1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
|
/*
* Copyright © 2012 Intel Corporation
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library. If not, see <http://www.gnu.org/licenses/>.
*
* Author: Benjamin Segovia <benjamin.segovia@intel.com>
*/
/**
* \file llvm_to_gen.cpp
* \author Benjamin Segovia <benjamin.segovia@intel.com>
*/
#include "llvm/Config/llvm-config.h"
#if LLVM_VERSION_MAJOR == 3 && LLVM_VERSION_MINOR <= 2
#include "llvm/LLVMContext.h"
#include "llvm/Module.h"
#include "llvm/DataLayout.h"
#else
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/DataLayout.h"
#endif /* LLVM_VERSION_MINOR <= 2 */
#include "llvm/PassManager.h"
#include "llvm/Pass.h"
#include "llvm/Analysis/Passes.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/Target/TargetLibraryInfo.h"
#include "llvm/ADT/Triple.h"
#if LLVM_VERSION_MAJOR == 3 && LLVM_VERSION_MINOR <= 2
#include "llvm/Support/IRReader.h"
#else
#include "llvm/IRReader/IRReader.h"
#include "llvm/Support/SourceMgr.h"
#endif /* LLVM_VERSION_MINOR <= 2 */
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#if LLVM_VERSION_MAJOR == 3 && LLVM_VERSION_MINOR >=5
#include "llvm/IR/IRPrintingPasses.h"
#include "llvm/IR/Verifier.h"
#else
#include "llvm/Analysis/Verifier.h"
#include "llvm/Assembly/PrintModulePass.h"
#endif
#include "llvm/Analysis/CFGPrinter.h"
#include "llvm/llvm_gen_backend.hpp"
#include "llvm/llvm_to_gen.hpp"
#include "sys/cvar.hpp"
#include "sys/platform.hpp"
#include "ir/unit.hpp"
#include "ir/structural_analysis.hpp"
#include <clang/CodeGen/CodeGenAction.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <memory>
namespace gbe
{
BVAR(OCL_OUTPUT_CFG, false);
BVAR(OCL_OUTPUT_CFG_ONLY, false);
using namespace llvm;
void runFuntionPass(Module &mod, TargetLibraryInfo *libraryInfo, const DataLayout &DL)
{
FunctionPassManager FPM(&mod);
#if LLVM_VERSION_MAJOR == 3 && LLVM_VERSION_MINOR >= 5
FPM.add(new DataLayoutPass(DL));
#else
FPM.add(new DataLayout(DL));
#endif
#if LLVM_VERSION_MAJOR == 3 && LLVM_VERSION_MINOR >=5
FPM.add(createVerifierPass(true));
#else
FPM.add(createVerifierPass());
#endif
FPM.add(new TargetLibraryInfo(*libraryInfo));
FPM.add(createTypeBasedAliasAnalysisPass());
FPM.add(createBasicAliasAnalysisPass());
FPM.add(createCFGSimplificationPass());
FPM.add(createSROAPass());
FPM.add(createEarlyCSEPass());
FPM.add(createLowerExpectIntrinsicPass());
FPM.doInitialization();
for (Module::iterator I = mod.begin(),
E = mod.end(); I != E; ++I)
if (!I->isDeclaration())
FPM.run(*I);
FPM.doFinalization();
}
void runModulePass(Module &mod, TargetLibraryInfo *libraryInfo, const DataLayout &DL, int optLevel, bool strictMath)
{
llvm::PassManager MPM;
#if LLVM_VERSION_MAJOR == 3 && LLVM_VERSION_MINOR >= 5
MPM.add(new DataLayoutPass(DL));
#else
MPM.add(new DataLayout(DL));
#endif
MPM.add(new TargetLibraryInfo(*libraryInfo));
MPM.add(createTypeBasedAliasAnalysisPass());
MPM.add(createBasicAliasAnalysisPass());
MPM.add(createIntrinsicLoweringPass());
MPM.add(createSamplerFixPass());
MPM.add(createGlobalOptimizerPass()); // Optimize out global vars
MPM.add(createIPSCCPPass()); // IP SCCP
MPM.add(createDeadArgEliminationPass()); // Dead argument elimination
MPM.add(createInstructionCombiningPass());// Clean up after IPCP & DAE
MPM.add(createCFGSimplificationPass()); // Clean up after IPCP & DAE
MPM.add(createPruneEHPass()); // Remove dead EH info
MPM.add(createBarrierNodupPass(false)); // remove noduplicate fnAttr before inlining.
MPM.add(createFunctionInliningPass(200000));
MPM.add(createBarrierNodupPass(true)); // restore noduplicate fnAttr after inlining.
MPM.add(createFunctionAttrsPass()); // Set readonly/readnone attrs
//MPM.add(createScalarReplAggregatesPass(64, true, -1, -1, 64))
if(optLevel > 0)
MPM.add(createSROAPass(/*RequiresDomTree*/ false));
MPM.add(createEarlyCSEPass()); // Catch trivial redundancies
MPM.add(createJumpThreadingPass()); // Thread jumps.
MPM.add(createCorrelatedValuePropagationPass()); // Propagate conditionals
MPM.add(createCFGSimplificationPass()); // Merge & remove BBs
MPM.add(createInstructionCombiningPass()); // Combine silly seq's
MPM.add(createTailCallEliminationPass()); // Eliminate tail calls
MPM.add(createCFGSimplificationPass()); // Merge & remove BBs
MPM.add(createReassociatePass()); // Reassociate expressions
MPM.add(createLoopRotatePass()); // Rotate Loop
MPM.add(createLICMPass()); // Hoist loop invariants
MPM.add(createLoopUnswitchPass(true));
MPM.add(createInstructionCombiningPass());
MPM.add(createIndVarSimplifyPass()); // Canonicalize indvars
MPM.add(createLoopIdiomPass()); // Recognize idioms like memset.
MPM.add(createLoopDeletionPass()); // Delete dead loops
MPM.add(createLoopUnrollPass()); //1024, 32, 1024, 512)); //Unroll loops
if(optLevel > 0) {
MPM.add(createSROAPass(/*RequiresDomTree*/ false));
MPM.add(createGVNPass()); // Remove redundancies
}
#if LLVM_VERSION_MAJOR == 3 && LLVM_VERSION_MINOR >= 5
// FIXME Workaround: we find that CustomLoopUnroll may increase register pressure greatly,
// and it may even make som cl kernel cannot compile because of limited scratch memory for spill.
// As we observe this under strict math. So we disable CustomLoopUnroll if strict math is enabled.
if (!strictMath) {
MPM.add(createCustomLoopUnrollPass()); //1024, 32, 1024, 512)); //Unroll loops
MPM.add(createLoopUnrollPass()); //1024, 32, 1024, 512)); //Unroll loops
if(optLevel > 0) {
MPM.add(createSROAPass(/*RequiresDomTree*/ false));
MPM.add(createGVNPass()); // Remove redundancies
}
}
#endif
MPM.add(createMemCpyOptPass()); // Remove memcpy / form memset
MPM.add(createSCCPPass()); // Constant prop with SCCP
// Run instcombine after redundancy elimination to exploit opportunities
// opened up by them.
MPM.add(createInstructionCombiningPass());
MPM.add(createJumpThreadingPass()); // Thread jumps
MPM.add(createCorrelatedValuePropagationPass());
MPM.add(createDeadStoreEliminationPass()); // Delete dead stores
MPM.add(createAggressiveDCEPass()); // Delete dead instructions
MPM.add(createCFGSimplificationPass()); // Merge & remove BBs
MPM.add(createInstructionCombiningPass()); // Clean up after everything.
MPM.add(createStripDeadPrototypesPass()); // Get rid of dead prototypes
if(optLevel > 0) {
MPM.add(createGlobalDCEPass()); // Remove dead fns and globals.
MPM.add(createConstantMergePass()); // Merge dup global constants
}
MPM.run(mod);
}
#if LLVM_VERSION_MAJOR == 3 && LLVM_VERSION_MINOR >= 5
#define OUTPUT_BITCODE(STAGE, MOD) do { \
llvm::PassManager passes__; \
if (OCL_OUTPUT_LLVM_##STAGE) { \
passes__.add(createPrintModulePass(*o)); \
passes__.run(MOD); \
} \
}while(0)
#else
#define OUTPUT_BITCODE(STAGE, MOD) do { \
llvm::PassManager passes__; \
if (OCL_OUTPUT_LLVM_##STAGE) { \
passes__.add(createPrintModulePass(&*o)); \
passes__.run(MOD); \
} \
}while(0)
#endif
BVAR(OCL_OUTPUT_LLVM_BEFORE_LINK, false);
BVAR(OCL_OUTPUT_LLVM_AFTER_LINK, false);
BVAR(OCL_OUTPUT_LLVM_AFTER_GEN, false);
bool llvmToGen(ir::Unit &unit, const char *fileName,const void* module, int optLevel, bool strictMath)
{
std::string errInfo;
std::unique_ptr<llvm::raw_fd_ostream> o = NULL;
if (OCL_OUTPUT_LLVM_BEFORE_LINK || OCL_OUTPUT_LLVM_AFTER_LINK || OCL_OUTPUT_LLVM_AFTER_GEN)
o = std::unique_ptr<llvm::raw_fd_ostream>(new llvm::raw_fd_ostream(fileno(stdout), false));
// Get the module from its file
llvm::SMDiagnostic Err;
Module* cl_mod = NULL;
if (module) {
cl_mod = reinterpret_cast<Module*>(const_cast<void*>(module));
} else if (fileName){
llvm::LLVMContext& c = llvm::getGlobalContext();
cl_mod = ParseIRFile(fileName, Err, c);
}
if (!cl_mod) return false;
OUTPUT_BITCODE(BEFORE_LINK, (*cl_mod));
std::unique_ptr<Module> M;
/* Before do any thing, we first filter in all CL functions in bitcode. */
M.reset(runBitCodeLinker(cl_mod, strictMath));
if (!module)
delete cl_mod;
if (M.get() == 0)
return true;
Module &mod = *M.get();
DataLayout DL(&mod);
Triple TargetTriple(mod.getTargetTriple());
TargetLibraryInfo *libraryInfo = new TargetLibraryInfo(TargetTriple);
libraryInfo->disableAllFunctions();
OUTPUT_BITCODE(AFTER_LINK, mod);
runFuntionPass(mod, libraryInfo, DL);
runModulePass(mod, libraryInfo, DL, optLevel, strictMath);
llvm::PassManager passes;
#if LLVM_VERSION_MAJOR == 3 && LLVM_VERSION_MINOR >= 5
passes.add(new DataLayoutPass(DL));
#else
passes.add(new DataLayout(DL));
#endif
// Print the code before further optimizations
passes.add(createIntrinsicLoweringPass());
passes.add(createFunctionInliningPass(200000));
passes.add(createScalarReplAggregatesPass(64, true, -1, -1, 64));
passes.add(createLoadStoreOptimizationPass());
passes.add(createConstantPropagationPass());
passes.add(createPromoteMemoryToRegisterPass());
if(optLevel > 0)
passes.add(createGVNPass()); // Remove redundancies
passes.add(createPrintfParserPass());
passes.add(createExpandConstantExprPass()); // expand ConstantExpr
passes.add(createScalarizePass()); // Expand all vector ops
passes.add(createExpandLargeIntegersPass()); // legalize large integer operation
passes.add(createInstructionCombiningPass()); // legalize will generate some silly instructions
passes.add(createConstantPropagationPass()); // propagate constant after scalarize/legalize
passes.add(createExpandConstantExprPass()); // constant prop may generate ConstantExpr
passes.add(createPromoteIntegersPass()); // align integer size to power of two
passes.add(createRemoveGEPPass(unit)); // Constant prop may generate gep
passes.add(createDeadInstEliminationPass()); // Remove simplified instructions
passes.add(createCFGSimplificationPass()); // Merge & remove BBs
passes.add(createLowerSwitchPass()); // simplify cfg will generate switch-case instruction
passes.add(createScalarizePass()); // Expand all vector ops
if(OCL_OUTPUT_CFG)
passes.add(createCFGPrinterPass());
if(OCL_OUTPUT_CFG_ONLY)
passes.add(createCFGOnlyPrinterPass());
passes.add(createGenPass(unit));
passes.run(mod);
// Print the code extra optimization passes
OUTPUT_BITCODE(AFTER_GEN, mod);
const ir::Unit::FunctionSet& fs = unit.getFunctionSet();
ir::Unit::FunctionSet::const_iterator iter = fs.begin();
while(iter != fs.end())
{
analysis::ControlTree *ct = new analysis::ControlTree(iter->second);
ct->analyze();
delete ct;
iter++;
}
delete libraryInfo;
return true;
}
} /* namespace gbe */
|