summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorGary Wong <gtw@gnu.org>2008-12-13 14:15:33 -0700
committerGary Wong <gtw@gnu.org>2008-12-13 14:28:28 -0700
commitd28e8528958b472c821e3b72a28c22f337aba66e (patch)
treec6babe9657436c4dcabf30ea61d45267f2128745
parentd427a2910fbb130c1be49667b0133c7605eef7ed (diff)
i965: Finish OPCODE_NOISEn instructions.
Added missing OPCODE_NOISE4, and use BRW_REGISTER_TYPE_D (instead of _UD) in the initial RNDD instructions (which avoids saturating negative inputs to 0).
-rw-r--r--src/mesa/drivers/dri/i965/brw_wm_glsl.c451
1 files changed, 437 insertions, 14 deletions
diff --git a/src/mesa/drivers/dri/i965/brw_wm_glsl.c b/src/mesa/drivers/dri/i965/brw_wm_glsl.c
index cb728190f5..baecfdcb79 100644
--- a/src/mesa/drivers/dri/i965/brw_wm_glsl.c
+++ b/src/mesa/drivers/dri/i965/brw_wm_glsl.c
@@ -1095,7 +1095,7 @@ static void noise1_sub( struct brw_wm_compile *c ) {
/* Arrange the two end coordinates into scalars (itmp0/itmp1) to
be hashed. Also compute the remainder (offset within the unit
length), interleaved to reduce register dependency penalties. */
- brw_RNDD( p, itmp[ 0 ], param );
+ brw_RNDD( p, retype( itmp[ 0 ], BRW_REGISTER_TYPE_D ), param );
brw_FRC( p, param, param );
brw_ADD( p, itmp[ 1 ], itmp[ 0 ], brw_imm_ud( 1 ) );
brw_MOV( p, itmp[ 3 ], brw_imm_ud( 0x79D9 ) ); /* constant used later */
@@ -1220,8 +1220,8 @@ static void noise2_sub( struct brw_wm_compile *c ) {
/* Arrange the four corner coordinates into scalars (itmp0..itmp3) to
be hashed. Also compute the remainders (offsets within the unit
square), interleaved to reduce register dependency penalties. */
- brw_RNDD( p, itmp[ 0 ], param0 );
- brw_RNDD( p, itmp[ 1 ], param1 );
+ brw_RNDD( p, retype( itmp[ 0 ], BRW_REGISTER_TYPE_D ), param0 );
+ brw_RNDD( p, retype( itmp[ 1 ], BRW_REGISTER_TYPE_D ), param1 );
brw_FRC( p, param0, param0 );
brw_FRC( p, param1, param1 );
brw_MOV( p, itmp[ 4 ], brw_imm_ud( 0xBA97 ) ); /* constant used later */
@@ -1400,21 +1400,19 @@ static void noise3_sub( struct brw_wm_compile *c ) {
/* Arrange the eight corner coordinates into scalars (itmp0..itmp3) to
be hashed. Also compute the remainders (offsets within the unit
cube), interleaved to reduce register dependency penalties. */
- brw_RNDD( p, itmp[ 0 ], param0 );
- brw_RNDD( p, itmp[ 1 ], param1 );
- brw_RNDD( p, itmp[ 2 ], param2 );
- brw_MOV( p, itmp[ 4 ], brw_imm_ud( 0xBC8F ) ); /* constant used later */
- brw_MOV( p, itmp[ 5 ], brw_imm_ud( 0xD0BD ) ); /* constant used later */
- brw_MOV( p, itmp[ 6 ], brw_imm_ud( 0x9B93 ) ); /* constant used later */
+ brw_RNDD( p, retype( itmp[ 0 ], BRW_REGISTER_TYPE_D ), param0 );
+ brw_RNDD( p, retype( itmp[ 1 ], BRW_REGISTER_TYPE_D ), param1 );
+ brw_RNDD( p, retype( itmp[ 2 ], BRW_REGISTER_TYPE_D ), param2 );
brw_FRC( p, param0, param0 );
brw_FRC( p, param1, param1 );
brw_FRC( p, param2, param2 );
/* Since we now have only 16 bits of precision in the hash, we must
be more careful about thorough mixing to maintain entropy as we
squash the input vector into a small scalar. */
- brw_MUL( p, brw_acc_reg(), itmp[ 4 ], itmp[ 0 ] );
- brw_MAC( p, brw_acc_reg(), itmp[ 5 ], itmp[ 1 ] );
- brw_MAC( p, itmp[ 0 ], itmp[ 6 ], itmp[ 2 ] );
+ brw_MUL( p, brw_null_reg(), low_words( itmp[ 0 ] ), brw_imm_uw( 0xBC8F ) );
+ brw_MAC( p, brw_null_reg(), low_words( itmp[ 1 ] ), brw_imm_uw( 0xD0BD ) );
+ brw_MAC( p, low_words( itmp[ 0 ] ), low_words( itmp[ 2 ] ),
+ brw_imm_uw( 0x9B93 ) );
brw_ADD( p, high_words( itmp[ 0 ] ), low_words( itmp[ 0 ] ),
brw_imm_uw( 0xBC8F ) );
@@ -1668,6 +1666,430 @@ static void emit_noise3( struct brw_wm_compile *c,
release_tmps( c, mark );
}
+/* For the four-dimensional case, the little micro-optimisation benefits
+ we obtain by unrolling all the loops aren't worth the massive bloat it
+ now causes. Instead, we loop twice around performing a similar operation
+ to noise3, once for the w=0 cube and once for the w=1, with a bit more
+ code to glue it all together. */
+static void noise4_sub( struct brw_wm_compile *c ) {
+
+ struct brw_compile *p = &c->func;
+ struct brw_reg param[ 4 ],
+ x0y0, x0y1, x1y0, x1y1, /* gradients at four of the corners */
+ w0, /* noise for the w=0 cube */
+ floors[ 2 ], /* integer coordinates of base corner of hypercube */
+ interp[ 4 ], /* interpolation coefficients */
+ t, tmp[ 8 ], /* float temporaries */
+ itmp[ 8 ], /* unsigned integer temporaries (aliases of floats above) */
+ wtmp[ 8 ]; /* 16-way unsigned word temporaries (aliases of above) */
+ int i, j;
+ int mark = mark_tmps( c );
+ GLuint loop, origin;
+
+ x0y0 = alloc_tmp( c );
+ x0y1 = alloc_tmp( c );
+ x1y0 = alloc_tmp( c );
+ x1y1 = alloc_tmp( c );
+ t = alloc_tmp( c );
+ w0 = alloc_tmp( c );
+ floors[ 0 ] = retype( alloc_tmp( c ), BRW_REGISTER_TYPE_UD );
+ floors[ 1 ] = retype( alloc_tmp( c ), BRW_REGISTER_TYPE_UD );
+
+ for( i = 0; i < 4; i++ ) {
+ param[ i ] = lookup_tmp( c, mark - 5 + i );
+ interp[ i ] = alloc_tmp( c );
+ }
+
+ for( i = 0; i < 8; i++ ) {
+ tmp[ i ] = alloc_tmp( c );
+ itmp[ i ] = retype( tmp[ i ], BRW_REGISTER_TYPE_UD );
+ wtmp[ i ] = brw_uw16_grf( tmp[ i ].nr, 0 );
+ }
+
+ brw_set_access_mode( p, BRW_ALIGN_1 );
+
+ /* We only want 16 bits of precision from the integral part of each
+ co-ordinate, but unfortunately the RNDD semantics would saturate
+ at 16 bits if we performed the operation directly to a 16-bit
+ destination. Therefore, we round to 32-bit temporaries where
+ appropriate, and then store only the lower 16 bits. */
+ brw_RNDD( p, retype( floors[ 0 ], BRW_REGISTER_TYPE_D ), param[ 0 ] );
+ brw_RNDD( p, retype( itmp[ 0 ], BRW_REGISTER_TYPE_D ), param[ 1 ] );
+ brw_RNDD( p, retype( floors[ 1 ], BRW_REGISTER_TYPE_D ), param[ 2 ] );
+ brw_RNDD( p, retype( itmp[ 1 ], BRW_REGISTER_TYPE_D ), param[ 3 ] );
+ brw_MOV( p, high_words( floors[ 0 ] ), low_words( itmp[ 0 ] ) );
+ brw_MOV( p, high_words( floors[ 1 ] ), low_words( itmp[ 1 ] ) );
+
+ /* Modify the flag register here, because the side effect is useful
+ later (see below). We know for certain that all flags will be
+ cleared, since the FRC instruction cannot possibly generate
+ negative results. Even for exceptional inputs (infinities, denormals,
+ NaNs), the architecture guarantees that the L conditional is false. */
+ brw_set_conditionalmod( p, BRW_CONDITIONAL_L );
+ brw_FRC( p, param[ 0 ], param[ 0 ] );
+ brw_set_predicate_control( p, BRW_PREDICATE_NONE );
+ for( i = 1; i < 4; i++ )
+ brw_FRC( p, param[ i ], param[ i ] );
+
+ /* Calculate the interpolation coefficients (6t^5 - 15t^4 + 10t^3) first
+ of all. */
+ for( i = 0; i < 4; i++ )
+ brw_MUL( p, interp[ i ], param[ i ], brw_imm_f( 6.0 ) );
+ for( i = 0; i < 4; i++ )
+ brw_ADD( p, interp[ i ], interp[ i ], brw_imm_f( -15.0 ) );
+ for( i = 0; i < 4; i++ )
+ brw_MUL( p, interp[ i ], interp[ i ], param[ i ] );
+ for( i = 0; i < 4; i++ )
+ brw_ADD( p, interp[ i ], interp[ i ], brw_imm_f( 10.0 ) );
+ for( j = 0; j < 3; j++ )
+ for( i = 0; i < 4; i++ )
+ brw_MUL( p, interp[ i ], interp[ i ], param[ i ] );
+
+ /* Mark the current address, as it will be a jump destination. The
+ following code will be executed twice: first, with the flag
+ register clear indicating the w=0 case, and second with flags
+ set for w=1. */
+ loop = p->nr_insn;
+
+ /* Arrange the eight corner coordinates into scalars (itmp0..itmp3) to
+ be hashed. Since we have only 16 bits of precision in the hash, we
+ must be careful about thorough mixing to maintain entropy as we
+ squash the input vector into a small scalar. */
+ brw_MUL( p, brw_null_reg(), low_words( floors[ 0 ] ),
+ brw_imm_uw( 0xBC8F ) );
+ brw_MAC( p, brw_null_reg(), high_words( floors[ 0 ] ),
+ brw_imm_uw( 0xD0BD ) );
+ brw_MAC( p, brw_null_reg(), low_words( floors[ 1 ] ),
+ brw_imm_uw( 0x9B93 ) );
+ brw_MAC( p, low_words( itmp[ 0 ] ), high_words( floors[ 1 ] ),
+ brw_imm_uw( 0xA359 ) );
+ brw_ADD( p, high_words( itmp[ 0 ] ), low_words( itmp[ 0 ] ),
+ brw_imm_uw( 0xBC8F ) );
+
+ /* Temporarily disable the execution mask while we work with ExecSize=16
+ channels (the mask is set for ExecSize=8 and is probably incorrect).
+ Although this might cause execution of unwanted channels, the code
+ writes only to temporary registers and has no side effects, so
+ disabling the mask is harmless. */
+ brw_push_insn_state( p );
+ brw_set_mask_control( p, BRW_MASK_DISABLE );
+ brw_ADD( p, wtmp[ 1 ], wtmp[ 0 ], brw_imm_uw( 0xD0BD ) );
+ brw_ADD( p, wtmp[ 2 ], wtmp[ 0 ], brw_imm_uw( 0x9B93 ) );
+ brw_ADD( p, wtmp[ 3 ], wtmp[ 1 ], brw_imm_uw( 0x9B93 ) );
+
+ /* We're now ready to perform the hashing. The eight hashes are
+ interleaved for performance. The hash function used is
+ designed to rapidly achieve avalanche and require only 16x16
+ bit multiplication, and 8-bit swizzles (which we get for
+ free). */
+ for( i = 0; i < 4; i++ )
+ brw_MUL( p, wtmp[ i ], wtmp[ i ], brw_imm_uw( 0x28D9 ) );
+ for( i = 0; i < 4; i++ )
+ brw_XOR( p, even_bytes( wtmp[ i ] ), even_bytes( wtmp[ i ] ),
+ odd_bytes( wtmp[ i ] ) );
+ for( i = 0; i < 4; i++ )
+ brw_MUL( p, wtmp[ i ], wtmp[ i ], brw_imm_uw( 0xC6D5 ) );
+ for( i = 0; i < 4; i++ )
+ brw_XOR( p, even_bytes( wtmp[ i ] ), even_bytes( wtmp[ i ] ),
+ odd_bytes( wtmp[ i ] ) );
+ brw_pop_insn_state( p );
+
+ /* Now we want to initialise the four rear gradients based on the
+ hashes. Format conversion from signed integer to float leaves
+ everything scaled too high by a factor of pow( 2, 15 ), but
+ we correct for that right at the end. */
+ /* x component */
+ brw_ADD( p, t, param[ 0 ], brw_imm_f( -1.0 ) );
+ brw_MOV( p, x0y0, low_words( tmp[ 0 ] ) );
+ brw_MOV( p, x0y1, low_words( tmp[ 1 ] ) );
+ brw_MOV( p, x1y0, high_words( tmp[ 0 ] ) );
+ brw_MOV( p, x1y1, high_words( tmp[ 1 ] ) );
+
+ brw_push_insn_state( p );
+ brw_set_mask_control( p, BRW_MASK_DISABLE );
+ brw_SHL( p, wtmp[ 0 ], wtmp[ 0 ], brw_imm_uw( 4 ) );
+ brw_SHL( p, wtmp[ 1 ], wtmp[ 1 ], brw_imm_uw( 4 ) );
+ brw_pop_insn_state( p );
+
+ brw_MUL( p, x1y0, x1y0, t );
+ brw_MUL( p, x1y1, x1y1, t );
+ brw_ADD( p, t, param[ 1 ], brw_imm_f( -1.0 ) );
+ brw_MUL( p, x0y0, x0y0, param[ 0 ] );
+ brw_MUL( p, x0y1, x0y1, param[ 0 ] );
+
+ /* y component */
+ brw_MOV( p, tmp[ 5 ], low_words( tmp[ 1 ] ) );
+ brw_MOV( p, tmp[ 7 ], high_words( tmp[ 1 ] ) );
+ brw_MOV( p, tmp[ 4 ], low_words( tmp[ 0 ] ) );
+ brw_MOV( p, tmp[ 6 ], high_words( tmp[ 0 ] ) );
+
+ brw_push_insn_state( p );
+ brw_set_mask_control( p, BRW_MASK_DISABLE );
+ brw_SHL( p, wtmp[ 0 ], wtmp[ 0 ], brw_imm_uw( 4 ) );
+ brw_SHL( p, wtmp[ 1 ], wtmp[ 1 ], brw_imm_uw( 4 ) );
+ brw_pop_insn_state( p );
+
+ brw_MUL( p, tmp[ 5 ], tmp[ 5 ], t );
+ brw_MUL( p, tmp[ 7 ], tmp[ 7 ], t );
+ /* prepare t for the w component (used below): w the first time through
+ the loop; w - 1 the second time) */
+ brw_set_predicate_control( p, BRW_PREDICATE_NORMAL );
+ brw_ADD( p, t, param[ 3 ], brw_imm_f( -1.0 ) );
+ p->current->header.predicate_inverse = 1;
+ brw_MOV( p, t, param[ 3 ] );
+ p->current->header.predicate_inverse = 0;
+ brw_set_predicate_control( p, BRW_PREDICATE_NONE );
+ brw_MUL( p, tmp[ 4 ], tmp[ 4 ], param[ 1 ] );
+ brw_MUL( p, tmp[ 6 ], tmp[ 6 ], param[ 1 ] );
+
+ brw_ADD( p, x0y1, x0y1, tmp[ 5 ] );
+ brw_ADD( p, x1y1, x1y1, tmp[ 7 ] );
+ brw_ADD( p, x0y0, x0y0, tmp[ 4 ] );
+ brw_ADD( p, x1y0, x1y0, tmp[ 6 ] );
+
+ /* z component */
+ brw_MOV( p, tmp[ 4 ], low_words( tmp[ 0 ] ) );
+ brw_MOV( p, tmp[ 5 ], low_words( tmp[ 1 ] ) );
+ brw_MOV( p, tmp[ 6 ], high_words( tmp[ 0 ] ) );
+ brw_MOV( p, tmp[ 7 ], high_words( tmp[ 1 ] ) );
+
+ brw_push_insn_state( p );
+ brw_set_mask_control( p, BRW_MASK_DISABLE );
+ brw_SHL( p, wtmp[ 0 ], wtmp[ 0 ], brw_imm_uw( 4 ) );
+ brw_SHL( p, wtmp[ 1 ], wtmp[ 1 ], brw_imm_uw( 4 ) );
+ brw_pop_insn_state( p );
+
+ brw_MUL( p, tmp[ 4 ], tmp[ 4 ], param[ 2 ] );
+ brw_MUL( p, tmp[ 5 ], tmp[ 5 ], param[ 2 ] );
+ brw_MUL( p, tmp[ 6 ], tmp[ 6 ], param[ 2 ] );
+ brw_MUL( p, tmp[ 7 ], tmp[ 7 ], param[ 2 ] );
+
+ brw_ADD( p, x0y0, x0y0, tmp[ 4 ] );
+ brw_ADD( p, x0y1, x0y1, tmp[ 5 ] );
+ brw_ADD( p, x1y0, x1y0, tmp[ 6 ] );
+ brw_ADD( p, x1y1, x1y1, tmp[ 7 ] );
+
+ /* w component */
+ brw_MOV( p, tmp[ 4 ], low_words( tmp[ 0 ] ) );
+ brw_MOV( p, tmp[ 5 ], low_words( tmp[ 1 ] ) );
+ brw_MOV( p, tmp[ 6 ], high_words( tmp[ 0 ] ) );
+ brw_MOV( p, tmp[ 7 ], high_words( tmp[ 1 ] ) );
+
+ brw_MUL( p, tmp[ 4 ], tmp[ 4 ], t );
+ brw_MUL( p, tmp[ 5 ], tmp[ 5 ], t );
+ brw_MUL( p, tmp[ 6 ], tmp[ 6 ], t );
+ brw_MUL( p, tmp[ 7 ], tmp[ 7 ], t );
+ brw_ADD( p, t, param[ 0 ], brw_imm_f( -1.0 ) );
+
+ brw_ADD( p, x0y0, x0y0, tmp[ 4 ] );
+ brw_ADD( p, x0y1, x0y1, tmp[ 5 ] );
+ brw_ADD( p, x1y0, x1y0, tmp[ 6 ] );
+ brw_ADD( p, x1y1, x1y1, tmp[ 7 ] );
+
+ /* Here we interpolate in the y dimension... */
+ brw_ADD( p, x0y1, x0y1, negate( x0y0 ) );
+ brw_ADD( p, x1y1, x1y1, negate( x1y0 ) );
+ brw_MUL( p, x0y1, x0y1, interp[ 1 ] );
+ brw_MUL( p, x1y1, x1y1, interp[ 1 ] );
+ brw_ADD( p, x0y0, x0y0, x0y1 );
+ brw_ADD( p, x1y0, x1y0, x1y1 );
+
+ /* And now in x. Leave the result in tmp[ 0 ] (see below)... */
+ brw_ADD( p, x1y0, x1y0, negate( x0y0 ) );
+ brw_MUL( p, x1y0, x1y0, interp[ 0 ] );
+ brw_ADD( p, tmp[ 0 ], x0y0, x1y0 );
+
+ /* Now do the same thing for the front four gradients... */
+ /* x component */
+ brw_MOV( p, x0y0, low_words( tmp[ 2 ] ) );
+ brw_MOV( p, x0y1, low_words( tmp[ 3 ] ) );
+ brw_MOV( p, x1y0, high_words( tmp[ 2 ] ) );
+ brw_MOV( p, x1y1, high_words( tmp[ 3 ] ) );
+
+ brw_push_insn_state( p );
+ brw_set_mask_control( p, BRW_MASK_DISABLE );
+ brw_SHL( p, wtmp[ 2 ], wtmp[ 2 ], brw_imm_uw( 4 ) );
+ brw_SHL( p, wtmp[ 3 ], wtmp[ 3 ], brw_imm_uw( 4 ) );
+ brw_pop_insn_state( p );
+
+ brw_MUL( p, x1y0, x1y0, t );
+ brw_MUL( p, x1y1, x1y1, t );
+ brw_ADD( p, t, param[ 1 ], brw_imm_f( -1.0 ) );
+ brw_MUL( p, x0y0, x0y0, param[ 0 ] );
+ brw_MUL( p, x0y1, x0y1, param[ 0 ] );
+
+ /* y component */
+ brw_MOV( p, tmp[ 5 ], low_words( tmp[ 3 ] ) );
+ brw_MOV( p, tmp[ 7 ], high_words( tmp[ 3 ] ) );
+ brw_MOV( p, tmp[ 4 ], low_words( tmp[ 2 ] ) );
+ brw_MOV( p, tmp[ 6 ], high_words( tmp[ 2 ] ) );
+
+ brw_push_insn_state( p );
+ brw_set_mask_control( p, BRW_MASK_DISABLE );
+ brw_SHL( p, wtmp[ 2 ], wtmp[ 2 ], brw_imm_uw( 4 ) );
+ brw_SHL( p, wtmp[ 3 ], wtmp[ 3 ], brw_imm_uw( 4 ) );
+ brw_pop_insn_state( p );
+
+ brw_MUL( p, tmp[ 5 ], tmp[ 5 ], t );
+ brw_MUL( p, tmp[ 7 ], tmp[ 7 ], t );
+ brw_ADD( p, t, param[ 2 ], brw_imm_f( -1.0 ) );
+ brw_MUL( p, tmp[ 4 ], tmp[ 4 ], param[ 1 ] );
+ brw_MUL( p, tmp[ 6 ], tmp[ 6 ], param[ 1 ] );
+
+ brw_ADD( p, x0y1, x0y1, tmp[ 5 ] );
+ brw_ADD( p, x1y1, x1y1, tmp[ 7 ] );
+ brw_ADD( p, x0y0, x0y0, tmp[ 4 ] );
+ brw_ADD( p, x1y0, x1y0, tmp[ 6 ] );
+
+ /* z component */
+ brw_MOV( p, tmp[ 4 ], low_words( tmp[ 2 ] ) );
+ brw_MOV( p, tmp[ 5 ], low_words( tmp[ 3 ] ) );
+ brw_MOV( p, tmp[ 6 ], high_words( tmp[ 2 ] ) );
+ brw_MOV( p, tmp[ 7 ], high_words( tmp[ 3 ] ) );
+
+ brw_push_insn_state( p );
+ brw_set_mask_control( p, BRW_MASK_DISABLE );
+ brw_SHL( p, wtmp[ 2 ], wtmp[ 2 ], brw_imm_uw( 4 ) );
+ brw_SHL( p, wtmp[ 3 ], wtmp[ 3 ], brw_imm_uw( 4 ) );
+ brw_pop_insn_state( p );
+
+ brw_MUL( p, tmp[ 4 ], tmp[ 4 ], t );
+ brw_MUL( p, tmp[ 5 ], tmp[ 5 ], t );
+ brw_MUL( p, tmp[ 6 ], tmp[ 6 ], t );
+ brw_MUL( p, tmp[ 7 ], tmp[ 7 ], t );
+ /* prepare t for the w component (used below): w the first time through
+ the loop; w - 1 the second time) */
+ brw_set_predicate_control( p, BRW_PREDICATE_NORMAL );
+ brw_ADD( p, t, param[ 3 ], brw_imm_f( -1.0 ) );
+ p->current->header.predicate_inverse = 1;
+ brw_MOV( p, t, param[ 3 ] );
+ p->current->header.predicate_inverse = 0;
+ brw_set_predicate_control( p, BRW_PREDICATE_NONE );
+
+ brw_ADD( p, x0y0, x0y0, tmp[ 4 ] );
+ brw_ADD( p, x0y1, x0y1, tmp[ 5 ] );
+ brw_ADD( p, x1y0, x1y0, tmp[ 6 ] );
+ brw_ADD( p, x1y1, x1y1, tmp[ 7 ] );
+
+ /* w component */
+ brw_MOV( p, tmp[ 4 ], low_words( tmp[ 2 ] ) );
+ brw_MOV( p, tmp[ 5 ], low_words( tmp[ 3 ] ) );
+ brw_MOV( p, tmp[ 6 ], high_words( tmp[ 2 ] ) );
+ brw_MOV( p, tmp[ 7 ], high_words( tmp[ 3 ] ) );
+
+ brw_MUL( p, tmp[ 4 ], tmp[ 4 ], t );
+ brw_MUL( p, tmp[ 5 ], tmp[ 5 ], t );
+ brw_MUL( p, tmp[ 6 ], tmp[ 6 ], t );
+ brw_MUL( p, tmp[ 7 ], tmp[ 7 ], t );
+
+ brw_ADD( p, x0y0, x0y0, tmp[ 4 ] );
+ brw_ADD( p, x0y1, x0y1, tmp[ 5 ] );
+ brw_ADD( p, x1y0, x1y0, tmp[ 6 ] );
+ brw_ADD( p, x1y1, x1y1, tmp[ 7 ] );
+
+ /* Interpolate in the y dimension: */
+ brw_ADD( p, x0y1, x0y1, negate( x0y0 ) );
+ brw_ADD( p, x1y1, x1y1, negate( x1y0 ) );
+ brw_MUL( p, x0y1, x0y1, interp[ 1 ] );
+ brw_MUL( p, x1y1, x1y1, interp[ 1 ] );
+ brw_ADD( p, x0y0, x0y0, x0y1 );
+ brw_ADD( p, x1y0, x1y0, x1y1 );
+
+ /* And now in x. The rear face is in tmp[ 0 ] (see above), so this
+ time put the front face in tmp[ 1 ] and we're nearly there... */
+ brw_ADD( p, x1y0, x1y0, negate( x0y0 ) );
+ brw_MUL( p, x1y0, x1y0, interp[ 0 ] );
+ brw_ADD( p, tmp[ 1 ], x0y0, x1y0 );
+
+ /* Another interpolation, in the z dimension: */
+ brw_ADD( p, tmp[ 1 ], tmp[ 1 ], negate( tmp[ 0 ] ) );
+ brw_MUL( p, tmp[ 1 ], tmp[ 1 ], interp[ 2 ] );
+ brw_ADD( p, tmp[ 0 ], tmp[ 0 ], tmp[ 1 ] );
+
+ /* Exit the loop if we've computed both cubes... */
+ origin = p->nr_insn;
+ brw_push_insn_state( p );
+ brw_set_predicate_control( p, BRW_PREDICATE_NORMAL );
+ brw_set_mask_control( p, BRW_MASK_DISABLE );
+ brw_ADD( p, brw_ip_reg(), brw_ip_reg(), brw_imm_d( 0 ) );
+ brw_pop_insn_state( p );
+
+ /* Save the result for the w=0 case, and increment the w coordinate: */
+ brw_MOV( p, w0, tmp[ 0 ] );
+ brw_ADD( p, high_words( floors[ 1 ] ), high_words( floors[ 1 ] ),
+ brw_imm_uw( 1 ) );
+
+ /* Loop around for the other cube. Explicitly set the flag register
+ (unfortunately we must spend an extra instruction to do this: we
+ can't rely on a side effect of the previous MOV or ADD because
+ conditional modifiers which are normally true might be false in
+ exceptional circumstances, e.g. given a NaN input; the add to
+ brw_ip_reg() is not suitable because the IP is not an 8-vector). */
+ brw_push_insn_state( p );
+ brw_set_mask_control( p, BRW_MASK_DISABLE );
+ brw_MOV( p, brw_flag_reg(), brw_imm_uw( 0xFF ) );
+ brw_ADD( p, brw_ip_reg(), brw_ip_reg(),
+ brw_imm_d( ( loop - p->nr_insn ) << 4 ) );
+ brw_pop_insn_state( p );
+
+ /* Patch the previous conditional branch now that we know the
+ destination address. */
+ brw_set_src1( p->store + origin,
+ brw_imm_d( ( p->nr_insn - origin ) << 4 ) );
+
+ /* The very last interpolation. */
+ brw_ADD( p, tmp[ 0 ], tmp[ 0 ], negate( w0 ) );
+ brw_MUL( p, tmp[ 0 ], tmp[ 0 ], interp[ 3 ] );
+ brw_ADD( p, tmp[ 0 ], tmp[ 0 ], w0 );
+
+ /* scale by pow( 2, -15 ), as described above */
+ brw_MUL( p, param[ 0 ], tmp[ 0 ], brw_imm_f( 0.000030517578125 ) );
+
+ release_tmps( c, mark );
+}
+
+static void emit_noise4( struct brw_wm_compile *c,
+ struct prog_instruction *inst )
+{
+ struct brw_compile *p = &c->func;
+ struct brw_reg src0, src1, src2, src3, param0, param1, param2, param3, dst;
+ GLuint mask = inst->DstReg.WriteMask;
+ int i;
+ int mark = mark_tmps( c );
+
+ assert( mark == 0 );
+
+ src0 = get_src_reg( c, inst->SrcReg, 0, 1 );
+ src1 = get_src_reg( c, inst->SrcReg, 1, 1 );
+ src2 = get_src_reg( c, inst->SrcReg, 2, 1 );
+ src3 = get_src_reg( c, inst->SrcReg, 3, 1 );
+
+ param0 = alloc_tmp( c );
+ param1 = alloc_tmp( c );
+ param2 = alloc_tmp( c );
+ param3 = alloc_tmp( c );
+
+ brw_MOV( p, param0, src0 );
+ brw_MOV( p, param1, src1 );
+ brw_MOV( p, param2, src2 );
+ brw_MOV( p, param3, src3 );
+
+ invoke_subroutine( c, SUB_NOISE4, noise4_sub );
+
+ /* Fill in the result: */
+ brw_set_saturate( p, inst->SaturateMode == SATURATE_ZERO_ONE );
+ for (i = 0 ; i < 4; i++) {
+ if (mask & (1<<i)) {
+ dst = get_dst_reg(c, inst, i, 1);
+ brw_MOV( p, dst, param0 );
+ }
+ }
+ if( inst->SaturateMode == SATURATE_ZERO_ONE )
+ brw_set_saturate( p, 0 );
+
+ release_tmps( c, mark );
+}
+
static void emit_wpos_xy(struct brw_wm_compile *c,
struct prog_instruction *inst)
{
@@ -1996,8 +2418,9 @@ static void brw_wm_emit_glsl(struct brw_context *brw, struct brw_wm_compile *c)
case OPCODE_NOISE3:
emit_noise3(c, inst);
break;
- /* case OPCODE_NOISE4: */
- /* not yet implemented */
+ case OPCODE_NOISE4:
+ emit_noise4(c, inst);
+ break;
case OPCODE_TEX:
emit_tex(c, inst);
break;