1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
|
#include <math.h>
#include <unistd.h>
#include <pthread.h>
#include <sys/time.h>
#include "threads.h"
#include "utility.h"
namespace audiere {
struct ThreadInternal {
AI_ThreadRoutine routine;
void* opaque;
};
void* ThreadRoutine(void* arg) {
ThreadInternal* ti = (ThreadInternal*)arg;
ti->routine(ti->opaque);
delete ti;
return NULL;
}
bool AI_CreateThread(AI_ThreadRoutine routine, void* opaque, int priority) {
ThreadInternal* ti = new ThreadInternal;
ti->routine = routine;
ti->opaque = opaque;
pthread_attr_t attr;
if (pthread_attr_init(&attr)) {
delete ti;
return false;
}
// get default scheduling policy
int policy;
if (pthread_attr_getschedpolicy(&attr, &policy)) {
pthread_attr_destroy(&attr);
delete ti;
return false;
}
int min_prio = sched_get_priority_min(policy);
int max_prio = sched_get_priority_max(policy);
// get default scheduling parameters
sched_param sched;
if (pthread_attr_getschedparam(&attr, &sched)) {
pthread_attr_destroy(&attr);
delete ti;
return false;
}
// treat the specified priority as an offset from the default one
sched.sched_priority = clamp(
min_prio,
sched.sched_priority + priority,
max_prio);
if (pthread_attr_setschedparam(&attr, &sched)) {
pthread_attr_destroy(&attr);
delete ti;
return false;
}
pthread_t thread;
int result = pthread_create(&thread, &attr, ThreadRoutine, ti);
if (result != 0) {
pthread_attr_destroy(&attr);
delete ti;
return false;
}
pthread_attr_destroy(&attr);
return true;
}
void AI_Sleep(unsigned milliseconds) {
int seconds = milliseconds / 1000;
int useconds = (milliseconds % 1000) * 1000;
sleep(seconds);
usleep(useconds);
}
struct Mutex::Impl {
pthread_mutex_t mutex;
};
Mutex::Mutex() {
m_impl = new Impl;
int result = pthread_mutex_init(&m_impl->mutex, 0);
if (result != 0) {
delete m_impl;
m_impl = 0;
ADR_LOG("pthread_mutex_init() failed in Mutex::Mutex()");
abort();
}
}
Mutex::~Mutex() {
pthread_mutex_destroy(&m_impl->mutex);
delete m_impl;
}
void Mutex::lock() {
pthread_mutex_lock(&m_impl->mutex);
}
void Mutex::unlock() {
pthread_mutex_unlock(&m_impl->mutex);
}
struct CondVar::Impl {
pthread_cond_t cond;
};
CondVar::CondVar() {
m_impl = new Impl;
int result = pthread_cond_init(&m_impl->cond, 0);
if (result != 0) {
delete m_impl;
m_impl = 0;
ADR_LOG("pthread_cond_init() failed in CondVar::CondVar()");
abort();
}
}
CondVar::~CondVar() {
pthread_cond_destroy(&m_impl->cond);
delete m_impl;
}
void CondVar::wait(Mutex& mutex, float seconds) {
double ds = seconds; // May need greater than float precision.
timeval tv;
gettimeofday(&tv, 0);
ds += tv.tv_sec + tv.tv_usec / 1000000000.0;
timespec ts;
ts.tv_sec = int(ds);
ts.tv_nsec = int((ds - floor(ds)) * 1000000000);
pthread_cond_timedwait(&m_impl->cond, &mutex.m_impl->mutex, &ts);
}
void CondVar::notify() {
pthread_cond_signal(&m_impl->cond);
}
}
|