = false; neg[1] = false; abs[0] = true; abs[1] = true; } /* neg of the multiplication result */ neg[1] ^= valu.neg[mul_op_idx]; if (instr->opcode == aco_opcode::v_sub_f32 || instr->opcode == aco_opcode::v_sub_f16) neg[1 + add_op_idx] = neg[1 + add_op_idx] ^ true; else if (instr->opcode == aco_opcode::v_subrev_f32 || instr->opcode == aco_opcode::v_subrev_f16) neg[2 - add_op_idx] = neg[2 - add_op_idx] ^ true; aco_ptr add_instr = std::move(instr); aco_ptr mad; if (add_instr->isVOP3P() || mul_instr->isVOP3P()) { assert(!omod); assert(!opsel); aco_opcode mad_op = add_instr->definitions[0].bytes() == 2 ? aco_opcode::v_fma_mixlo_f16 : aco_opcode::v_fma_mix_f32; mad.reset(create_instruction(mad_op, Format::VOP3P, 3, 1)); } else { assert(!opsel_lo); assert(!opsel_hi); aco_opcode mad_op = emit_fma ? aco_opcode::v_fma_f32 : aco_opcode::v_mad_f32; if (mul_instr->opcode == aco_opcode::v_mul_legacy_f32) { assert(emit_fma == (ctx.program->gfx_level >= GFX10_3)); mad_op = emit_fma ? aco_opcode::v_fma_legacy_f32 : aco_opcode::v_mad_legacy_f32; } else if (mad16) { mad_op = emit_fma ? (ctx.program->gfx_level == GFX8 ? aco_opcode::v_fma_legacy_f16 : aco_opcode::v_fma_f16) : (ctx.program->gfx_level == GFX8 ? aco_opcode::v_mad_legacy_f16 : aco_opcode::v_mad_f16); } else if (mad64) { mad_op = aco_opcode::v_fma_f64; } mad.reset(create_instruction(mad_op, Format::VOP3, 3, 1)); } for (unsigned i = 0; i < 3; i++) { mad->operands[i] = op[i]; mad->valu().neg[i] = neg[i]; mad->valu().abs[i] = abs[i]; } mad->valu().omod = omod; mad->valu().clamp = clamp; mad->valu().opsel_lo = opsel_lo; mad->valu().opsel_hi = opsel_hi; mad->valu().opsel = opsel; mad->definitions[0] = add_instr->definitions[0]; mad->definitions[0].setPrecise(add_instr->definitions[0].isPrecise() || mul_instr->definitions[0].isPrecise()); mad->pass_flags = add_instr->pass_flags; instr = std::move(mad); /* mark this ssa_def to be re-checked for profitability and literals */ ctx.mad_infos.emplace_back(std::move(add_instr), mul_instr->definitions[0].tempId()); ctx.info[instr->definitions[0].tempId()].set_mad(ctx.mad_infos.size() - 1); return; } } /* v_mul_f32(v_cndmask_b32(0, 1.0, cond), a) -> v_cndmask_b32(0, a, cond) */ else if (((instr->opcode == aco_opcode::v_mul_f32 && !ctx.fp_mode.preserve_signed_zero_inf_nan32) || instr->opcode == aco_opcode::v_mul_legacy_f32) && !instr->usesModifiers() && !ctx.fp_mode.must_flush_denorms32) { for (unsigned i = 0; i < 2; i++) { if (instr->operands[i].isTemp() && ctx.info[instr->operands[i].tempId()].is_b2f() && ctx.uses[instr->operands[i].tempId()] == 1 && instr->operands[!i].isTemp() && instr->operands[!i].getTemp().type() == RegType::vgpr) { ctx.uses[instr->operands[i].tempId()]--; ctx.uses[ctx.info[instr->operands[i].tempId()].temp.id()]++; aco_ptr new_instr{ create_instruction(aco_opcode::v_cndmask_b32, Format::VOP2, 3, 1)}; new_instr->operands[0] = Operand::zero(); new_instr->operands[1] = instr->operands[!i]; new_instr->operands[2] = Operand(ctx.info[instr->operands[i].tempId()].temp); new_instr->definitions[0] = instr->definitions[0]; new_instr->pass_flags = instr->pass_flags; instr = std::move(new_instr); ctx.info[instr->definitions[0].tempId()].label = 0; return; } } } else if (instr->opcode == aco_opcode::v_or_b32 && ctx.program->gfx_level >= GFX9) { if (combine_three_valu_op(ctx, instr, aco_opcode::s_or_b32, aco_opcode::v_or3_b32, "012", 1 | 2)) { } else if (combine_three_valu_op(ctx, instr, aco_opcode::v_or_b32, aco_opcode::v_or3_b32, "012", 1 | 2)) { } else if (combine_add_or_then_and_lshl(ctx, instr)) { } else if (combine_v_andor_not(ctx, instr)) { } } else if (instr->opcode == aco_opcode::v_xor_b32 && ctx.program->gfx_level >= GFX10) { if (combine_three_valu_op(ctx, instr, aco_opcode::v_xor_b32, aco_opcode::v_xor3_b32, "012", 1 | 2)) { } else if (combine_three_valu_op(ctx, instr, aco_opcode::s_xor_b32, aco_opcode::v_xor3_b32, "012", 1 | 2)) { } else if (combine_xor_not(ctx, instr)) { } } else if (instr->opcode == aco_opcode::v_not_b32 && ctx.program->gfx_level >= GFX10) { combine_not_xor(ctx, instr); } else if (instr->opcode == aco_opcode::v_add_u16 && !instr->valu().clamp) { combine_three_valu_op( ctx, instr, aco_opcode::v_mul_lo_u16, ctx.program->gfx_level == GFX8 ? aco_opcode::v_mad_legacy_u16 : aco_opcode::v_mad_u16, "120", 1 | 2); } else if (instr->opcode == aco_opcode::v_add_u16_e64 && !instr->valu().clamp) { combine_three_valu_op(ctx, instr, aco_opcode::v_mul_lo_u16_e64, aco_opcode::v_mad_u16, "120", 1 | 2); } else if (instr->opcode == aco_opcode::v_add_u32 && !instr->usesModifiers()) { if (combine_add_sub_b2i(ctx, instr, aco_opcode::v_addc_co_u32, 1 | 2)) { } else if (combine_add_bcnt(ctx, instr)) { } else if (combine_three_valu_op(ctx, instr, aco_opcode::v_mul_u32_u24, aco_opcode::v_mad_u32_u24, "120", 1 | 2)) { } else if (combine_three_valu_op(ctx, instr, aco_opcode::v_mul_i32_i24, aco_opcode::v_mad_i32_i24, "120", 1 | 2)) { } else if (ctx.program->gfx_level >= GFX9) { if (combine_three_valu_op(ctx, instr, aco_opcode::s_xor_b32, aco_opcode::v_xad_u32, "120", 1 | 2)) { } else if (combine_three_valu_op(ctx, instr, aco_opcode::v_xor_b32, aco_opcode::v_xad_u32, "120", 1 | 2)) { } else if (combine_three_valu_op(ctx, instr, aco_opcode::s_add_i32, aco_opcode::v_add3_u32, "012", 1 | 2)) { } else if (combine_three_valu_op(ctx, instr, aco_opcode::s_add_u32, aco_opcode::v_add3_u32, "012", 1 | 2)) { } else if (combine_three_valu_op(ctx, instr, aco_opcode::v_add_u32, aco_opcode::v_add3_u32, "012", 1 | 2)) { } else if (combine_add_or_then_and_lshl(ctx, instr)) { } } } else if ((instr->opcode == aco_opcode::v_add_co_u32 || instr->opcode == aco_opcode::v_add_co_u32_e64) && !instr->usesModifiers()) { bool carry_out = ctx.uses[instr->definitions[1].tempId()] > 0; if (combine_add_sub_b2i(ctx, instr, aco_opcode::v_addc_co_u32, 1 | 2)) { } else if (!carry_out && combine_add_bcnt(ctx, instr)) { } else if (!carry_out && combine_three_valu_op(ctx, instr, aco_opcode::v_mul_u32_u24, aco_opcode::v_mad_u32_u24, "120", 1 | 2)) { } else if (!carry_out && combine_three_valu_op(ctx, instr, aco_opcode::v_mul_i32_i24, aco_opcode::v_mad_i32_i24, "120", 1 | 2)) { } else if (!carry_out && combine_add_lshl(ctx, instr, false)) { } } else if (instr->opcode == aco_opcode::v_sub_u32 || instr->opcode == aco_opcode::v_sub_co_u32 || instr->opcode == aco_opcode::v_sub_co_u32_e64) { bool carry_out = instr->opcode != aco_opcode::v_sub_u32 && ctx.uses[instr->definitions[1].tempId()] > 0; if (combine_add_sub_b2i(ctx, instr, aco_opcode::v_subbrev_co_u32, 2)) { } else if (!carry_out && combine_add_lshl(ctx, instr, true)) { } } else if (instr->opcode == aco_opcode::v_subrev_u32 || instr->opcode == aco_opcode::v_subrev_co_u32 || instr->opcode == aco_opcode::v_subrev_co_u32_e64) { combine_add_sub_b2i(ctx, instr, aco_opcode::v_subbrev_co_u32, 1); } else if (instr->opcode == aco_opcode::v_lshlrev_b32 && ctx.program->gfx_level >= GFX9) { combine_three_valu_op(ctx, instr, aco_opcode::v_add_u32, aco_opcode::v_add_lshl_u32, "120", 2); } else if ((instr->opcode == aco_opcode::s_add_u32 || instr->opcode == aco_opcode::s_add_i32) && ctx.program->gfx_level >= GFX9) { combine_salu_lshl_add(ctx, instr); } else if (instr->opcode == aco_opcode::s_not_b32 || instr->opcode == aco_opcode::s_not_b64) { if (!combine_salu_not_bitwise(ctx, instr)) combine_inverse_comparison(ctx, instr); } else if (instr->opcode == aco_opcode::s_and_b32 || instr->opcode == aco_opcode::s_or_b32 || instr->opcode == aco_opcode::s_and_b64 || instr->opcode == aco_opcode::s_or_b64) { combine_salu_n2(ctx, instr); } else if (instr->opcode == aco_opcode::s_abs_i32) { combine_sabsdiff(ctx, instr); } else if (instr->opcode == aco_opcode::v_and_b32) { if (combine_and_subbrev(ctx, instr)) { } else if (combine_v_andor_not(ctx, instr)) { } } else if (instr->opcode == aco_opcode::v_fma_f32 || instr->opcode == aco_opcode::v_fma_f16) { /* set existing v_fma_f32 with label_mad so we can create v_fmamk_f32/v_fmaak_f32. * since ctx.uses[mad_info::mul_temp_id] is always 0, we don't have to worry about * select_instruction() using mad_info::add_instr. */ ctx.mad_infos.emplace_back(nullptr, 0); ctx.info[instr->definitions[0].tempId()].set_mad(ctx.mad_infos.size() - 1); } else if (instr->opcode == aco_opcode::v_med3_f32 || instr->opcode == aco_opcode::v_med3_f16) { /* Optimize v_med3 to v_add so that it can be dual issued on GFX11. We start with v_med3 in * case omod can be applied. */ unsigned idx; if (detect_clamp(instr.get(), &idx)) { instr->format = asVOP3(Format::VOP2); instr->operands[0] = instr->operands[idx]; instr->operands[1] = Operand::zero(); instr->opcode = instr->opcode == aco_opcode::v_med3_f32 ? aco_opcode::v_add_f32 : aco_opcode::v_add_f16; instr->valu().clamp = true; instr->valu().abs = (uint8_t)instr->valu().abs[idx]; instr->valu().neg = (uint8_t)instr->valu().neg[idx]; instr->operands.pop_back(); } } else { aco_opcode min, max, min3, max3, med3, minmax; bool some_gfx9_only; if (get_minmax_info(instr->opcode, &min, &max, &min3, &max3, &med3, &minmax, &some_gfx9_only) && (!some_gfx9_only || ctx.program->gfx_level >= GFX9)) { if (combine_minmax(ctx, instr, instr->opcode == min ? max : min, instr->opcode == min ? min3 : max3, minmax)) { } else { combine_clamp(ctx, instr, min, max, med3); } } } } struct remat_entry { Instruction* instr; uint32_t block; }; inline bool is_constant(Instruction* instr) { if (instr->opcode != aco_opcode::p_parallelcopy || instr->operands.size() != 1) return false; return instr->operands[0].isConstant() && instr->definitions[0].isTemp(); } void remat_constants_instr(opt_ctx& ctx, aco::map& constants, Instruction* instr, uint32_t block_idx) { for (Operand& op : instr->operands) { if (!op.isTemp()) continue; auto it = constants.find(op.getTemp()); if (it == constants.end()) continue; /* Check if we already emitted the same constant in this block. */ if (it->second.block != block_idx) { /* Rematerialize the constant. */ Builder bld(ctx.program, &ctx.instructions); Operand const_op = it->second.instr->operands[0]; it->second.instr = bld.copy(bld.def(op.regClass()), const_op); it->second.block = block_idx; ctx.uses.push_back(0); ctx.info.push_back(ctx.info[op.tempId()]); } /* Use the rematerialized constant and update information about latest use. */ if (op.getTemp() != it->second.instr->definitions[0].getTemp()) { ctx.uses[op.tempId()]--; op.setTemp(it->second.instr->definitions[0].getTemp()); ctx.uses[op.tempId()]++; } } } /** * This pass implements a simple constant rematerialization. * As common subexpression elimination (CSE) might increase the live-ranges * of loaded constants over large distances, this pass splits the live-ranges * again by re-emitting constants in every basic block. */ void rematerialize_constants(opt_ctx& ctx) { aco::monotonic_buffer_resource memory(1024); aco::map constants(memory); for (Block& block : ctx.program->blocks) { if (block.logical_idom == -1) continue; if (block.logical_idom == (int)block.index) constants.clear(); ctx.instructions.reserve(block.instructions.size()); for (aco_ptr& instr : block.instructions) { if (is_dead(ctx.uses, instr.get())) continue; if (is_constant(instr.get())) { Temp tmp = instr->definitions[0].getTemp(); constants[tmp] = {instr.get(), block.index}; } else if (!is_phi(instr)) { remat_constants_instr(ctx, constants, instr.get(), block.index); } ctx.instructions.emplace_back(instr.release()); } block.instructions = std::move(ctx.instructions); } } bool to_uniform_bool_instr(opt_ctx& ctx, aco_ptr& instr) { /* Check every operand to make sure they are suitable. */ for (Operand& op : instr->operands) { if (!op.isTemp()) return false; if (!ctx.info[op.tempId()].is_uniform_bool() && !ctx.info[op.tempId()].is_uniform_bitwise()) return false; } switch (instr->opcode) { case aco_opcode::s_and_b32: case aco_opcode::s_and_b64: instr->opcode = aco_opcode::s_and_b32; break; case aco_opcode::s_or_b32: case aco_opcode::s_or_b64: instr->opcode = aco_opcode::s_or_b32; break; case aco_opcode::s_xor_b32: case aco_opcode::s_xor_b64: instr->opcode = aco_opcode::s_absdiff_i32; break; default: /* Don't transform other instructions. They are very unlikely to appear here. */ return false; } for (Operand& op : instr->operands) { ctx.uses[op.tempId()]--; if (ctx.info[op.tempId()].is_uniform_bool()) { /* Just use the uniform boolean temp. */ op.setTemp(ctx.info[op.tempId()].temp); } else if (ctx.info[op.tempId()].is_uniform_bitwise()) { /* Use the SCC definition of the predecessor instruction. * This allows the predecessor to get picked up by the same optimization (if it has no * divergent users), and it also makes sure that the current instruction will keep working * even if the predecessor won't be transformed. */ Instruction* pred_instr = ctx.info[op.tempId()].instr; assert(pred_instr->definitions.size() >= 2); assert(pred_instr->definitions[1].isFixed() && pred_instr->definitions[1].physReg() == scc); op.setTemp(pred_instr->definitions[1].getTemp()); } else { unreachable("Invalid operand on uniform bitwise instruction."); } ctx.uses[op.tempId()]++; } instr->definitions[0].setTemp(Temp(instr->definitions[0].tempId(), s1)); ctx.program->temp_rc[instr->definitions[0].tempId()] = s1; assert(instr->operands[0].regClass() == s1); assert(instr->operands[1].regClass() == s1); return true; } void select_instruction(opt_ctx& ctx, aco_ptr& instr) { const uint32_t threshold = 4; if (is_dead(ctx.uses, instr.get())) { instr.reset(); return; } /* convert split_vector into a copy or extract_vector if only one definition is ever used */ if (instr->opcode == aco_opcode::p_split_vector) { unsigned num_used = 0; unsigned idx = 0; unsigned split_offset = 0; for (unsigned i = 0, offset = 0; i < instr->definitions.size(); offset += instr->definitions[i++].bytes()) { if (ctx.uses[instr->definitions[i].tempId()]) { num_used++; idx = i; split_offset = offset; } } bool done = false; if (num_used == 1 && ctx.info[instr->operands[0].tempId()].is_vec() && ctx.uses[instr->operands[0].tempId()] == 1) { Instruction* vec = ctx.info[instr->operands[0].tempId()].instr; unsigned off = 0; Operand op; for (Operand& vec_op : vec->operands) { if (off == split_offset) { op = vec_op; break; } off += vec_op.bytes(); } if (off != instr->operands[0].bytes() && op.bytes() == instr->definitions[idx].bytes()) { ctx.uses[instr->operands[0].tempId()]--; for (Operand& vec_op : vec->operands) { if (vec_op.isTemp()) ctx.uses[vec_op.tempId()]--; } if (op.isTemp()) ctx.uses[op.tempId()]++; aco_ptr copy{ create_instruction(aco_opcode::p_parallelcopy, Format::PSEUDO, 1, 1)}; copy->operands[0] = op; copy->definitions[0] = instr->definitions[idx]; instr = std::move(copy); done = true; } } if (!done && num_used == 1 && instr->operands[0].bytes() % instr->definitions[idx].bytes() == 0 && split_offset % instr->definitions[idx].bytes() == 0) { aco_ptr extract{ create_instruction(aco_opcode::p_extract_vector, Format::PSEUDO, 2, 1)}; extract->operands[0] = instr->operands[0]; extract->operands[1] = Operand::c32((uint32_t)split_offset / instr->definitions[idx].bytes()); extract->definitions[0] = instr->definitions[idx]; instr = std::move(extract); } } mad_info* mad_info = NULL; if (!instr->definitions.empty() && ctx.info[instr->definitions[0].tempId()].is_mad()) { mad_info = &ctx.mad_infos[ctx.info[instr->definitions[0].tempId()].val]; /* re-check mad instructions */ if (ctx.uses[mad_info->mul_temp_id] && mad_info->add_instr) { ctx.uses[mad_info->mul_temp_id]++; if (instr->operands[0].isTemp()) ctx.uses[instr->operands[0].tempId()]--; if (instr->operands[1].isTemp()) ctx.uses[instr->operands[1].tempId()]--; instr.swap(mad_info->add_instr); mad_info = NULL; } /* check literals */ else if (!instr->isDPP() && !instr->isVOP3P() && instr->opcode != aco_opcode::v_fma_f64 && instr->opcode != aco_opcode::v_mad_legacy_f32 && instr->opcode != aco_opcode::v_fma_legacy_f32) { /* FMA can only take literals on GFX10+ */ if ((instr->opcode == aco_opcode::v_fma_f32 || instr->opcode == aco_opcode::v_fma_f16) && ctx.program->gfx_level < GFX10) return; /* There are no v_fmaak_legacy_f16/v_fmamk_legacy_f16 and on chips where VOP3 can take * literals (GFX10+), these instructions don't exist. */ if (instr->opcode == aco_opcode::v_fma_legacy_f16) return; uint32_t literal_mask = 0; uint32_t fp16_mask = 0; uint32_t sgpr_mask = 0; uint32_t vgpr_mask = 0; uint32_t literal_uses = UINT32_MAX; uint32_t literal_value = 0; /* Iterate in reverse to prefer v_madak/v_fmaak. */ for (int i = 2; i >= 0; i--) { Operand& op = instr->operands[i]; if (!op.isTemp()) continue; if (ctx.info[op.tempId()].is_literal(get_operand_size(instr, i))) { uint32_t new_literal = ctx.info[op.tempId()].val; float value = uif(new_literal); uint16_t fp16_val = _mesa_float_to_half(value); bool is_denorm = (fp16_val & 0x7fff) != 0 && (fp16_val & 0x7fff) <= 0x3ff; if (_mesa_half_to_float(fp16_val) == value && (!is_denorm || (ctx.fp_mode.denorm16_64 & fp_denorm_keep_in))) fp16_mask |= 1 << i; if (!literal_mask || literal_value == new_literal) { literal_value = new_literal; literal_uses = MIN2(literal_uses, ctx.uses[op.tempId()]); literal_mask |= 1 << i; continue; } } sgpr_mask |= op.isOfType(RegType::sgpr) << i; vgpr_mask |= op.isOfType(RegType::vgpr) << i; } /* The constant bus limitations before GFX10 disallows SGPRs. */ if (sgpr_mask && ctx.program->gfx_level < GFX10) literal_mask = 0; /* Encoding needs a vgpr. */ if (!vgpr_mask) literal_mask = 0; /* v_madmk/v_fmamk needs a vgpr in the third source. */ if (!(literal_mask & 0b100) && !(vgpr_mask & 0b100)) literal_mask = 0; /* opsel with GFX11+ is the only modifier supported by fmamk/fmaak*/ if (instr->valu().abs || instr->valu().neg || instr->valu().omod || instr->valu().clamp || (instr->valu().opsel && ctx.program->gfx_level < GFX11)) literal_mask = 0; if (instr->valu().opsel & ~vgpr_mask) literal_mask = 0; /* We can't use three unique fp16 literals */ if (fp16_mask == 0b111) fp16_mask = 0b11; if ((instr->opcode == aco_opcode::v_fma_f32 || (instr->opcode == aco_opcode::v_mad_f32 && !instr->definitions[0].isPrecise())) && !instr->valu().omod && ctx.program->gfx_level >= GFX10 && util_bitcount(fp16_mask) > std::max(util_bitcount(literal_mask), 1)) { assert(ctx.program->dev.fused_mad_mix); u_foreach_bit (i, fp16_mask) ctx.uses[instr->operands[i].tempId()]--; mad_info->fp16_mask = fp16_mask; return; } /* Limit the number of literals to apply to not increase the code * size too much, but always apply literals for v_mad->v_madak * because both instructions are 64-bit and this doesn't increase * code size. * TODO: try to apply the literals earlier to lower the number of * uses below threshold */ if (literal_mask && (literal_uses < threshold || (literal_mask & 0b100))) { u_foreach_bit (i, literal_mask) ctx.uses[instr->operands[i].tempId()]--; mad_info->literal_mask = literal_mask; return; } } } /* Mark SCC needed, so the uniform boolean transformation won't swap the definitions * when it isn't beneficial */ if (instr->isBranch() && instr->operands.size() && instr->operands[0].isTemp() && instr->operands[0].isFixed() && instr->operands[0].physReg() == scc) { ctx.info[instr->operands[0].tempId()].set_scc_needed(); return; } else if ((instr->opcode == aco_opcode::s_cselect_b64 || instr->opcode == aco_opcode::s_cselect_b32) && instr->operands[2].isTemp()) { ctx.info[instr->operands[2].tempId()].set_scc_needed(); } /* check for literals */ if (!instr->isSALU() && !instr->isVALU()) return; /* Transform uniform bitwise boolean operations to 32-bit when there are no divergent uses. */ if (instr->definitions.size() && ctx.uses[instr->definitions[0].tempId()] == 0 && ctx.info[instr->definitions[0].tempId()].is_uniform_bitwise()) { bool transform_done = to_uniform_bool_instr(ctx, instr); if (transform_done && !ctx.info[instr->definitions[1].tempId()].is_scc_needed()) { /* Swap the two definition IDs in order to avoid overusing the SCC. * This reduces extra moves generated by RA. */ uint32_t def0_id = instr->definitions[0].getTemp().id(); uint32_t def1_id = instr->definitions[1].getTemp().id(); instr->definitions[0].setTemp(Temp(def1_id, s1)); instr->definitions[1].setTemp(Temp(def0_id, s1)); } return; } /* This optimization is done late in order to be able to apply otherwise * unsafe optimizations such as the inverse comparison optimization. */ if (instr->opcode == aco_opcode::s_and_b32 || instr->opcode == aco_opcode::s_and_b64) { if (instr->operands[0].isTemp() && fixed_to_exec(instr->operands[1]) && ctx.uses[instr->operands[0].tempId()] == 1 && ctx.uses[instr->definitions[1].tempId()] == 0 && can_eliminate_and_exec(ctx, instr->operands[0].getTemp(), instr->pass_flags)) { ctx.uses[instr->operands[0].tempId()]--; ctx.info[instr->operands[0].tempId()].instr->definitions[0].setTemp( instr->definitions[0].getTemp()); instr.reset(); return; } } /* Combine DPP copies into VALU. This should be done after creating MAD/FMA. */ if (instr->isVALU() && !instr->isDPP()) { for (unsigned i = 0; i < instr->operands.size(); i++) { if (!instr->operands[i].isTemp()) continue; ssa_info info = ctx.info[instr->operands[i].tempId()]; if (!info.is_dpp() || info.instr->pass_flags != instr->pass_flags) continue; /* We won't eliminate the DPP mov if the operand is used twice */ bool op_used_twice = false; for (unsigned j = 0; j < instr->operands.size(); j++) op_used_twice |= i != j && instr->operands[i] == instr->operands[j]; if (op_used_twice) continue; if (i != 0) { if (!can_swap_operands(instr, &instr->opcode, 0, i)) continue; instr->valu().swapOperands(0, i); } if (!can_use_DPP(ctx.program->gfx_level, instr, info.is_dpp8())) continue; bool dpp8 = info.is_dpp8(); bool input_mods = can_use_input_modifiers(ctx.program->gfx_level, instr->opcode, 0) && get_operand_size(instr, 0) == 32; bool mov_uses_mods = info.instr->valu().neg[0] || info.instr->valu().abs[0]; if (((dpp8 && ctx.program->gfx_level < GFX11) || !input_mods) && mov_uses_mods) continue; convert_to_DPP(ctx.program->gfx_level, instr, dpp8); if (dpp8) { DPP8_instruction* dpp = &instr->dpp8(); dpp->lane_sel = info.instr->dpp8().lane_sel; dpp->fetch_inactive = info.instr->dpp8().fetch_inactive; if (mov_uses_mods) instr->format = asVOP3(instr->format); } else { DPP16_instruction* dpp = &instr->dpp16(); dpp->dpp_ctrl = info.instr->dpp16().dpp_ctrl; dpp->bound_ctrl = info.instr->dpp16().bound_ctrl; dpp->fetch_inactive = info.instr->dpp16().fetch_inactive; } instr->valu().neg[0] ^= info.instr->valu().neg[0] && !instr->valu().abs[0]; instr->valu().abs[0] |= info.instr->valu().abs[0]; if (--ctx.uses[info.instr->definitions[0].tempId()]) ctx.uses[info.instr->operands[0].tempId()]++; instr->operands[0].setTemp(info.instr->operands[0].getTemp()); break; } } /* Use v_fma_mix for f2f32/f2f16 if it has higher throughput. * Do this late to not disturb other optimizations. */ if ((instr->opcode == aco_opcode::v_cvt_f32_f16 || instr->opcode == aco_opcode::v_cvt_f16_f32) && ctx.program->gfx_level >= GFX11 && ctx.program->wave_size == 64 && !instr->valu().omod && !instr->isDPP()) { bool is_f2f16 = instr->opcode == aco_opcode::v_cvt_f16_f32; Instruction* fma = create_instruction( is_f2f16 ? aco_opcode::v_fma_mixlo_f16 : aco_opcode::v_fma_mix_f32, Format::VOP3P, 3, 1); fma->definitions[0] = instr->definitions[0]; fma->operands[0] = instr->operands[0]; fma->valu().opsel_hi[0] = !is_f2f16; fma->valu().opsel_lo[0] = instr->valu().opsel[0]; fma->valu().clamp = instr->valu().clamp; fma->valu().abs[0] = instr->valu().abs[0]; fma->valu().neg[0] = instr->valu().neg[0]; fma->operands[1] = Operand::c32(fui(1.0f)); fma->operands[2] = Operand::zero(); fma->valu().neg[2] = true; instr.reset(fma); ctx.info[instr->definitions[0].tempId()].label = 0; } if (instr->isSDWA() || (instr->isVOP3() && ctx.program->gfx_level < GFX10) || (instr->isVOP3P() && ctx.program->gfx_level < GFX10)) return; /* some encodings can't ever take literals */ /* we do not apply the literals yet as we don't know if it is profitable */ Operand current_literal(s1); unsigned literal_id = 0; unsigned literal_uses = UINT32_MAX; Operand literal(s1); unsigned num_operands = 1; if (instr->isSALU() || (ctx.program->gfx_level >= GFX10 && (can_use_VOP3(ctx, instr) || instr->isVOP3P()) && !instr->isDPP())) num_operands = instr->operands.size(); /* catch VOP2 with a 3rd SGPR operand (e.g. v_cndmask_b32, v_addc_co_u32) */ else if (instr->isVALU() && instr->operands.size() >= 3) return; unsigned sgpr_ids[2] = {0, 0}; bool is_literal_sgpr = false; uint32_t mask = 0; /* choose a literal to apply */ for (unsigned i = 0; i < num_operands; i++) { Operand op = instr->operands[i]; unsigned bits = get_operand_size(instr, i); if (instr->isVALU() && op.isTemp() && op.getTemp().type() == RegType::sgpr && op.tempId() != sgpr_ids[0]) sgpr_ids[!!sgpr_ids[0]] = op.tempId(); if (op.isLiteral()) { current_literal = op; continue; } else if (!op.isTemp() || !ctx.info[op.tempId()].is_literal(bits)) { continue; } if (!alu_can_accept_constant(instr, i)) continue; if (ctx.uses[op.tempId()] < literal_uses) { is_literal_sgpr = op.getTemp().type() == RegType::sgpr; mask = 0; literal = Operand::c32(ctx.info[op.tempId()].val); literal_uses = ctx.uses[op.tempId()]; literal_id = op.tempId(); } mask |= (op.tempId() == literal_id) << i; } /* don't go over the constant bus limit */ bool is_shift64 = instr->opcode == aco_opcode::v_lshlrev_b64_e64 || instr->opcode == aco_opcode::v_lshlrev_b64 || instr->opcode == aco_opcode::v_lshrrev_b64 || instr->opcode == aco_opcode::v_ashrrev_i64; unsigned const_bus_limit = instr->isVALU() ? 1 : UINT32_MAX; if (ctx.program->gfx_level >= GFX10 && !is_shift64) const_bus_limit = 2; unsigned num_sgprs = !!sgpr_ids[0] + !!sgpr_ids[1]; if (num_sgprs == const_bus_limit && !is_literal_sgpr) return; if (literal_id && literal_uses < threshold && (current_literal.isUndefined() || (current_literal.size() == literal.size() && current_literal.constantValue() == literal.constantValue()))) { /* mark the literal to be applied */ while (mask) { unsigned i = u_bit_scan(&mask); if (instr->operands[i].isTemp() && instr->operands[i].tempId() == literal_id) ctx.uses[instr->operands[i].tempId()]--; } } } static aco_opcode sopk_opcode_for_sopc(aco_opcode opcode) { #define CTOK(op) \ case aco_opcode::s_cmp_##op##_i32: return aco_opcode::s_cmpk_##op##_i32; \ case aco_opcode::s_cmp_##op##_u32: return aco_opcode::s_cmpk_##op##_u32; switch (opcode) { CTOK(eq) CTOK(lg) CTOK(gt) CTOK(ge) CTOK(lt) CTOK(le) default: return aco_opcode::num_opcodes; } #undef CTOK } static bool sopc_is_signed(aco_opcode opcode) { #define SOPC(op) \ case aco_opcode::s_cmp_##op##_i32: return true; \ case aco_opcode::s_cmp_##op##_u32: return false; switch (opcode) { SOPC(eq) SOPC(lg) SOPC(gt) SOPC(ge) SOPC(lt) SOPC(le) default: unreachable("Not a valid SOPC instruction."); } #undef SOPC } static aco_opcode sopc_32_swapped(aco_opcode opcode) { #define SOPC(op1, op2) \ case aco_opcode::s_cmp_##op1##_i32: return aco_opcode::s_cmp_##op2##_i32; \ case aco_opcode::s_cmp_##op1##_u32: return aco_opcode::s_cmp_##op2##_u32; switch (opcode) { SOPC(eq, eq) SOPC(lg, lg) SOPC(gt, lt) SOPC(ge, le) SOPC(lt, gt) SOPC(le, ge) default: return aco_opcode::num_opcodes; } #undef SOPC } static void try_convert_sopc_to_sopk(aco_ptr& instr) { if (sopk_opcode_for_sopc(instr->opcode) == aco_opcode::num_opcodes) return; if (instr->operands[0].isLiteral()) { std::swap(instr->operands[0], instr->operands[1]); instr->opcode = sopc_32_swapped(instr->opcode); } if (!instr->operands[1].isLiteral()) return; if (instr->operands[0].isFixed() && instr->operands[0].physReg() >= 128) return; uint32_t value = instr->operands[1].constantValue(); const uint32_t i16_mask = 0xffff8000u; bool value_is_i16 = (value & i16_mask) == 0 || (value & i16_mask) == i16_mask; bool value_is_u16 = !(value & 0xffff0000u); if (!value_is_i16 && !value_is_u16) return; if (!value_is_i16 && sopc_is_signed(instr->opcode)) { if (instr->opcode == aco_opcode::s_cmp_lg_i32) instr->opcode = aco_opcode::s_cmp_lg_u32; else if (instr->opcode == aco_opcode::s_cmp_eq_i32) instr->opcode = aco_opcode::s_cmp_eq_u32; else return; } else if (!value_is_u16 && !sopc_is_signed(instr->opcode)) { if (instr->opcode == aco_opcode::s_cmp_lg_u32) instr->opcode = aco_opcode::s_cmp_lg_i32; else if (instr->opcode == aco_opcode::s_cmp_eq_u32) instr->opcode = aco_opcode::s_cmp_eq_i32; else return; } instr->format = Format::SOPK; SALU_instruction* instr_sopk = &instr->salu(); instr_sopk->imm = instr_sopk->operands[1].constantValue() & 0xffff; instr_sopk->opcode = sopk_opcode_for_sopc(instr_sopk->opcode); instr_sopk->operands.pop_back(); } static void opt_fma_mix_acc(opt_ctx& ctx, aco_ptr& instr) { /* fma_mix is only dual issued on gfx11 if dst and acc type match */ bool f2f16 = instr->opcode == aco_opcode::v_fma_mixlo_f16; if (instr->valu().opsel_hi[2] == f2f16 || instr->isDPP()) return; bool is_add = false; for (unsigned i = 0; i < 2; i++) { uint32_t one = instr->valu().opsel_hi[i] ? 0x3800 : 0x3f800000; is_add = instr->operands[i].constantEquals(one) && !instr->valu().neg[i] && !instr->valu().opsel_lo[i]; if (is_add) { instr->valu().swapOperands(0, i); break; } } if (is_add && instr->valu().opsel_hi[1] == f2f16) { instr->valu().swapOperands(1, 2); return; } unsigned literal_count = instr->operands[0].isLiteral() + instr->operands[1].isLiteral() + instr->operands[2].isLiteral(); if (!f2f16 || literal_count > 1) return; /* try to convert constant operand to fp16 */ for (unsigned i = 2 - is_add; i < 3; i++) { if (!instr->operands[i].isConstant()) continue; float value = uif(instr->operands[i].constantValue()); uint16_t fp16_val = _mesa_float_to_half(value); bool is_denorm = (fp16_val & 0x7fff) != 0 && (fp16_val & 0x7fff) <= 0x3ff; if (_mesa_half_to_float(fp16_val) != value || (is_denorm && !(ctx.fp_mode.denorm16_64 & fp_denorm_keep_in))) continue; instr->valu().swapOperands(i, 2); Operand op16 = Operand::c16(fp16_val); assert(!op16.isLiteral() || instr->operands[2].isLiteral()); instr->operands[2] = op16; instr->valu().opsel_lo[2] = false; instr->valu().opsel_hi[2] = true; return; } } void apply_literals(opt_ctx& ctx, aco_ptr& instr) { /* Cleanup Dead Instructions */ if (!instr) return; /* apply literals on MAD */ if (!instr->definitions.empty() && ctx.info[instr->definitions[0].tempId()].is_mad()) { mad_info* info = &ctx.mad_infos[ctx.info[instr->definitions[0].tempId()].val]; const bool madak = (info->literal_mask & 0b100); bool has_dead_literal = false; u_foreach_bit (i, info->literal_mask | info->fp16_mask) has_dead_literal |= ctx.uses[instr->operands[i].tempId()] == 0; if (has_dead_literal && info->fp16_mask) { instr->format = Format::VOP3P; instr->opcode = aco_opcode::v_fma_mix_f32; uint32_t literal = 0; bool second = false; u_foreach_bit (i, info->fp16_mask) { float value = uif(ctx.info[instr->operands[i].tempId()].val); literal |= _mesa_float_to_half(value) << (second * 16); instr->valu().opsel_lo[i] = second; instr->valu().opsel_hi[i] = true; second = true; } for (unsigned i = 0; i < 3; i++) { if (info->fp16_mask & (1 << i)) instr->operands[i] = Operand::literal32(literal); } ctx.instructions.emplace_back(std::move(instr)); return; } if (has_dead_literal || madak) { aco_opcode new_op = madak ? aco_opcode::v_madak_f32 : aco_opcode::v_madmk_f32; if (instr->opcode == aco_opcode::v_fma_f32) new_op = madak ? aco_opcode::v_fmaak_f32 : aco_opcode::v_fmamk_f32; else if (instr->opcode == aco_opcode::v_mad_f16 || instr->opcode == aco_opcode::v_mad_legacy_f16) new_op = madak ? aco_opcode::v_madak_f16 : aco_opcode::v_madmk_f16; else if (instr->opcode == aco_opcode::v_fma_f16) new_op = madak ? aco_opcode::v_fmaak_f16 : aco_opcode::v_fmamk_f16; uint32_t literal = ctx.info[instr->operands[ffs(info->literal_mask) - 1].tempId()].val; instr->format = Format::VOP2; instr->opcode = new_op; for (unsigned i = 0; i < 3; i++) { if (info->literal_mask & (1 << i)) instr->operands[i] = Operand::literal32(literal); } if (madak) { /* add literal -> madak */ if (!instr->operands[1].isOfType(RegType::vgpr)) instr->valu().swapOperands(0, 1); } else { /* mul literal -> madmk */ if (!(info->literal_mask & 0b10)) instr->valu().swapOperands(0, 1); instr->valu().swapOperands(1, 2); } ctx.instructions.emplace_back(std::move(instr)); return; } } /* apply literals on other SALU/VALU */ if (instr->isSALU() || instr->isVALU()) { for (unsigned i = 0; i < instr->operands.size(); i++) { Operand op = instr->operands[i]; unsigned bits = get_operand_size(instr, i); if (op.isTemp() && ctx.info[op.tempId()].is_literal(bits) && ctx.uses[op.tempId()] == 0) { Operand literal = Operand::literal32(ctx.info[op.tempId()].val); instr->format = withoutDPP(instr->format); if (instr->isVALU() && i > 0 && instr->format != Format::VOP3P) instr->format = asVOP3(instr->format); instr->operands[i] = literal; } } } if (instr->isSOPC() && ctx.program->gfx_level < GFX12) try_convert_sopc_to_sopk(instr); if (instr->opcode == aco_opcode::v_fma_mixlo_f16 || instr->opcode == aco_opcode::v_fma_mix_f32) opt_fma_mix_acc(ctx, instr); ctx.instructions.emplace_back(std::move(instr)); } } /* end namespace */ void optimize(Program* program) { opt_ctx ctx; ctx.program = program; ctx.info = std::vector(program->peekAllocationId()); /* 1. Bottom-Up DAG pass (forward) to label all ssa-defs */ for (Block& block : program->blocks) { ctx.fp_mode = block.fp_mode; for (aco_ptr& instr : block.instructions) label_instruction(ctx, instr); } ctx.uses = dead_code_analysis(program); /* 2. Rematerialize constants in every block. */ rematerialize_constants(ctx); /* 3. Combine v_mad, omod, clamp and propagate sgpr on VALU instructions */ for (Block& block : program->blocks) { ctx.fp_mode = block.fp_mode; for (aco_ptr& instr : block.instructions) combine_instruction(ctx, instr); } /* 4. Top-Down DAG pass (backward) to select instructions (includes DCE) */ for (auto block_rit = program->blocks.rbegin(); block_rit != program->blocks.rend(); ++block_rit) { Block* block = &(*block_rit); ctx.fp_mode = block->fp_mode; for (auto instr_rit = block->instructions.rbegin(); instr_rit != block->instructions.rend(); ++instr_rit) select_instruction(ctx, *instr_rit); } /* 5. Add literals to instructions */ for (Block& block : program->blocks) { ctx.instructions.reserve(block.instructions.size()); ctx.fp_mode = block.fp_mode; for (aco_ptr& instr : block.instructions) apply_literals(ctx, instr); block.instructions = std::move(ctx.instructions); } } } // namespace aco