/* mga_dma.c -- DMA support for mga g200/g400 -*- linux-c -*- * Created: Mon Dec 13 01:50:01 1999 by jhartmann@precisioninsight.com * * Copyright 1999 Precision Insight, Inc., Cedar Park, Texas. * Copyright 2000 VA Linux Systems, Inc., Sunnyvale, California. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. * * Authors: Rickard E. (Rik) Faith * Jeff Hartmann * Keith Whitwell * */ #define __NO_VERSION__ #include "drmP.h" #include "mga_drv.h" #include /* For task queue support */ #define MGA_REG(reg) 2 #define MGA_BASE(reg) ((unsigned long) \ ((drm_device_t *)dev)->maplist[MGA_REG(reg)]->handle) #define MGA_ADDR(reg) (MGA_BASE(reg) + reg) #define MGA_DEREF(reg) *(__volatile__ int *)MGA_ADDR(reg) #define MGA_READ(reg) MGA_DEREF(reg) #define MGA_WRITE(reg,val) do { MGA_DEREF(reg) = val; } while (0) #define PDEA_pagpxfer_enable 0x2 static int mga_flush_queue(drm_device_t *dev); static unsigned long mga_alloc_page(drm_device_t *dev) { unsigned long address; DRM_DEBUG("%s\n", __FUNCTION__); address = __get_free_page(GFP_KERNEL); if(address == 0UL) { return 0; } atomic_inc(&mem_map[MAP_NR((void *) address)].count); set_bit(PG_locked, &mem_map[MAP_NR((void *) address)].flags); return address; } static void mga_free_page(drm_device_t *dev, unsigned long page) { DRM_DEBUG("%s\n", __FUNCTION__); if(page == 0UL) { return; } atomic_dec(&mem_map[MAP_NR((void *) page)].count); clear_bit(PG_locked, &mem_map[MAP_NR((void *) page)].flags); wake_up(&mem_map[MAP_NR((void *) page)].wait); free_page(page); return; } static void mga_delay(void) { return; } #ifdef __i386__ void mga_flush_write_combine(void) { int xchangeDummy; DRM_DEBUG("%s\n", __FUNCTION__); __asm__ volatile(" push %%eax ; xchg %%eax, %0 ; pop %%eax" : : "m" (xchangeDummy)); __asm__ volatile(" push %%eax ; push %%ebx ; push %%ecx ; push %%edx ;" " movl $0,%%eax ; cpuid ; pop %%edx ; pop %%ecx ; pop %%ebx ;" " pop %%eax" : /* no outputs */ : /* no inputs */ ); } #endif /* These are two age tags that will never be sent to * the hardware */ #define MGA_BUF_USED 0xffffffff #define MGA_BUF_FREE 0 static int mga_freelist_init(drm_device_t *dev) { drm_device_dma_t *dma = dev->dma; drm_buf_t *buf; drm_mga_buf_priv_t *buf_priv; drm_mga_private_t *dev_priv = (drm_mga_private_t *)dev->dev_private; drm_mga_freelist_t *item; int i; DRM_DEBUG("%s\n", __FUNCTION__); dev_priv->head = drm_alloc(sizeof(drm_mga_freelist_t), DRM_MEM_DRIVER); if(dev_priv->head == NULL) return -ENOMEM; memset(dev_priv->head, 0, sizeof(drm_mga_freelist_t)); dev_priv->head->age = MGA_BUF_USED; for (i = 0; i < dma->buf_count; i++) { buf = dma->buflist[ i ]; buf_priv = buf->dev_private; item = drm_alloc(sizeof(drm_mga_freelist_t), DRM_MEM_DRIVER); if(item == NULL) return -ENOMEM; memset(item, 0, sizeof(drm_mga_freelist_t)); item->age = MGA_BUF_FREE; item->prev = dev_priv->head; item->next = dev_priv->head->next; if(dev_priv->head->next != NULL) dev_priv->head->next->prev = item; if(item->next == NULL) dev_priv->tail = item; item->buf = buf; buf_priv->my_freelist = item; buf_priv->discard = 0; buf_priv->dispatched = 0; dev_priv->head->next = item; } return 0; } static void mga_freelist_cleanup(drm_device_t *dev) { drm_mga_private_t *dev_priv = (drm_mga_private_t *)dev->dev_private; drm_mga_freelist_t *item; drm_mga_freelist_t *prev; DRM_DEBUG("%s\n", __FUNCTION__); item = dev_priv->head; while(item) { prev = item; item = item->next; drm_free(prev, sizeof(drm_mga_freelist_t), DRM_MEM_DRIVER); } dev_priv->head = dev_priv->tail = NULL; } /* Frees dispatch lock */ static inline void mga_dma_quiescent(drm_device_t *dev) { drm_device_dma_t *dma = dev->dma; drm_mga_private_t *dev_priv = (drm_mga_private_t *)dev->dev_private; drm_mga_sarea_t *sarea_priv = dev_priv->sarea_priv; unsigned long end; int i; DRM_DEBUG("%s\n", __FUNCTION__); end = jiffies + (HZ*3); while(1) { if(!test_and_set_bit(MGA_IN_DISPATCH, &dev_priv->dispatch_status)) { break; } if((signed)(end - jiffies) <= 0) { DRM_ERROR("irqs: %d wanted %d\n", atomic_read(&dev->total_irq), atomic_read(&dma->total_lost)); DRM_ERROR("lockup\n"); goto out_nolock; } for (i = 0 ; i < 2000 ; i++) mga_delay(); } end = jiffies + (HZ*3); DRM_DEBUG("quiescent status : %x\n", MGA_READ(MGAREG_STATUS)); while((MGA_READ(MGAREG_STATUS) & 0x00030001) != 0x00020000) { if((signed)(end - jiffies) <= 0) { DRM_ERROR("irqs: %d wanted %d\n", atomic_read(&dev->total_irq), atomic_read(&dma->total_lost)); DRM_ERROR("lockup\n"); goto out_status; } for (i = 0 ; i < 2000 ; i++) mga_delay(); } sarea_priv->dirty |= MGA_DMA_FLUSH; out_status: clear_bit(MGA_IN_DISPATCH, &dev_priv->dispatch_status); out_nolock: } static void mga_reset_freelist(drm_device_t *dev) { drm_device_dma_t *dma = dev->dma; drm_buf_t *buf; drm_mga_buf_priv_t *buf_priv; int i; for (i = 0; i < dma->buf_count; i++) { buf = dma->buflist[ i ]; buf_priv = buf->dev_private; buf_priv->my_freelist->age = MGA_BUF_FREE; } } /* Least recently used : * These operations are not atomic b/c they are protected by the * hardware lock */ drm_buf_t *mga_freelist_get(drm_device_t *dev) { DECLARE_WAITQUEUE(entry, current); drm_mga_private_t *dev_priv = (drm_mga_private_t *) dev->dev_private; drm_mga_freelist_t *prev; drm_mga_freelist_t *next; static int failed = 0; DRM_DEBUG("%s : tail->age : %d last_prim_age : %d\n", __FUNCTION__, dev_priv->tail->age, dev_priv->last_prim_age); if(failed >= 1000 && dev_priv->tail->age >= dev_priv->last_prim_age) { DRM_DEBUG("I'm waiting on the freelist!!! %d\n", dev_priv->last_prim_age); set_bit(MGA_IN_GETBUF, &dev_priv->dispatch_status); current->state = TASK_INTERRUPTIBLE; add_wait_queue(&dev_priv->buf_queue, &entry); for (;;) { mga_dma_schedule(dev, 0); if(!test_bit(MGA_IN_GETBUF, &dev_priv->dispatch_status)) break; atomic_inc(&dev->total_sleeps); schedule(); if (signal_pending(current)) { clear_bit(MGA_IN_GETBUF, &dev_priv->dispatch_status); goto failed_getbuf; } } current->state = TASK_RUNNING; remove_wait_queue(&dev_priv->buf_queue, &entry); } if(dev_priv->tail->age < dev_priv->last_prim_age) { prev = dev_priv->tail->prev; next = dev_priv->tail; prev->next = NULL; next->prev = next->next = NULL; dev_priv->tail = prev; next->age = MGA_BUF_USED; failed = 0; return next->buf; } failed_getbuf: failed++; return NULL; } int mga_freelist_put(drm_device_t *dev, drm_buf_t *buf) { drm_mga_private_t *dev_priv = (drm_mga_private_t *) dev->dev_private; drm_mga_buf_priv_t *buf_priv = buf->dev_private; drm_mga_freelist_t *prev; drm_mga_freelist_t *head; drm_mga_freelist_t *next; DRM_DEBUG("%s\n", __FUNCTION__); if(buf_priv->my_freelist->age == MGA_BUF_USED) { /* Discarded buffer, put it on the tail */ next = buf_priv->my_freelist; next->age = MGA_BUF_FREE; prev = dev_priv->tail; prev->next = next; next->prev = prev; next->next = NULL; dev_priv->tail = next; DRM_DEBUG("Discarded\n"); } else { /* Normally aged buffer, put it on the head + 1, * as the real head is a sentinal element */ next = buf_priv->my_freelist; head = dev_priv->head; prev = head->next; head->next = next; prev->prev = next; next->prev = head; next->next = prev; } return 0; } static int mga_init_primary_bufs(drm_device_t *dev, drm_mga_init_t *init) { drm_mga_private_t *dev_priv = dev->dev_private; drm_mga_prim_buf_t *prim_buffer; int i, temp, size_of_buf; int offset = init->reserved_map_agpstart; DRM_DEBUG("%s\n", __FUNCTION__); dev_priv->primary_size = ((init->primary_size + PAGE_SIZE - 1) / PAGE_SIZE) * PAGE_SIZE; size_of_buf = dev_priv->primary_size / MGA_NUM_PRIM_BUFS; dev_priv->warp_ucode_size = init->warp_ucode_size; dev_priv->prim_bufs = drm_alloc(sizeof(drm_mga_prim_buf_t *) * (MGA_NUM_PRIM_BUFS + 1), DRM_MEM_DRIVER); if(dev_priv->prim_bufs == NULL) { DRM_ERROR("Unable to allocate memory for prim_buf\n"); return -ENOMEM; } memset(dev_priv->prim_bufs, 0, sizeof(drm_mga_prim_buf_t *) * (MGA_NUM_PRIM_BUFS + 1)); temp = init->warp_ucode_size + dev_priv->primary_size; temp = ((temp + PAGE_SIZE - 1) / PAGE_SIZE) * PAGE_SIZE; dev_priv->ioremap = drm_ioremap(dev->agp->base + offset, temp); if(dev_priv->ioremap == NULL) { DRM_DEBUG("Ioremap failed\n"); return -ENOMEM; } init_waitqueue_head(&dev_priv->wait_queue); for(i = 0; i < MGA_NUM_PRIM_BUFS; i++) { prim_buffer = drm_alloc(sizeof(drm_mga_prim_buf_t), DRM_MEM_DRIVER); if(prim_buffer == NULL) return -ENOMEM; memset(prim_buffer, 0, sizeof(drm_mga_prim_buf_t)); prim_buffer->phys_head = offset + dev->agp->base; prim_buffer->current_dma_ptr = prim_buffer->head = (u32 *) (dev_priv->ioremap + offset - init->reserved_map_agpstart); prim_buffer->num_dwords = 0; prim_buffer->max_dwords = size_of_buf / sizeof(u32); prim_buffer->max_dwords -= 5; /* Leave room for the softrap */ prim_buffer->sec_used = 0; prim_buffer->idx = i; prim_buffer->prim_age = i + 1; offset = offset + size_of_buf; dev_priv->prim_bufs[i] = prim_buffer; } dev_priv->current_prim_idx = 0; dev_priv->next_prim = dev_priv->last_prim = dev_priv->current_prim = dev_priv->prim_bufs[0]; dev_priv->next_prim_age = 2; dev_priv->last_prim_age = 1; set_bit(MGA_BUF_IN_USE, &dev_priv->current_prim->buffer_status); return 0; } void mga_fire_primary(drm_device_t *dev, drm_mga_prim_buf_t *prim) { drm_mga_private_t *dev_priv = dev->dev_private; drm_device_dma_t *dma = dev->dma; drm_mga_sarea_t *sarea_priv = dev_priv->sarea_priv; int use_agp = PDEA_pagpxfer_enable; unsigned long end; int i; int next_idx; PRIMLOCALS; DRM_DEBUG("%s\n", __FUNCTION__); dev_priv->last_prim = prim; /* We never check for overflow, b/c there is always room */ PRIMPTR(prim); if(num_dwords <= 0) { DRM_DEBUG("num_dwords == 0 when dispatched\n"); goto out_prim_wait; } PRIMOUTREG( MGAREG_DMAPAD, 0); PRIMOUTREG( MGAREG_DMAPAD, 0); PRIMOUTREG( MGAREG_DMAPAD, 0); PRIMOUTREG( MGAREG_SOFTRAP, 0); PRIMFINISH(prim); end = jiffies + (HZ*3); if(sarea_priv->dirty & MGA_DMA_FLUSH) { DRM_DEBUG("Dma top flush\n"); while((MGA_READ(MGAREG_STATUS) & 0x00030001) != 0x00020000) { if((signed)(end - jiffies) <= 0) { DRM_ERROR("irqs: %d wanted %d\n", atomic_read(&dev->total_irq), atomic_read(&dma->total_lost)); DRM_ERROR("lockup in fire primary " "(Dma Top Flush)\n"); goto out_prim_wait; } for (i = 0 ; i < 4096 ; i++) mga_delay(); } sarea_priv->dirty &= ~(MGA_DMA_FLUSH); } else { DRM_DEBUG("Status wait\n"); while((MGA_READ(MGAREG_STATUS) & 0x00020001) != 0x00020000) { if((signed)(end - jiffies) <= 0) { DRM_ERROR("irqs: %d wanted %d\n", atomic_read(&dev->total_irq), atomic_read(&dma->total_lost)); DRM_ERROR("lockup in fire primary " "(Status Wait)\n"); goto out_prim_wait; } for (i = 0 ; i < 4096 ; i++) mga_delay(); } } #ifdef __i386__ mga_flush_write_combine(); #endif #ifdef __alpha__ mb(); #endif atomic_inc(&dev_priv->pending_bufs); MGA_WRITE(MGAREG_PRIMADDRESS, phys_head | TT_GENERAL); MGA_WRITE(MGAREG_PRIMEND, (phys_head + num_dwords * 4) | use_agp); prim->num_dwords = 0; sarea_priv->last_enqueue = prim->prim_age; next_idx = prim->idx + 1; if(next_idx >= MGA_NUM_PRIM_BUFS) next_idx = 0; dev_priv->next_prim = dev_priv->prim_bufs[next_idx]; return; out_prim_wait: prim->num_dwords = 0; prim->sec_used = 0; clear_bit(MGA_BUF_IN_USE, &prim->buffer_status); wake_up_interruptible(&dev_priv->wait_queue); clear_bit(MGA_BUF_SWAP_PENDING, &prim->buffer_status); clear_bit(MGA_IN_DISPATCH, &dev_priv->dispatch_status); } int mga_advance_primary(drm_device_t *dev) { DECLARE_WAITQUEUE(entry, current); drm_mga_private_t *dev_priv = dev->dev_private; drm_mga_prim_buf_t *prim_buffer; drm_device_dma_t *dma = dev->dma; int next_prim_idx; int ret = 0; /* This needs to reset the primary buffer if available, * we should collect stats on how many times it bites * it's tail */ DRM_DEBUG("%s\n", __FUNCTION__); next_prim_idx = dev_priv->current_prim_idx + 1; if(next_prim_idx >= MGA_NUM_PRIM_BUFS) next_prim_idx = 0; prim_buffer = dev_priv->prim_bufs[next_prim_idx]; set_bit(MGA_IN_WAIT, &dev_priv->dispatch_status); /* In use is cleared in interrupt handler */ if(test_and_set_bit(MGA_BUF_IN_USE, &prim_buffer->buffer_status)) { add_wait_queue(&dev_priv->wait_queue, &entry); current->state = TASK_INTERRUPTIBLE; for (;;) { mga_dma_schedule(dev, 0); if(!test_and_set_bit(MGA_BUF_IN_USE, &prim_buffer->buffer_status)) break; atomic_inc(&dev->total_sleeps); atomic_inc(&dma->total_missed_sched); schedule(); if (signal_pending(current)) { ret = -ERESTARTSYS; break; } } current->state = TASK_RUNNING; remove_wait_queue(&dev_priv->wait_queue, &entry); if(ret) return ret; } clear_bit(MGA_IN_WAIT, &dev_priv->dispatch_status); /* This primary buffer is now free to use */ prim_buffer->current_dma_ptr = prim_buffer->head; prim_buffer->num_dwords = 0; prim_buffer->sec_used = 0; prim_buffer->prim_age = dev_priv->next_prim_age++; if(prim_buffer->prim_age == 0 || prim_buffer->prim_age == 0xffffffff) { mga_flush_queue(dev); mga_dma_quiescent(dev); mga_reset_freelist(dev); prim_buffer->prim_age = (dev_priv->next_prim_age += 2); } /* Reset all buffer status stuff */ clear_bit(MGA_BUF_NEEDS_OVERFLOW, &prim_buffer->buffer_status); clear_bit(MGA_BUF_FORCE_FIRE, &prim_buffer->buffer_status); clear_bit(MGA_BUF_SWAP_PENDING, &prim_buffer->buffer_status); dev_priv->current_prim = prim_buffer; dev_priv->current_prim_idx = next_prim_idx; return 0; } /* More dynamic performance decisions */ static inline int mga_decide_to_fire(drm_device_t *dev) { drm_mga_private_t *dev_priv = (drm_mga_private_t *)dev->dev_private; drm_device_dma_t *dma = dev->dma; DRM_DEBUG("%s\n", __FUNCTION__); if(test_bit(MGA_BUF_FORCE_FIRE, &dev_priv->next_prim->buffer_status)) { atomic_inc(&dma->total_prio); return 1; } if (test_bit(MGA_IN_GETBUF, &dev_priv->dispatch_status) && dev_priv->next_prim->num_dwords) { atomic_inc(&dma->total_prio); return 1; } if (test_bit(MGA_IN_FLUSH, &dev_priv->dispatch_status) && dev_priv->next_prim->num_dwords) { atomic_inc(&dma->total_prio); return 1; } if(atomic_read(&dev_priv->pending_bufs) <= MGA_NUM_PRIM_BUFS - 1) { if(test_bit(MGA_BUF_SWAP_PENDING, &dev_priv->next_prim->buffer_status)) { atomic_inc(&dma->total_dmas); return 1; } } if(atomic_read(&dev_priv->pending_bufs) <= MGA_NUM_PRIM_BUFS / 2) { if(dev_priv->next_prim->sec_used >= MGA_DMA_BUF_NR / 8) { atomic_inc(&dma->total_hit); return 1; } } if(atomic_read(&dev_priv->pending_bufs) >= MGA_NUM_PRIM_BUFS / 2) { if(dev_priv->next_prim->sec_used >= MGA_DMA_BUF_NR / 4) { atomic_inc(&dma->total_missed_free); return 1; } } atomic_inc(&dma->total_tried); return 0; } int mga_dma_schedule(drm_device_t *dev, int locked) { drm_mga_private_t *dev_priv = (drm_mga_private_t *)dev->dev_private; drm_device_dma_t *dma = dev->dma; int retval = 0; if (test_and_set_bit(0, &dev->dma_flag)) { atomic_inc(&dma->total_missed_dma); retval = -EBUSY; goto sch_out_wakeup; } DRM_DEBUG("%s\n", __FUNCTION__); if(test_bit(MGA_IN_FLUSH, &dev_priv->dispatch_status) || test_bit(MGA_IN_WAIT, &dev_priv->dispatch_status) || test_bit(MGA_IN_GETBUF, &dev_priv->dispatch_status)) { locked = 1; } if (!locked && !drm_lock_take(&dev->lock.hw_lock->lock, DRM_KERNEL_CONTEXT)) { atomic_inc(&dma->total_missed_lock); clear_bit(0, &dev->dma_flag); DRM_DEBUG("Not locked\n"); retval = -EBUSY; goto sch_out_wakeup; } DRM_DEBUG("I'm locked\n"); if(!test_and_set_bit(MGA_IN_DISPATCH, &dev_priv->dispatch_status)) { /* Fire dma buffer */ if(mga_decide_to_fire(dev)) { DRM_DEBUG("idx :%d\n", dev_priv->next_prim->idx); clear_bit(MGA_BUF_FORCE_FIRE, &dev_priv->next_prim->buffer_status); if(dev_priv->current_prim == dev_priv->next_prim) { /* Schedule overflow for a later time */ set_bit(MGA_BUF_NEEDS_OVERFLOW, &dev_priv->next_prim->buffer_status); } mga_fire_primary(dev, dev_priv->next_prim); } else { clear_bit(MGA_IN_DISPATCH, &dev_priv->dispatch_status); } } else { DRM_DEBUG("I can't get the dispatch lock\n"); } if (!locked) { if (drm_lock_free(dev, &dev->lock.hw_lock->lock, DRM_KERNEL_CONTEXT)) { DRM_ERROR("\n"); } } sch_out_wakeup: if(test_bit(MGA_IN_FLUSH, &dev_priv->dispatch_status) && atomic_read(&dev_priv->pending_bufs) == 0) { /* Everything has been processed by the hardware */ clear_bit(MGA_IN_FLUSH, &dev_priv->dispatch_status); wake_up_interruptible(&dev_priv->flush_queue); } if(test_bit(MGA_IN_GETBUF, &dev_priv->dispatch_status) && dev_priv->tail->age < dev_priv->last_prim_age) { clear_bit(MGA_IN_GETBUF, &dev_priv->dispatch_status); DRM_DEBUG("Waking up buf queue\n"); wake_up_interruptible(&dev_priv->buf_queue); } else if (test_bit(MGA_IN_GETBUF, &dev_priv->dispatch_status)) { DRM_DEBUG("Not waking buf_queue on %d %d\n", atomic_read(&dev->total_irq), dev_priv->last_prim_age); } clear_bit(0, &dev->dma_flag); return retval; } static void mga_dma_service(int irq, void *device, struct pt_regs *regs) { drm_device_t *dev = (drm_device_t *)device; drm_mga_private_t *dev_priv = (drm_mga_private_t *)dev->dev_private; drm_mga_prim_buf_t *last_prim_buffer; DRM_DEBUG("%s\n", __FUNCTION__); atomic_inc(&dev->total_irq); if((MGA_READ(MGAREG_STATUS) & 0x00000001) != 0x00000001) return; MGA_WRITE(MGAREG_ICLEAR, 0x00000001); last_prim_buffer = dev_priv->last_prim; last_prim_buffer->num_dwords = 0; last_prim_buffer->sec_used = 0; dev_priv->sarea_priv->last_dispatch = dev_priv->last_prim_age = last_prim_buffer->prim_age; clear_bit(MGA_BUF_IN_USE, &last_prim_buffer->buffer_status); wake_up_interruptible(&dev_priv->wait_queue); clear_bit(MGA_BUF_SWAP_PENDING, &last_prim_buffer->buffer_status); clear_bit(MGA_IN_DISPATCH, &dev_priv->dispatch_status); atomic_dec(&dev_priv->pending_bufs); queue_task(&dev->tq, &tq_immediate); mark_bh(IMMEDIATE_BH); } static void mga_dma_task_queue(void *device) { DRM_DEBUG("%s\n", __FUNCTION__); mga_dma_schedule((drm_device_t *)device, 0); } int mga_dma_cleanup(drm_device_t *dev) { DRM_DEBUG("%s\n", __FUNCTION__); if(dev->dev_private) { drm_mga_private_t *dev_priv = (drm_mga_private_t *) dev->dev_private; if(dev_priv->ioremap) { int temp = (dev_priv->warp_ucode_size + dev_priv->primary_size + PAGE_SIZE - 1) / PAGE_SIZE * PAGE_SIZE; drm_ioremapfree((void *) dev_priv->ioremap, temp); } if(dev_priv->status_page != NULL) { iounmap(dev_priv->status_page); } if(dev_priv->real_status_page != 0UL) { mga_free_page(dev, dev_priv->real_status_page); } if(dev_priv->prim_bufs != NULL) { int i; for(i = 0; i < MGA_NUM_PRIM_BUFS; i++) { if(dev_priv->prim_bufs[i] != NULL) { drm_free(dev_priv->prim_bufs[i], sizeof(drm_mga_prim_buf_t), DRM_MEM_DRIVER); } } drm_free(dev_priv->prim_bufs, sizeof(void *) * (MGA_NUM_PRIM_BUFS + 1), DRM_MEM_DRIVER); } if(dev_priv->head != NULL) { mga_freelist_cleanup(dev); } drm_free(dev->dev_private, sizeof(drm_mga_private_t), DRM_MEM_DRIVER); dev->dev_private = NULL; } return 0; } static int mga_dma_initialize(drm_device_t *dev, drm_mga_init_t *init) { drm_mga_private_t *dev_priv; drm_map_t *sarea_map = NULL; int i; DRM_DEBUG("%s\n", __FUNCTION__); dev_priv = drm_alloc(sizeof(drm_mga_private_t), DRM_MEM_DRIVER); if(dev_priv == NULL) return -ENOMEM; dev->dev_private = (void *) dev_priv; memset(dev_priv, 0, sizeof(drm_mga_private_t)); if((init->reserved_map_idx >= dev->map_count) || (init->buffer_map_idx >= dev->map_count)) { mga_dma_cleanup(dev); DRM_DEBUG("reserved_map or buffer_map are invalid\n"); return -EINVAL; } dev_priv->reserved_map_idx = init->reserved_map_idx; dev_priv->buffer_map_idx = init->buffer_map_idx; sarea_map = dev->maplist[0]; dev_priv->sarea_priv = (drm_mga_sarea_t *) ((u8 *)sarea_map->handle + init->sarea_priv_offset); /* Scale primary size to the next page */ dev_priv->chipset = init->chipset; dev_priv->frontOffset = init->frontOffset; dev_priv->backOffset = init->backOffset; dev_priv->depthOffset = init->depthOffset; dev_priv->textureOffset = init->textureOffset; dev_priv->textureSize = init->textureSize; dev_priv->cpp = init->cpp; dev_priv->sgram = init->sgram; dev_priv->stride = init->stride; dev_priv->mAccess = init->mAccess; init_waitqueue_head(&dev_priv->flush_queue); init_waitqueue_head(&dev_priv->buf_queue); dev_priv->WarpPipe = -1; DRM_DEBUG("chipset: %d ucode_size: %d backOffset: %x depthOffset: %x\n", dev_priv->chipset, dev_priv->warp_ucode_size, dev_priv->backOffset, dev_priv->depthOffset); DRM_DEBUG("cpp: %d sgram: %d stride: %d maccess: %x\n", dev_priv->cpp, dev_priv->sgram, dev_priv->stride, dev_priv->mAccess); memcpy(&dev_priv->WarpIndex, &init->WarpIndex, sizeof(drm_mga_warp_index_t) * MGA_MAX_WARP_PIPES); for (i = 0 ; i < MGA_MAX_WARP_PIPES ; i++) DRM_DEBUG("warp pipe %d: installed: %d phys: %lx size: %x\n", i, dev_priv->WarpIndex[i].installed, dev_priv->WarpIndex[i].phys_addr, dev_priv->WarpIndex[i].size); if(mga_init_primary_bufs(dev, init) != 0) { DRM_ERROR("Can not initialize primary buffers\n"); mga_dma_cleanup(dev); return -ENOMEM; } dev_priv->real_status_page = mga_alloc_page(dev); if(dev_priv->real_status_page == 0UL) { mga_dma_cleanup(dev); DRM_ERROR("Can not allocate status page\n"); return -ENOMEM; } dev_priv->status_page = ioremap_nocache(virt_to_bus((void *)dev_priv->real_status_page), PAGE_SIZE); if(dev_priv->status_page == NULL) { mga_dma_cleanup(dev); DRM_ERROR("Can not remap status page\n"); return -ENOMEM; } /* Write status page when secend or softrap occurs */ MGA_WRITE(MGAREG_PRIMPTR, virt_to_bus((void *)dev_priv->real_status_page) | 0x00000003); /* Private is now filled in, initialize the hardware */ { PRIMLOCALS; PRIMGETPTR( dev_priv ); PRIMOUTREG(MGAREG_DMAPAD, 0); PRIMOUTREG(MGAREG_DMAPAD, 0); PRIMOUTREG(MGAREG_DWGSYNC, 0x0100); PRIMOUTREG(MGAREG_SOFTRAP, 0); /* Poll for the first buffer to insure that * the status register will be correct */ #ifdef __i386__ mga_flush_write_combine(); #endif #ifdef __alpha mb(); #endif MGA_WRITE(MGAREG_PRIMADDRESS, phys_head | TT_GENERAL); MGA_WRITE(MGAREG_PRIMEND, ((phys_head + num_dwords * 4) | PDEA_pagpxfer_enable)); while(MGA_READ(MGAREG_DWGSYNC) != 0x0100) ; } if(mga_freelist_init(dev) != 0) { DRM_ERROR("Could not initialize freelist\n"); mga_dma_cleanup(dev); return -ENOMEM; } return 0; } int mga_dma_init(struct inode *inode, struct file *filp, unsigned int cmd, unsigned long arg) { drm_file_t *priv = filp->private_data; drm_device_t *dev = priv->dev; drm_mga_init_t init; DRM_DEBUG("%s\n", __FUNCTION__); copy_from_user_ret(&init, (drm_mga_init_t *)arg, sizeof(init), -EFAULT); switch(init.func) { case MGA_INIT_DMA: return mga_dma_initialize(dev, &init); case MGA_CLEANUP_DMA: return mga_dma_cleanup(dev); } return -EINVAL; } int mga_irq_install(drm_device_t *dev, int irq) { int retcode; if (!irq) return -EINVAL; down(&dev->struct_sem); if (dev->irq) { up(&dev->struct_sem); return -EBUSY; } dev->irq = irq; up(&dev->struct_sem); DRM_DEBUG("install irq handler %d\n", irq); dev->context_flag = 0; dev->interrupt_flag = 0; dev->dma_flag = 0; dev->dma->next_buffer = NULL; dev->dma->next_queue = NULL; dev->dma->this_buffer = NULL; dev->tq.next = NULL; dev->tq.sync = 0; dev->tq.routine = mga_dma_task_queue; dev->tq.data = dev; /* Before installing handler */ MGA_WRITE(MGAREG_IEN, 0); /* Install handler */ if ((retcode = request_irq(dev->irq, mga_dma_service, SA_SHIRQ, dev->devname, dev))) { down(&dev->struct_sem); dev->irq = 0; up(&dev->struct_sem); return retcode; } /* After installing handler */ MGA_WRITE(MGAREG_ICLEAR, 0x00000001); MGA_WRITE(MGAREG_IEN, 0x00000001); return 0; } int mga_irq_uninstall(drm_device_t *dev) { int irq; down(&dev->struct_sem); irq = dev->irq; dev->irq = 0; up(&dev->struct_sem); if (!irq) return -EINVAL; DRM_DEBUG("remove irq handler %d\n", irq); MGA_WRITE(MGAREG_ICLEAR, 0x00000001); MGA_WRITE(MGAREG_IEN, 0); free_irq(irq, dev); return 0; } int mga_control(struct inode *inode, struct file *filp, unsigned int cmd, unsigned long arg) { drm_file_t *priv = filp->private_data; drm_device_t *dev = priv->dev; drm_control_t ctl; copy_from_user_ret(&ctl, (drm_control_t *)arg, sizeof(ctl), -EFAULT); DRM_DEBUG("%s\n", __FUNCTION__); switch (ctl.func) { case DRM_INST_HANDLER: return mga_irq_install(dev, ctl.irq); case DRM_UNINST_HANDLER: return mga_irq_uninstall(dev); default: return -EINVAL; } } static int mga_flush_queue(drm_device_t *dev) { DECLARE_WAITQUEUE(entry, current); drm_mga_private_t *dev_priv = (drm_mga_private_t *)dev->dev_private; int ret = 0; DRM_DEBUG("%s\n", __FUNCTION__); if(dev_priv == NULL) { return 0; } if(dev_priv->next_prim->num_dwords != 0) { current->state = TASK_INTERRUPTIBLE; add_wait_queue(&dev_priv->flush_queue, &entry); set_bit(MGA_IN_FLUSH, &dev_priv->dispatch_status); mga_dma_schedule(dev, 0); for (;;) { if (!test_bit(MGA_IN_FLUSH, &dev_priv->dispatch_status)) break; atomic_inc(&dev->total_sleeps); schedule(); if (signal_pending(current)) { ret = -EINTR; /* Can't restart */ clear_bit(MGA_IN_FLUSH, &dev_priv->dispatch_status); break; } } current->state = TASK_RUNNING; remove_wait_queue(&dev_priv->flush_queue, &entry); } return ret; } /* Must be called with the lock held */ void mga_reclaim_buffers(drm_device_t *dev, pid_t pid) { drm_device_dma_t *dma = dev->dma; int i; if (!dma) return; if(dev->dev_private == NULL) return; if(dma->buflist == NULL) return; DRM_DEBUG("%s\n", __FUNCTION__); mga_flush_queue(dev); for (i = 0; i < dma->buf_count; i++) { drm_buf_t *buf = dma->buflist[ i ]; drm_mga_buf_priv_t *buf_priv = buf->dev_private; /* Only buffers that need to get reclaimed ever * get set to free */ if (buf->pid == pid && buf_priv) { if(buf_priv->my_freelist->age == MGA_BUF_USED) buf_priv->my_freelist->age = MGA_BUF_FREE; } } } int mga_lock(struct inode *inode, struct file *filp, unsigned int cmd, unsigned long arg) { drm_file_t *priv = filp->private_data; drm_device_t *dev = priv->dev; DECLARE_WAITQUEUE(entry, current); int ret = 0; drm_lock_t lock; DRM_DEBUG("%s\n", __FUNCTION__); copy_from_user_ret(&lock, (drm_lock_t *)arg, sizeof(lock), -EFAULT); if (lock.context == DRM_KERNEL_CONTEXT) { DRM_ERROR("Process %d using kernel context %d\n", current->pid, lock.context); return -EINVAL; } DRM_DEBUG("%d (pid %d) requests lock (0x%08x), flags = 0x%08x\n", lock.context, current->pid, dev->lock.hw_lock->lock, lock.flags); if (lock.context < 0) { return -EINVAL; } /* Only one queue: */ if (!ret) { add_wait_queue(&dev->lock.lock_queue, &entry); for (;;) { if (!dev->lock.hw_lock) { /* Device has been unregistered */ ret = -EINTR; break; } if (drm_lock_take(&dev->lock.hw_lock->lock, lock.context)) { dev->lock.pid = current->pid; dev->lock.lock_time = jiffies; atomic_inc(&dev->total_locks); break; /* Got lock */ } /* Contention */ atomic_inc(&dev->total_sleeps); current->state = TASK_INTERRUPTIBLE; schedule(); if (signal_pending(current)) { ret = -ERESTARTSYS; break; } } current->state = TASK_RUNNING; remove_wait_queue(&dev->lock.lock_queue, &entry); } if (!ret) { if (lock.flags & _DRM_LOCK_QUIESCENT) { DRM_DEBUG("_DRM_LOCK_QUIESCENT\n"); mga_flush_queue(dev); mga_dma_quiescent(dev); } } DRM_DEBUG("%d %s\n", lock.context, ret ? "interrupted" : "has lock"); return ret; } int mga_flush_ioctl(struct inode *inode, struct file *filp, unsigned int cmd, unsigned long arg) { drm_file_t *priv = filp->private_data; drm_device_t *dev = priv->dev; drm_lock_t lock; drm_mga_private_t *dev_priv = (drm_mga_private_t *)dev->dev_private; DRM_DEBUG("%s\n", __FUNCTION__); copy_from_user_ret(&lock, (drm_lock_t *)arg, sizeof(lock), -EFAULT); if(!_DRM_LOCK_IS_HELD(dev->lock.hw_lock->lock)) { DRM_ERROR("mga_flush_ioctl called without lock held\n"); return -EINVAL; } if(lock.flags & _DRM_LOCK_FLUSH || lock.flags & _DRM_LOCK_FLUSH_ALL) { drm_mga_prim_buf_t *temp_buf; temp_buf = dev_priv->current_prim; if(temp_buf && temp_buf->num_dwords) { set_bit(MGA_BUF_FORCE_FIRE, &temp_buf->buffer_status); mga_advance_primary(dev); } mga_dma_schedule(dev, 1); } if(lock.flags & _DRM_LOCK_QUIESCENT) { mga_flush_queue(dev); mga_dma_quiescent(dev); } return 0; }