1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
|
/*
* Copyright © 2012 Intel Corporation
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library. If not, see <http://www.gnu.org/licenses/>.
*
* Author: Benjamin Segovia <benjamin.segovia@intel.com>
*/
/**
* \file value.hpp
*
* \author Benjamin Segovia <benjamin.segovia@intel.com>
*/
#ifndef __GBE_IR_IMMEDIATE_HPP__
#define __GBE_IR_IMMEDIATE_HPP__
#include <string.h>
#include "ir/type.hpp"
#include "sys/platform.hpp"
namespace gbe {
namespace ir {
/*! The value as stored in the instruction */
class Immediate
{
public:
INLINE Immediate(void) {}
Type getType(void) const {
return type;
}
uint32_t getTypeSize(void) const {
switch(type) {
default:
GBE_ASSERT(0 && "Invalid immeidate type.\n");
case TYPE_BOOL:
case TYPE_S8:
case TYPE_U8: return 1;
case TYPE_S16:
case TYPE_U16: return 2;
case TYPE_FLOAT:
case TYPE_S32:
case TYPE_U32: return 4;
case TYPE_DOUBLE:
case TYPE_S64:
case TYPE_U64: return 8;
}
}
#define DECL_CONSTRUCTOR(TYPE, FIELD, IR_TYPE) \
Immediate(TYPE FIELD) { \
this->type = IR_TYPE; \
this->elemNum = 1; \
this->data.p = &defaultData; \
defaultData = 0ull; \
*this->data.FIELD = FIELD; \
}
DECL_CONSTRUCTOR(bool, b, TYPE_BOOL)
DECL_CONSTRUCTOR(int8_t, s8, TYPE_S8)
DECL_CONSTRUCTOR(uint8_t, u8, TYPE_U8)
DECL_CONSTRUCTOR(int16_t, s16, TYPE_S16)
DECL_CONSTRUCTOR(uint16_t, u16, TYPE_S16)
DECL_CONSTRUCTOR(int32_t, s32, TYPE_S32)
DECL_CONSTRUCTOR(uint32_t, u32, TYPE_S32)
DECL_CONSTRUCTOR(int64_t, s64, TYPE_S64)
DECL_CONSTRUCTOR(uint64_t, u64, TYPE_S64)
DECL_CONSTRUCTOR(float, f32, TYPE_FLOAT)
DECL_CONSTRUCTOR(double, f64, TYPE_DOUBLE)
#undef DECL_CONSTRUCTOR
#define DECL_CONSTRUCTOR(TYPE, FIELD, IR_TYPE, ELEMNUM) \
Immediate(TYPE *FIELD, uint32_t ELEMNUM) { \
this->type = IR_TYPE; \
this->elemNum = ELEMNUM; \
if (elemNum * ELEMNUM > 8) \
this->data.p = malloc(ELEMNUM * getTypeSize()); \
else \
this->data.p = &defaultData; \
defaultData = 0ull; \
memcpy(this->data.FIELD, FIELD, ELEMNUM * getTypeSize()); \
}
DECL_CONSTRUCTOR(bool, b, TYPE_BOOL, elemNum)
DECL_CONSTRUCTOR(int8_t, s8, TYPE_S8, elemNum)
DECL_CONSTRUCTOR(uint8_t, u8, TYPE_U8, elemNum)
DECL_CONSTRUCTOR(int16_t, s16, TYPE_S16, elemNum)
DECL_CONSTRUCTOR(uint16_t, u16, TYPE_S16, elemNum)
DECL_CONSTRUCTOR(int32_t, s32, TYPE_S32, elemNum)
DECL_CONSTRUCTOR(uint32_t, u32, TYPE_S32, elemNum)
DECL_CONSTRUCTOR(int64_t, s64, TYPE_S64, elemNum)
DECL_CONSTRUCTOR(uint64_t, u64, TYPE_S64, elemNum)
DECL_CONSTRUCTOR(float, f32, TYPE_FLOAT, elemNum)
DECL_CONSTRUCTOR(double, f64, TYPE_DOUBLE, elemNum)
#undef DECL_CONSTRUCTOR
int64_t getIntegerValue(void) const {
switch (type) {
default:
GBE_ASSERT(0 && "Invalid immediate type.\n");
case TYPE_BOOL: return *data.b;
case TYPE_S8: return *data.s8;
case TYPE_U8: return *data.u8;
case TYPE_S16: return *data.s16;
case TYPE_U16: return *data.u16;
case TYPE_S32: return *data.s32;
case TYPE_U32: return *data.u32;
case TYPE_S64: return *data.s64;
case TYPE_U64: return *data.u64;
}
}
float getFloatValue(void) const {
GBE_ASSERT(type == TYPE_FLOAT);
return *data.f32;
}
float asFloatValue(void) const {
GBE_ASSERT(type == TYPE_FLOAT || type == TYPE_U32 || type == TYPE_S32);
return *data.f32;
}
int64_t asIntegerValue(void) const {
GBE_ASSERT(elemNum == 1);
return *data.s64;
}
double getDoubleValue(void) const {
GBE_ASSERT(type == TYPE_DOUBLE);
return *data.f64;
}
Immediate(const Immediate & other) {
if (this != &other) {
this->type = other.type;
this->elemNum = other.elemNum;
if (other.data.p != &other.defaultData) {
this->data.p = malloc(other.elemNum * other.getTypeSize());
memcpy(this->data.p, other.data.p, other.elemNum * other.getTypeSize());
}
else {
this->defaultData = other.defaultData;
this->data.p = &this->defaultData;
}
}
}
Immediate & operator= (const Immediate & other) {
*this = Immediate(other);
return *this;
}
~Immediate() {
if (data.p != &defaultData) {
free(data.p);
data.p = NULL;
}
}
private:
union {
bool *b;
int8_t *s8;
uint8_t *u8;
int16_t *s16;
uint16_t *u16;
int32_t *s32;
uint32_t *u32;
int64_t *s64;
uint64_t *u64;
float *f32;
double *f64;
void *p;
} data; //!< Value to store
Type type; //!< Type of the value
uint32_t elemNum; //!< vector imm data type
uint64_t defaultData;
GBE_CLASS(Immediate);
};
/*! Compare two immediates */
INLINE bool operator< (const Immediate &imm0, const Immediate &imm1) {
if (imm0.getType() != imm1.getType())
return uint32_t(imm0.getType()) < uint32_t(imm1.getType());
else if (imm0.getType() == TYPE_FLOAT || imm0.getType() == TYPE_DOUBLE)
return imm0.asIntegerValue() < imm1.asIntegerValue();
else
return imm0.getIntegerValue() < imm1.getIntegerValue();
}
/*! A value is stored in a per-function vector. This is the index to it */
TYPE_SAFE(ImmediateIndex, uint16_t)
} /* namespace ir */
} /* namespace gbe */
#endif /* __GBE_IR_IMMEDIATE_HPP__ */
|