summaryrefslogtreecommitdiff
path: root/test/cover-test.c
diff options
context:
space:
mode:
Diffstat (limited to 'test/cover-test.c')
-rw-r--r--test/cover-test.c449
1 files changed, 449 insertions, 0 deletions
diff --git a/test/cover-test.c b/test/cover-test.c
new file mode 100644
index 0000000..83e2972
--- /dev/null
+++ b/test/cover-test.c
@@ -0,0 +1,449 @@
+/*
+ * Copyright © 2015 RISC OS Open Ltd
+ *
+ * Permission to use, copy, modify, distribute, and sell this software and its
+ * documentation for any purpose is hereby granted without fee, provided that
+ * the above copyright notice appear in all copies and that both that
+ * copyright notice and this permission notice appear in supporting
+ * documentation, and that the name of the copyright holders not be used in
+ * advertising or publicity pertaining to distribution of the software without
+ * specific, written prior permission. The copyright holders make no
+ * representations about the suitability of this software for any purpose. It
+ * is provided "as is" without express or implied warranty.
+ *
+ * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS
+ * SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
+ * FITNESS, IN NO EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY
+ * SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+ * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN
+ * AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING
+ * OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
+ * SOFTWARE.
+ *
+ * Author: Ben Avison (bavison@riscosopen.org)
+ *
+ */
+
+/*
+ * This test aims to verify both numerical correctness and the honouring of
+ * array bounds for scaled plots (both nearest-neighbour and bilinear) at or
+ * close to the boundary conditions for applicability of "cover" type fast paths
+ * and iter fetch routines.
+ *
+ * It has a secondary purpose: by setting the env var EXACT (to any value) it
+ * will only test plots that are exactly on the boundary condition. This makes
+ * it possible to ensure that "cover" routines are being used to the maximum,
+ * although this requires the use of a debugger or code instrumentation to
+ * verify.
+ */
+
+#include "utils.h"
+#include <stdlib.h>
+#include <stdio.h>
+
+/* Approximate limits for random scale factor generation - these ensure we can
+ * get at least 8x reduction and 8x enlargement.
+ */
+#define LOG2_MAX_FACTOR (3)
+
+/* 1/sqrt(2) (or sqrt(0.5), or 2^-0.5) as a 0.32 fixed-point number */
+#define INV_SQRT_2_0POINT32_FIXED (0xB504F334u)
+
+/* The largest increment that can be generated by random_scale_factor().
+ * This occurs when the "mantissa" part is 0xFFFFFFFF and the "exponent"
+ * part is -LOG2_MAX_FACTOR.
+ */
+#define MAX_INC ((pixman_fixed_t) \
+ (INV_SQRT_2_0POINT32_FIXED >> (31 - 16 - LOG2_MAX_FACTOR)))
+
+/* Minimum source width (in pixels) based on a typical page size of 4K and
+ * maximum colour depth of 32bpp.
+ */
+#define MIN_SRC_WIDTH (4096 / 4)
+
+/* Derive the destination width so that at max increment we fit within source */
+#define DST_WIDTH (MIN_SRC_WIDTH * pixman_fixed_1 / MAX_INC)
+
+/* Calculate heights the other way round.
+ * No limits due to page alignment here.
+ */
+#define DST_HEIGHT 3
+#define SRC_HEIGHT ((DST_HEIGHT * MAX_INC + pixman_fixed_1 - 1) / pixman_fixed_1)
+
+/* At the time of writing, all the scaled fast paths use SRC, OVER or ADD
+ * Porter-Duff operators. XOR is included in the list to ensure good
+ * representation of iter scanline fetch routines.
+ */
+static const pixman_op_t op_list[] = {
+ PIXMAN_OP_SRC,
+ PIXMAN_OP_OVER,
+ PIXMAN_OP_ADD,
+ PIXMAN_OP_XOR,
+};
+
+/* At the time of writing, all the scaled fast paths use a8r8g8b8, x8r8g8b8
+ * or r5g6b5, or red-blue swapped versions of the same. When a mask channel is
+ * used, it is always a8 (and so implicitly not component alpha). a1r5g5b5 is
+ * included because it is the only other format to feature in any iters. */
+static const pixman_format_code_t img_fmt_list[] = {
+ PIXMAN_a8r8g8b8,
+ PIXMAN_x8r8g8b8,
+ PIXMAN_r5g6b5,
+ PIXMAN_a1r5g5b5
+};
+
+/* This is a flag reflecting the environment variable EXACT. It can be used
+ * to ensure that source coordinates corresponding exactly to the "cover" limits
+ * are used, rather than any "near misses". This can, for example, be used in
+ * conjunction with a debugger to ensure that only COVER fast paths are used.
+ */
+static int exact;
+
+static pixman_image_t *
+create_src_image (pixman_format_code_t fmt)
+{
+ pixman_image_t *tmp_img, *img;
+
+ /* We need the left-most and right-most MIN_SRC_WIDTH pixels to have
+ * predictable values, even though fence_image_create_bits() may allocate
+ * an image somewhat larger than that, by an amount that varies depending
+ * upon the page size on the current platform. The solution is to create a
+ * temporary non-fenced image that is exactly MIN_SRC_WIDTH wide and blit it
+ * into the fenced image.
+ */
+ tmp_img = pixman_image_create_bits (fmt, MIN_SRC_WIDTH, SRC_HEIGHT,
+ NULL, 0);
+ if (tmp_img == NULL)
+ return NULL;
+
+ img = fence_image_create_bits (fmt, MIN_SRC_WIDTH, SRC_HEIGHT, TRUE);
+ if (img == NULL)
+ {
+ pixman_image_unref (tmp_img);
+ return NULL;
+ }
+
+ prng_randmemset (tmp_img->bits.bits,
+ tmp_img->bits.rowstride * SRC_HEIGHT * sizeof (uint32_t),
+ 0);
+ image_endian_swap (tmp_img);
+
+ pixman_image_composite (PIXMAN_OP_SRC, tmp_img, NULL, img,
+ 0, 0, 0, 0, 0, 0,
+ MIN_SRC_WIDTH, SRC_HEIGHT);
+ pixman_image_composite (PIXMAN_OP_SRC, tmp_img, NULL, img,
+ 0, 0, 0, 0, img->bits.width - MIN_SRC_WIDTH, 0,
+ MIN_SRC_WIDTH, SRC_HEIGHT);
+
+ pixman_image_unref (tmp_img);
+
+ return img;
+}
+
+static pixman_fixed_t
+random_scale_factor(void)
+{
+ /* Get a random number with top bit set. */
+ uint32_t f = prng_rand () | 0x80000000u;
+
+ /* In log(2) space, this is still approximately evenly spread between 31
+ * and 32. Divide by sqrt(2) to centre the distribution on 2^31.
+ */
+ f = ((uint64_t) f * INV_SQRT_2_0POINT32_FIXED) >> 32;
+
+ /* Now shift right (ie divide by an integer power of 2) to spread the
+ * distribution between centres at 2^(16 +/- LOG2_MAX_FACTOR).
+ */
+ f >>= 31 - 16 + prng_rand_n (2 * LOG2_MAX_FACTOR + 1) - LOG2_MAX_FACTOR;
+
+ return f;
+}
+
+static pixman_fixed_t
+calc_translate (int dst_size,
+ int src_size,
+ pixman_fixed_t scale,
+ pixman_bool_t low_align,
+ pixman_bool_t bilinear)
+{
+ pixman_fixed_t ref_src, ref_dst, scaled_dst;
+
+ if (low_align)
+ {
+ ref_src = bilinear ? pixman_fixed_1 / 2 : pixman_fixed_e;
+ ref_dst = pixman_fixed_1 / 2;
+ }
+ else
+ {
+ ref_src = pixman_int_to_fixed (src_size) -
+ bilinear * pixman_fixed_1 / 2;
+ ref_dst = pixman_int_to_fixed (dst_size) - pixman_fixed_1 / 2;
+ }
+
+ scaled_dst = ((uint64_t) ref_dst * scale + pixman_fixed_1 / 2) /
+ pixman_fixed_1;
+
+ /* We need the translation to be set such that when ref_dst is fed through
+ * the transformation matrix, we get ref_src as the result.
+ */
+ return ref_src - scaled_dst;
+}
+
+static pixman_fixed_t
+random_offset (void)
+{
+ pixman_fixed_t offset = 0;
+
+ /* Ensure we test the exact case quite a lot */
+ if (prng_rand_n (2))
+ return offset;
+
+ /* What happens when we are close to the edge of the first
+ * interpolation step?
+ */
+ if (prng_rand_n (2))
+ offset += (pixman_fixed_1 >> BILINEAR_INTERPOLATION_BITS) - 16;
+
+ /* Try fine-grained variations */
+ offset += prng_rand_n (32);
+
+ /* Test in both directions */
+ if (prng_rand_n (2))
+ offset = -offset;
+
+ return offset;
+}
+
+static void
+check_transform (pixman_image_t *dst_img,
+ pixman_image_t *src_img,
+ pixman_transform_t *transform,
+ pixman_bool_t bilinear)
+{
+ pixman_vector_t v1, v2;
+
+ v1.vector[0] = pixman_fixed_1 / 2;
+ v1.vector[1] = pixman_fixed_1 / 2;
+ v1.vector[2] = pixman_fixed_1;
+ assert (pixman_transform_point (transform, &v1));
+
+ v2.vector[0] = pixman_int_to_fixed (dst_img->bits.width) -
+ pixman_fixed_1 / 2;
+ v2.vector[1] = pixman_int_to_fixed (dst_img->bits.height) -
+ pixman_fixed_1 / 2;
+ v2.vector[2] = pixman_fixed_1;
+ assert (pixman_transform_point (transform, &v2));
+
+ if (bilinear)
+ {
+ assert (v1.vector[0] >= pixman_fixed_1 / 2);
+ assert (v1.vector[1] >= pixman_fixed_1 / 2);
+ assert (v2.vector[0] <= pixman_int_to_fixed (src_img->bits.width) -
+ pixman_fixed_1 / 2);
+ assert (v2.vector[1] <= pixman_int_to_fixed (src_img->bits.height) -
+ pixman_fixed_1 / 2);
+ }
+ else
+ {
+ assert (v1.vector[0] >= pixman_fixed_e);
+ assert (v1.vector[1] >= pixman_fixed_e);
+ assert (v2.vector[0] <= pixman_int_to_fixed (src_img->bits.width));
+ assert (v2.vector[1] <= pixman_int_to_fixed (src_img->bits.height));
+ }
+}
+
+static uint32_t
+test_cover (int testnum, int verbose)
+{
+ pixman_fixed_t x_scale, y_scale;
+ pixman_bool_t left_align, top_align;
+ pixman_bool_t bilinear;
+ pixman_filter_t filter;
+ pixman_op_t op;
+ size_t src_fmt_index;
+ pixman_format_code_t src_fmt, dst_fmt, mask_fmt;
+ pixman_image_t *src_img, *dst_img, *mask_img;
+ pixman_transform_t src_transform, mask_transform;
+ pixman_fixed_t fuzz[4];
+ uint32_t crc32;
+
+ /* We allocate one fenced image for each pixel format up-front. This is to
+ * avoid spending a lot of time on memory management rather than on testing
+ * Pixman optimisations. We need one per thread because the transformation
+ * matrices and filtering are properties of the source and mask images.
+ */
+ static pixman_image_t *src_imgs[ARRAY_LENGTH (img_fmt_list)];
+ static pixman_image_t *mask_bits_img;
+ static pixman_bool_t fence_images_created;
+#ifdef USE_OPENMP
+#pragma omp threadprivate (src_imgs)
+#pragma omp threadprivate (mask_bits_img)
+#pragma omp threadprivate (fence_images_created)
+#endif
+
+ if (!fence_images_created)
+ {
+ int i;
+
+ prng_srand (0);
+
+ for (i = 0; i < ARRAY_LENGTH (img_fmt_list); i++)
+ src_imgs[i] = create_src_image (img_fmt_list[i]);
+
+ mask_bits_img = create_src_image (PIXMAN_a8);
+
+ fence_images_created = TRUE;
+ }
+
+ prng_srand (testnum);
+
+ x_scale = random_scale_factor ();
+ y_scale = random_scale_factor ();
+ left_align = prng_rand_n (2);
+ top_align = prng_rand_n (2);
+ bilinear = prng_rand_n (2);
+ filter = bilinear ? PIXMAN_FILTER_BILINEAR : PIXMAN_FILTER_NEAREST;
+
+ op = op_list[prng_rand_n (ARRAY_LENGTH (op_list))];
+
+ dst_fmt = img_fmt_list[prng_rand_n (ARRAY_LENGTH (img_fmt_list))];
+ dst_img = pixman_image_create_bits (dst_fmt, DST_WIDTH, DST_HEIGHT,
+ NULL, 0);
+ prng_randmemset (dst_img->bits.bits,
+ dst_img->bits.rowstride * DST_HEIGHT * sizeof (uint32_t),
+ 0);
+ image_endian_swap (dst_img);
+
+ src_fmt_index = prng_rand_n (ARRAY_LENGTH (img_fmt_list));
+ src_fmt = img_fmt_list[src_fmt_index];
+ src_img = src_imgs[src_fmt_index];
+ pixman_image_set_filter (src_img, filter, NULL, 0);
+ pixman_transform_init_scale (&src_transform, x_scale, y_scale);
+ src_transform.matrix[0][2] = calc_translate (dst_img->bits.width,
+ src_img->bits.width,
+ x_scale, left_align, bilinear);
+ src_transform.matrix[1][2] = calc_translate (dst_img->bits.height,
+ src_img->bits.height,
+ y_scale, top_align, bilinear);
+
+ if (prng_rand_n (2))
+ {
+ /* No mask */
+ mask_fmt = PIXMAN_null;
+ mask_img = NULL;
+ }
+ else if (prng_rand_n (2))
+ {
+ /* a8 bitmap mask */
+ mask_fmt = PIXMAN_a8;
+ mask_img = mask_bits_img;
+ pixman_image_set_filter (mask_img, filter, NULL, 0);
+ pixman_transform_init_scale (&mask_transform, x_scale, y_scale);
+ mask_transform.matrix[0][2] = calc_translate (dst_img->bits.width,
+ mask_img->bits.width,
+ x_scale, left_align,
+ bilinear);
+ mask_transform.matrix[1][2] = calc_translate (dst_img->bits.height,
+ mask_img->bits.height,
+ y_scale, top_align,
+ bilinear);
+ }
+ else
+ {
+ /* Solid mask */
+ pixman_color_t color;
+ memset (&color, 0xAA, sizeof color);
+ mask_fmt = PIXMAN_solid;
+ mask_img = pixman_image_create_solid_fill (&color);
+ }
+
+ if (!exact)
+ {
+ int i = 0;
+
+ while (i < 4)
+ fuzz[i++] = random_offset ();
+
+ src_transform.matrix[0][2] += fuzz[0];
+ src_transform.matrix[1][2] += fuzz[1];
+ mask_transform.matrix[0][2] += fuzz[2];
+ mask_transform.matrix[1][2] += fuzz[3];
+ }
+
+ pixman_image_set_transform (src_img, &src_transform);
+ if (mask_fmt == PIXMAN_a8)
+ pixman_image_set_transform (mask_img, &mask_transform);
+
+ if (verbose)
+ {
+ printf ("op=%s\n", operator_name (op));
+ printf ("src_fmt=%s, dst_fmt=%s, mask_fmt=%s\n",
+ format_name (src_fmt), format_name (dst_fmt),
+ format_name (mask_fmt));
+ printf ("x_scale=0x%08X, y_scale=0x%08X, align %s/%s, %s\n",
+ x_scale, y_scale,
+ left_align ? "left" : "right", top_align ? "top" : "bottom",
+ bilinear ? "bilinear" : "nearest");
+
+ if (!exact)
+ {
+ int i = 0;
+
+ printf ("fuzz factors");
+ while (i < 4)
+ printf (" %d", fuzz[i++]);
+ printf ("\n");
+ }
+ }
+
+ if (exact)
+ {
+ check_transform (dst_img, src_img, &src_transform, bilinear);
+ if (mask_fmt == PIXMAN_a8)
+ check_transform (dst_img, mask_img, &mask_transform, bilinear);
+ }
+
+ pixman_image_composite (op, src_img, mask_img, dst_img,
+ 0, 0, 0, 0, 0, 0,
+ dst_img->bits.width, dst_img->bits.height);
+
+ if (verbose)
+ print_image (dst_img);
+
+ crc32 = compute_crc32_for_image (0, dst_img);
+
+ pixman_image_unref (dst_img);
+ if (mask_fmt == PIXMAN_solid)
+ pixman_image_unref (mask_img);
+
+ return crc32;
+}
+
+#if BILINEAR_INTERPOLATION_BITS == 7
+#define CHECKSUM_FUZZ 0x6B56F607
+#define CHECKSUM_EXACT 0xA669F4A3
+#elif BILINEAR_INTERPOLATION_BITS == 4
+#define CHECKSUM_FUZZ 0x83119ED0
+#define CHECKSUM_EXACT 0x0D3382CD
+#else
+#define CHECKSUM_FUZZ 0x00000000
+#define CHECKSUM_EXACT 0x00000000
+#endif
+
+int
+main (int argc, const char *argv[])
+{
+ unsigned long page_size;
+
+ page_size = fence_get_page_size ();
+ if (page_size == 0 || page_size > 16 * 1024)
+ return 77; /* automake SKIP */
+
+ exact = getenv ("EXACT") != NULL;
+ if (exact)
+ printf ("Doing plots that are exactly aligned to boundaries\n");
+
+ return fuzzer_test_main ("cover", 2000000,
+ exact ? CHECKSUM_EXACT : CHECKSUM_FUZZ,
+ test_cover, argc, argv);
+}