1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
|
#!/usr/bin/python3
import matplotlib.gridspec as gridspec
import matplotlib.pyplot as plt
from scipy.stats import gaussian_kde
from numpy import *
import subprocess
import argparse
import glob
import csv
import sys
import os
import re
# constants
html_name="index.html"
report_folder="ezbench_report/"
class Benchmark:
def __init__(self, full_name):
self.full_name = full_name
self.prevValue = -1
class BenchResult:
def __init__(self, commit, benchmark, data_raw_file, img_src_name, sparkline_img):
self.commit = commit
self.benchmark = benchmark
self.data_raw_file = data_raw_file
self.img_src_name = img_src_name
self.sparkline_img = sparkline_img
self.data = []
self.runs = []
class Commit:
def __init__(self, sha1, full_name, compile_log):
self.sha1 = sha1
self.full_name = full_name
self.compile_log = compile_log
self.results = []
def readCsv(filepath):
data = []
with open(filepath, 'rt') as f:
reader = csv.reader(f)
try:
if (csv.Sniffer().has_header(f.read(1024))):
f.seek(0)
next(f)
else:
f.seek(0)
for row in reader:
if len(row) > 0:
data.append(float(row[0]))
except csv.Error as e:
sys.stderr.write('file %s, line %d: %s\n' % (filepath, reader.line_num, e))
return []
return data
benchmarks = []
commits = []
# parse the options
parser = argparse.ArgumentParser()
parser.add_argument("log_folder")
args = parser.parse_args()
# Look for the commit_list file
os.chdir(args.log_folder)
try:
f = open( "commit_list", "r")
try:
commitsLines = f.readlines()
finally:
f.close()
except IOError:
sys.stderr.write("The log folder '{0}' does not contain a commit_list file\n".format(args.log_folder))
sys.exit(1)
# Check that there are commits
if (len(commitsLines) == 0):
sys.stderr.write("The commit_list file is empty\n")
sys.exit(2)
# Gather all the information from the commits and generate the images
print ("Reading the results for {0} commits".format(len(commitsLines)))
commits_txt = ""
table_entries_txt = ""
for commitLine in commitsLines:
full_name = commitLine.strip(' \t\n\r')
sha1 = commitLine.split()[0]
compile_log = sha1 + "_compile_log"
commit = Commit(sha1, full_name, compile_log)
# find all the benchmarks
benchFiles = glob.glob("{sha1}_bench_*".format(sha1=commit.sha1));
benchs_txt = ""
for benchFile in benchFiles:
# Skip when the file is a run file (finishes by #XX)
if re.search(r'#\d+$', benchFile) is not None:
continue
# Skip on error files
if re.search(r'.errors$', benchFile) is not None:
continue
# Get the bench name
bench_name = benchFile.replace("{sha1}_bench_".format(sha1=commit.sha1), "")
# Find the right Benchmark or create one if none are found
try:
benchmark = next(b for b in benchmarks if b.full_name == bench_name)
except StopIteration:
benchmark = Benchmark(bench_name)
benchmarks.append(benchmark)
# Create the result object
result = BenchResult(commit, benchmark, benchFile,
report_folder + benchFile + ".svg",
report_folder + benchFile + ".spark.svg")
# Read the data and abort if there is no data
result.data = readCsv(benchFile)
if len(result.data) == 0:
continue
# Look for the runs
runsFiles = glob.glob("{benchFile}#*".format(benchFile=benchFile));
for runFile in runsFiles:
data = readCsv(runFile)
if len(data) > 0:
result.runs.append(data)
# Add the result to the commit's results
commit.results.append(result)
# Add the commit to the list of commits
commit.results = sorted(commit.results, key=lambda res: res.benchmark.full_name)
commits.append(commit)
# Sort the list of benchmarks
benchmarks = sorted(benchmarks, key=lambda bench: bench.full_name)
# Create a folder for the results
if not os.path.isdir(report_folder):
try:
os.mkdir(report_folder)
except OSError:
print ("Error while creating the report folder")
def getResultsBenchmarkDiffs(benchmark):
results = []
# Compute a report per application
i = 0
origValue = -1
for commit in commits:
for result in commit.results:
if result.benchmark != benchmark:
continue
value = array(result.data).mean()
if origValue > -1:
diff = (value * 100.0 / origValue) - 100.0
else:
origValue = value
diff = 0
results.append([i, diff])
i = i + 1
return results
# Generate the trend graph
print("Generating the trend graph")
f = plt.figure(figsize=(17,3))
plt.xlabel('Commit #')
plt.ylabel('Perf. diff. with the prev. commit (%)')
plt.grid(True)
for i in range(len(benchmarks)):
data = getResultsBenchmarkDiffs(benchmarks[i])
x_val = [x[0] for x in data]
y_val = [x[1] for x in data]
plt.plot(x_val, y_val, label=benchmarks[i].full_name)
#plt.xticks(range(len(x)), x_val, rotation='vertical')
plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3,
ncol=3, mode="expand", borderaxespad=0.)
plt.savefig(report_folder + 'overview.svg', bbox_inches='tight')
plt.close()
def kde_scipy(x, x_grid, bandwidth=0.2, **kwargs):
kde = gaussian_kde(x, bw_method=bandwidth, **kwargs)
return kde.evaluate(x_grid)
# Generate the spark lines
print("Generating the sparklines",end="",flush=True)
for commit in commits:
for result in commit.results:
fig, ax = plt.subplots(1,1,figsize=(1.25,.3))
plt.ylim(0, amax(result.data))
plt.plot(result.data, linewidth=0.8)
# remove all the axes
plt.axis('off')
for k,v in ax.spines.items():
v.set_visible(False)
ax.set_xticks([])
ax.set_yticks([])
plt.savefig(result.sparkline_img, bbox_inches='tight', transparent=True)
plt.close()
print('.',end="",flush=True)
print(" DONE")
# Generate the large images
plt.rcParams.update({'font.size': 9})
print("Generating the runs' output image",end="",flush=True)
for c in range (0, len(commits)):
commit = commits[c]
for r in range (0, len(commit.results)):
result = commit.results[r]
f = plt.figure(figsize=(19.5, 4))
gs = gridspec.GridSpec(2, 2, width_ratios=[4, 1])
x = array(result.data)
ax1 = plt.subplot(gs[0])
plt.title("Time series across all the runs")
plt.xlabel('Run #')
plt.ylabel('FPS')
ax1.plot(x, label="cur.")
if c > 0:
ax1.plot(commits[c - 1].results[r].data, label="prev.")
plt.legend()
ax2 = plt.subplot(gs[1])
plt.title("FPS distribution")
plt.xlabel('FPS')
x_grid = linspace(amin(x) * 0.95, amax(x) * 1.05, 1000)
for bandwidth in [0.2]:
ax2.plot(x_grid, kde_scipy(x, x_grid, bandwidth=bandwidth),
label='bw={0}'.format(bandwidth), linewidth=1, alpha=1)
ax2.hist(x, 100, fc='gray', histtype='stepfilled', alpha=0.3, normed=True, label='histogram')
ax3 = plt.subplot(gs[2])
plt.title("Time series of the runs")
plt.xlabel('FPS sample')
plt.ylabel('FPS')
for i in range(0, len(result.runs)):
ax3.plot(result.runs[i], label="{0}".format(i))
plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3,
ncol=25, mode="expand", borderaxespad=0.)
plt.tight_layout()
plt.savefig(result.img_src_name, bbox_inches='tight')
plt.close()
print('.',end="",flush=True)
print(" DONE")
# Generate the report
html_template="""
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Performace report on the run named '{run_name}'</title>
<style>
body {{ font-size: 10pt}}
</style>
</head>
<body>
<h1>Performace report on the run named '{run_name}'</h1>
<h2>Trends</h2>
<center><img src="{report_folder}/overview.svg" alt="Trends"/></center>
<h2>Stats</h2>
<table border="1" style="">
<tr>
<th>Commit SHA1</th>
<th>Geometric mean</th>
{tbl_hdr_benchmarks}
</tr>
{tbl_entries}
</table>
<h2>Commits</h2>
{commits}
</body>
</html>
"""
table_commit_template="""
<tr>
<td><a href="#commit_{sha1}">{sha1}</a></td>
<td>{geom_mean}</td>
{tbl_res_benchmarks}
</tr>
"""
table_entry_template="""
<td bgcolor="{color}">
<a href="#commit_{sha1}_bench_{bench_name}">
{value:.2f} ({diff:.2f} %)
<img src="{sparkline_img}" alt="Test's time series and density of probability" />
<a/>
</td>"""
commit_template="""
<h3 id="commit_{sha1}">{commit}</h3>
Here is the <a href="{compile_log}">compilation logs</a> and list of benchmarks found for commit {sha1}:
{benchs}"""
bench_template="""
<h4 id="commit_{sha1}_bench_{bench_name}">{bench_name}</h4>
<p><a href="{raw_data_file}">Original data</a></p>
<img src="{img_src}" alt="Test's time series and density of probability" />"""
# For all commits
print("Generating the HTML")
commits_txt = ""
tbl_entries_txt = ""
for commit in commits:
benchs_txt = ""
tbl_res_benchmarks = ""
for result in commit.results:
value = array(result.data).mean()
if result.benchmark.prevValue > 0:
diff = (value * 100.0 / result.benchmark.prevValue) - 100.0
else:
diff = 0
result.benchmark.prevValue = value
if diff < -1.5:
color = "#FF0000"
elif diff > 1.5:
color = "#00FF00"
else:
color = "#FFFFFF"
# Generate the html
benchs_txt += bench_template.format(sha1=commit.sha1,
bench_name=result.benchmark.full_name,
img_src=result.img_src_name,
raw_data_file=result.data_raw_file)
tbl_res_benchmarks += table_entry_template.format(sha1=commit.sha1,
bench_name=result.benchmark.full_name,
sparkline_img=result.sparkline_img,
value=value,
diff=diff,
color=color)
# generate the html
tbl_entries_txt += table_commit_template.format(sha1=commit.sha1, geom_mean=0,
tbl_res_benchmarks=tbl_res_benchmarks)
commits_txt += commit_template.format(commit=commit.full_name,
sha1=commit.sha1,
benchs=benchs_txt,
compile_log=commit.compile_log)
# generate the table's header
tbl_hdr_benchmarks = ""
for benchmark in benchmarks:
tbl_hdr_benchmarks += "<th>{benchmark}</th>\n".format(benchmark=benchmark.full_name)
# Generate the final html file
html = html_template.format(run_name=args.log_folder,
commits=commits_txt,
tbl_entries=tbl_entries_txt,
tbl_hdr_benchmarks=tbl_hdr_benchmarks,
report_folder=report_folder);
with open(html_name, 'w') as f:
f.write(html)
print("Output HTML generated at: {0}/{1}".format(os.getcwd(), html_name))
|