summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorChuanbo Weng <chuanbo.weng@intel.com>2015-11-06 11:28:10 +0800
committerYang Rong <rong.r.yang@intel.com>2015-11-10 12:22:30 +0800
commiteee077466da631e072871178b2d5fb9e9fc54f46 (patch)
treec3b36bc564fc908f4b0bd87c5fb6c21ce0a3cef3
parentbec03b016db7d4de96bfcde100a57fb10d805ab1 (diff)
Add document of video motion estimation support.
v3: Fix two typos. Signed-off-by: Chuanbo Weng <chuanbo.weng@intel.com> Reviewed-by: Ruiling Song <ruiling.song@intel.com>
-rw-r--r--docs/Beignet.mdwn1
-rw-r--r--docs/howto/video-motion-estimation-howto.mdwn79
2 files changed, 80 insertions, 0 deletions
diff --git a/docs/Beignet.mdwn b/docs/Beignet.mdwn
index 9a2b516a..363add0b 100644
--- a/docs/Beignet.mdwn
+++ b/docs/Beignet.mdwn
@@ -306,6 +306,7 @@ Documents for OpenCL application developers
- [[Kernel Optimization Guide|Beignet/optimization-guide]]
- [[Libva Buffer Sharing|Beignet/howto/libva-buffer-sharing-howto]]
- [[V4l2 Buffer Sharing|Beignet/howto/v4l2-buffer-sharing-howto]]
+- [[Video Motion Estimation|Beignet/howto/video-motion-estimation-howto]]
The wiki URL is as below:
[http://www.freedesktop.org/wiki/Software/Beignet/](http://www.freedesktop.org/wiki/Software/Beignet/)
diff --git a/docs/howto/video-motion-estimation-howto.mdwn b/docs/howto/video-motion-estimation-howto.mdwn
new file mode 100644
index 00000000..d9edc9b9
--- /dev/null
+++ b/docs/howto/video-motion-estimation-howto.mdwn
@@ -0,0 +1,79 @@
+Video Motion Vector HowTo
+==========================
+
+Beignet now supports cl_intel_accelerator and part of cl_intel_motion_estimation, which
+are Khronos official extensions. It provides a hardware acceleration of video motion
+vector to users.
+
+Supported hardware platform and limitation
+------------------------------------------
+
+Only 3rd Generation Intel Core Processors is supported for vme now. And now we just
+implement this part of cl_intel_motion_estimation for motion vector computation(residuals
+can not be returned yet) on 3rd Generation Intel Core Processors:
+ mb_block_type = CL_ME_MB_TYPE_16x16_INTEL
+ subpixel_mode = CL_ME_SUBPIXEL_MODE_INTEGER_INTEL
+ search_path_type = CL_ME_SEARCH_PATH_RADIUS_2_2_INTEL / CL_ME_SEARCH_PATH_RADIUS_4_4_INTEL
+ / CL_ME_SEARCH_PATH_RADIUS_16_12_INTEL
+We will fully support cl_intel_motion_estimation in the future.
+
+Steps
+-----
+
+In order to use video motion estimation provided by Beignet in your program, please follow
+the steps as below:
+
+- Create a cl_accelerator_intel object using extension API clCreateAcceleratorINTEL, with
+ the following parameters:
+ _accelerator_type_intel accelerator_type = CL_ACCELERATOR_TYPE_MOTION_ESTIMATION_INTEL;
+ cl_motion_estimation_desc_intel vmedesc = {CL_ME_MB_TYPE_16x16_INTEL,
+ CL_ME_SUBPIXEL_MODE_INTEGER_INTEL,
+ CL_ME_SAD_ADJUST_MODE_NONE_INTEL,
+ CL_ME_SEARCH_PATH_RADIUS_16_12_INTEL(
+ or CL_ME_SEARCH_PATH_RADIUS_2_2_INTEL
+ or CL_ME_SEARCH_PATH_RADIUS_4_4_INTEL)
+ };
+
+- Invoke clCreateProgramWithBuiltInKernels to create a program object with built-in kernels
+ information, and invoke clCreateKernel to create a kernel object whose kernel name is
+ block_motion_estimate_intel.
+
+- The prototype of built-in kernel block_motion_estimate_intel is as following:
+ _kernel void
+ block_motion_estimate_intel
+ (
+ accelerator_intel_t accelerator,
+ __read_only image2d_t src_image,
+ __read_only image2d_t ref_image,
+ __global short2 * prediction_motion_vector_buffer,
+ __global short2 * motion_vector_buffer,
+ __global ushort * residuals
+ );
+ So you should create related objects and setup these kernel arguments by clSetKernelArg.
+ Create source and reference image object, on which you want to do video motion estimation.
+ The image_channel_order should be CL_R and image_channel_data_type should be CL_UNORM_INT8.
+ Create a buffer object to get the motion vector result. This motion vector buffer representing
+ a vector field of pixel block motion vectors, stored linearly in row-major order. The elements
+ (pixels) of this image contain a motion vector for the corresponding pixel block, with its x/y
+ components packed as two 16-bit integer values. Each component is encoded as a S13.2 fixed
+ point value(two's complement).
+
+- Use clEnqueueNDRangeKernel to enqueue this kernel. The only thing you need to setup is global_work_size:
+ global_work_size[0] equal to width of source image, global_work_size[1] equal to height of source
+ image.
+
+- Use clEnqueueReadBuffer or clEnqueueMapBuffer to get motion vector result.
+
+
+Sample code
+-----------
+
+We have developed an utest case of using video motion vector in utests/builtin_kernel_block_motion_estimate_intel.cpp.
+Please go through it for details.
+
+More references
+---------------
+
+https://www.khronos.org/registry/cl/extensions/intel/cl_intel_accelerator.txt
+https://www.khronos.org/registry/cl/extensions/intel/cl_intel_motion_estimation.txt
+https://software.intel.com/en-us/articles/intro-to-motion-estimation-extension-for-opencl