summaryrefslogtreecommitdiff
path: root/lib/Transforms/IPO/LowerBitSets.cpp
blob: 78981fdedad7560170658f5194719d987a80aaeb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
//===-- LowerBitSets.cpp - Bitset lowering pass ---------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass lowers bitset metadata and calls to the llvm.bitset.test intrinsic.
// See http://llvm.org/docs/LangRef.html#bitsets for more information.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/IPO/LowerBitSets.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/ADT/EquivalenceClasses.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/Triple.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalObject.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"

using namespace llvm;
using namespace lowerbitsets;

#define DEBUG_TYPE "lowerbitsets"

STATISTIC(ByteArraySizeBits, "Byte array size in bits");
STATISTIC(ByteArraySizeBytes, "Byte array size in bytes");
STATISTIC(NumByteArraysCreated, "Number of byte arrays created");
STATISTIC(NumBitSetCallsLowered, "Number of bitset calls lowered");
STATISTIC(NumBitSetDisjointSets, "Number of disjoint sets of bitsets");

static cl::opt<bool> AvoidReuse(
    "lowerbitsets-avoid-reuse",
    cl::desc("Try to avoid reuse of byte array addresses using aliases"),
    cl::Hidden, cl::init(true));

bool BitSetInfo::containsGlobalOffset(uint64_t Offset) const {
  if (Offset < ByteOffset)
    return false;

  if ((Offset - ByteOffset) % (uint64_t(1) << AlignLog2) != 0)
    return false;

  uint64_t BitOffset = (Offset - ByteOffset) >> AlignLog2;
  if (BitOffset >= BitSize)
    return false;

  return Bits.count(BitOffset);
}

bool BitSetInfo::containsValue(
    const DataLayout &DL,
    const DenseMap<GlobalObject *, uint64_t> &GlobalLayout, Value *V,
    uint64_t COffset) const {
  if (auto GV = dyn_cast<GlobalObject>(V)) {
    auto I = GlobalLayout.find(GV);
    if (I == GlobalLayout.end())
      return false;
    return containsGlobalOffset(I->second + COffset);
  }

  if (auto GEP = dyn_cast<GEPOperator>(V)) {
    APInt APOffset(DL.getPointerSizeInBits(0), 0);
    bool Result = GEP->accumulateConstantOffset(DL, APOffset);
    if (!Result)
      return false;
    COffset += APOffset.getZExtValue();
    return containsValue(DL, GlobalLayout, GEP->getPointerOperand(),
                         COffset);
  }

  if (auto Op = dyn_cast<Operator>(V)) {
    if (Op->getOpcode() == Instruction::BitCast)
      return containsValue(DL, GlobalLayout, Op->getOperand(0), COffset);

    if (Op->getOpcode() == Instruction::Select)
      return containsValue(DL, GlobalLayout, Op->getOperand(1), COffset) &&
             containsValue(DL, GlobalLayout, Op->getOperand(2), COffset);
  }

  return false;
}

void BitSetInfo::print(raw_ostream &OS) const {
  OS << "offset " << ByteOffset << " size " << BitSize << " align "
     << (1 << AlignLog2);

  if (isAllOnes()) {
    OS << " all-ones\n";
    return;
  }

  OS << " { ";
  for (uint64_t B : Bits)
    OS << B << ' ';
  OS << "}\n";
}

BitSetInfo BitSetBuilder::build() {
  if (Min > Max)
    Min = 0;

  // Normalize each offset against the minimum observed offset, and compute
  // the bitwise OR of each of the offsets. The number of trailing zeros
  // in the mask gives us the log2 of the alignment of all offsets, which
  // allows us to compress the bitset by only storing one bit per aligned
  // address.
  uint64_t Mask = 0;
  for (uint64_t &Offset : Offsets) {
    Offset -= Min;
    Mask |= Offset;
  }

  BitSetInfo BSI;
  BSI.ByteOffset = Min;

  BSI.AlignLog2 = 0;
  if (Mask != 0)
    BSI.AlignLog2 = countTrailingZeros(Mask, ZB_Undefined);

  // Build the compressed bitset while normalizing the offsets against the
  // computed alignment.
  BSI.BitSize = ((Max - Min) >> BSI.AlignLog2) + 1;
  for (uint64_t Offset : Offsets) {
    Offset >>= BSI.AlignLog2;
    BSI.Bits.insert(Offset);
  }

  return BSI;
}

void GlobalLayoutBuilder::addFragment(const std::set<uint64_t> &F) {
  // Create a new fragment to hold the layout for F.
  Fragments.emplace_back();
  std::vector<uint64_t> &Fragment = Fragments.back();
  uint64_t FragmentIndex = Fragments.size() - 1;

  for (auto ObjIndex : F) {
    uint64_t OldFragmentIndex = FragmentMap[ObjIndex];
    if (OldFragmentIndex == 0) {
      // We haven't seen this object index before, so just add it to the current
      // fragment.
      Fragment.push_back(ObjIndex);
    } else {
      // This index belongs to an existing fragment. Copy the elements of the
      // old fragment into this one and clear the old fragment. We don't update
      // the fragment map just yet, this ensures that any further references to
      // indices from the old fragment in this fragment do not insert any more
      // indices.
      std::vector<uint64_t> &OldFragment = Fragments[OldFragmentIndex];
      Fragment.insert(Fragment.end(), OldFragment.begin(), OldFragment.end());
      OldFragment.clear();
    }
  }

  // Update the fragment map to point our object indices to this fragment.
  for (uint64_t ObjIndex : Fragment)
    FragmentMap[ObjIndex] = FragmentIndex;
}

void ByteArrayBuilder::allocate(const std::set<uint64_t> &Bits,
                                uint64_t BitSize, uint64_t &AllocByteOffset,
                                uint8_t &AllocMask) {
  // Find the smallest current allocation.
  unsigned Bit = 0;
  for (unsigned I = 1; I != BitsPerByte; ++I)
    if (BitAllocs[I] < BitAllocs[Bit])
      Bit = I;

  AllocByteOffset = BitAllocs[Bit];

  // Add our size to it.
  unsigned ReqSize = AllocByteOffset + BitSize;
  BitAllocs[Bit] = ReqSize;
  if (Bytes.size() < ReqSize)
    Bytes.resize(ReqSize);

  // Set our bits.
  AllocMask = 1 << Bit;
  for (uint64_t B : Bits)
    Bytes[AllocByteOffset + B] |= AllocMask;
}

namespace {

struct ByteArrayInfo {
  std::set<uint64_t> Bits;
  uint64_t BitSize;
  GlobalVariable *ByteArray;
  Constant *Mask;
};

struct LowerBitSets : public ModulePass {
  static char ID;
  LowerBitSets() : ModulePass(ID) {
    initializeLowerBitSetsPass(*PassRegistry::getPassRegistry());
  }

  Module *M;

  bool LinkerSubsectionsViaSymbols;
  Triple::ArchType Arch;
  Triple::ObjectFormatType ObjectFormat;
  IntegerType *Int1Ty;
  IntegerType *Int8Ty;
  IntegerType *Int32Ty;
  Type *Int32PtrTy;
  IntegerType *Int64Ty;
  IntegerType *IntPtrTy;

  // The llvm.bitsets named metadata.
  NamedMDNode *BitSetNM;

  // Mapping from bitset identifiers to the call sites that test them.
  DenseMap<Metadata *, std::vector<CallInst *>> BitSetTestCallSites;

  std::vector<ByteArrayInfo> ByteArrayInfos;

  BitSetInfo
  buildBitSet(Metadata *BitSet,
              const DenseMap<GlobalObject *, uint64_t> &GlobalLayout);
  ByteArrayInfo *createByteArray(BitSetInfo &BSI);
  void allocateByteArrays();
  Value *createBitSetTest(IRBuilder<> &B, BitSetInfo &BSI, ByteArrayInfo *&BAI,
                          Value *BitOffset);
  void lowerBitSetCalls(ArrayRef<Metadata *> BitSets,
                        Constant *CombinedGlobalAddr,
                        const DenseMap<GlobalObject *, uint64_t> &GlobalLayout);
  Value *
  lowerBitSetCall(CallInst *CI, BitSetInfo &BSI, ByteArrayInfo *&BAI,
                  Constant *CombinedGlobal,
                  const DenseMap<GlobalObject *, uint64_t> &GlobalLayout);
  void buildBitSetsFromGlobalVariables(ArrayRef<Metadata *> BitSets,
                                       ArrayRef<GlobalVariable *> Globals);
  unsigned getJumpTableEntrySize();
  Type *getJumpTableEntryType();
  Constant *createJumpTableEntry(GlobalObject *Src, Function *Dest,
                                 unsigned Distance);
  void verifyBitSetMDNode(MDNode *Op);
  void buildBitSetsFromFunctions(ArrayRef<Metadata *> BitSets,
                                 ArrayRef<Function *> Functions);
  void buildBitSetsFromDisjointSet(ArrayRef<Metadata *> BitSets,
                                   ArrayRef<GlobalObject *> Globals);
  bool buildBitSets();
  bool eraseBitSetMetadata();

  bool doInitialization(Module &M) override;
  bool runOnModule(Module &M) override;
};

} // anonymous namespace

INITIALIZE_PASS_BEGIN(LowerBitSets, "lowerbitsets",
                "Lower bitset metadata", false, false)
INITIALIZE_PASS_END(LowerBitSets, "lowerbitsets",
                "Lower bitset metadata", false, false)
char LowerBitSets::ID = 0;

ModulePass *llvm::createLowerBitSetsPass() { return new LowerBitSets; }

bool LowerBitSets::doInitialization(Module &Mod) {
  M = &Mod;
  const DataLayout &DL = Mod.getDataLayout();

  Triple TargetTriple(M->getTargetTriple());
  LinkerSubsectionsViaSymbols = TargetTriple.isMacOSX();
  Arch = TargetTriple.getArch();
  ObjectFormat = TargetTriple.getObjectFormat();

  Int1Ty = Type::getInt1Ty(M->getContext());
  Int8Ty = Type::getInt8Ty(M->getContext());
  Int32Ty = Type::getInt32Ty(M->getContext());
  Int32PtrTy = PointerType::getUnqual(Int32Ty);
  Int64Ty = Type::getInt64Ty(M->getContext());
  IntPtrTy = DL.getIntPtrType(M->getContext(), 0);

  BitSetNM = M->getNamedMetadata("llvm.bitsets");

  BitSetTestCallSites.clear();

  return false;
}

/// Build a bit set for BitSet using the object layouts in
/// GlobalLayout.
BitSetInfo LowerBitSets::buildBitSet(
    Metadata *BitSet,
    const DenseMap<GlobalObject *, uint64_t> &GlobalLayout) {
  BitSetBuilder BSB;

  // Compute the byte offset of each element of this bitset.
  if (BitSetNM) {
    for (MDNode *Op : BitSetNM->operands()) {
      if (Op->getOperand(0) != BitSet || !Op->getOperand(1))
        continue;
      Constant *OpConst =
          cast<ConstantAsMetadata>(Op->getOperand(1))->getValue();
      if (auto GA = dyn_cast<GlobalAlias>(OpConst))
        OpConst = GA->getAliasee();
      auto OpGlobal = dyn_cast<GlobalObject>(OpConst);
      if (!OpGlobal)
        continue;
      uint64_t Offset =
          cast<ConstantInt>(cast<ConstantAsMetadata>(Op->getOperand(2))
                                ->getValue())->getZExtValue();

      Offset += GlobalLayout.find(OpGlobal)->second;

      BSB.addOffset(Offset);
    }
  }

  return BSB.build();
}

/// Build a test that bit BitOffset mod sizeof(Bits)*8 is set in
/// Bits. This pattern matches to the bt instruction on x86.
static Value *createMaskedBitTest(IRBuilder<> &B, Value *Bits,
                                  Value *BitOffset) {
  auto BitsType = cast<IntegerType>(Bits->getType());
  unsigned BitWidth = BitsType->getBitWidth();

  BitOffset = B.CreateZExtOrTrunc(BitOffset, BitsType);
  Value *BitIndex =
      B.CreateAnd(BitOffset, ConstantInt::get(BitsType, BitWidth - 1));
  Value *BitMask = B.CreateShl(ConstantInt::get(BitsType, 1), BitIndex);
  Value *MaskedBits = B.CreateAnd(Bits, BitMask);
  return B.CreateICmpNE(MaskedBits, ConstantInt::get(BitsType, 0));
}

ByteArrayInfo *LowerBitSets::createByteArray(BitSetInfo &BSI) {
  // Create globals to stand in for byte arrays and masks. These never actually
  // get initialized, we RAUW and erase them later in allocateByteArrays() once
  // we know the offset and mask to use.
  auto ByteArrayGlobal = new GlobalVariable(
      *M, Int8Ty, /*isConstant=*/true, GlobalValue::PrivateLinkage, nullptr);
  auto MaskGlobal = new GlobalVariable(
      *M, Int8Ty, /*isConstant=*/true, GlobalValue::PrivateLinkage, nullptr);

  ByteArrayInfos.emplace_back();
  ByteArrayInfo *BAI = &ByteArrayInfos.back();

  BAI->Bits = BSI.Bits;
  BAI->BitSize = BSI.BitSize;
  BAI->ByteArray = ByteArrayGlobal;
  BAI->Mask = ConstantExpr::getPtrToInt(MaskGlobal, Int8Ty);
  return BAI;
}

void LowerBitSets::allocateByteArrays() {
  std::stable_sort(ByteArrayInfos.begin(), ByteArrayInfos.end(),
                   [](const ByteArrayInfo &BAI1, const ByteArrayInfo &BAI2) {
                     return BAI1.BitSize > BAI2.BitSize;
                   });

  std::vector<uint64_t> ByteArrayOffsets(ByteArrayInfos.size());

  ByteArrayBuilder BAB;
  for (unsigned I = 0; I != ByteArrayInfos.size(); ++I) {
    ByteArrayInfo *BAI = &ByteArrayInfos[I];

    uint8_t Mask;
    BAB.allocate(BAI->Bits, BAI->BitSize, ByteArrayOffsets[I], Mask);

    BAI->Mask->replaceAllUsesWith(ConstantInt::get(Int8Ty, Mask));
    cast<GlobalVariable>(BAI->Mask->getOperand(0))->eraseFromParent();
  }

  Constant *ByteArrayConst = ConstantDataArray::get(M->getContext(), BAB.Bytes);
  auto ByteArray =
      new GlobalVariable(*M, ByteArrayConst->getType(), /*isConstant=*/true,
                         GlobalValue::PrivateLinkage, ByteArrayConst);

  for (unsigned I = 0; I != ByteArrayInfos.size(); ++I) {
    ByteArrayInfo *BAI = &ByteArrayInfos[I];

    Constant *Idxs[] = {ConstantInt::get(IntPtrTy, 0),
                        ConstantInt::get(IntPtrTy, ByteArrayOffsets[I])};
    Constant *GEP = ConstantExpr::getInBoundsGetElementPtr(
        ByteArrayConst->getType(), ByteArray, Idxs);

    // Create an alias instead of RAUW'ing the gep directly. On x86 this ensures
    // that the pc-relative displacement is folded into the lea instead of the
    // test instruction getting another displacement.
    if (LinkerSubsectionsViaSymbols) {
      BAI->ByteArray->replaceAllUsesWith(GEP);
    } else {
      GlobalAlias *Alias = GlobalAlias::create(
          Int8Ty, 0, GlobalValue::PrivateLinkage, "bits", GEP, M);
      BAI->ByteArray->replaceAllUsesWith(Alias);
    }
    BAI->ByteArray->eraseFromParent();
  }

  ByteArraySizeBits = BAB.BitAllocs[0] + BAB.BitAllocs[1] + BAB.BitAllocs[2] +
                      BAB.BitAllocs[3] + BAB.BitAllocs[4] + BAB.BitAllocs[5] +
                      BAB.BitAllocs[6] + BAB.BitAllocs[7];
  ByteArraySizeBytes = BAB.Bytes.size();
}

/// Build a test that bit BitOffset is set in BSI, where
/// BitSetGlobal is a global containing the bits in BSI.
Value *LowerBitSets::createBitSetTest(IRBuilder<> &B, BitSetInfo &BSI,
                                      ByteArrayInfo *&BAI, Value *BitOffset) {
  if (BSI.BitSize <= 64) {
    // If the bit set is sufficiently small, we can avoid a load by bit testing
    // a constant.
    IntegerType *BitsTy;
    if (BSI.BitSize <= 32)
      BitsTy = Int32Ty;
    else
      BitsTy = Int64Ty;

    uint64_t Bits = 0;
    for (auto Bit : BSI.Bits)
      Bits |= uint64_t(1) << Bit;
    Constant *BitsConst = ConstantInt::get(BitsTy, Bits);
    return createMaskedBitTest(B, BitsConst, BitOffset);
  } else {
    if (!BAI) {
      ++NumByteArraysCreated;
      BAI = createByteArray(BSI);
    }

    Constant *ByteArray = BAI->ByteArray;
    Type *Ty = BAI->ByteArray->getValueType();
    if (!LinkerSubsectionsViaSymbols && AvoidReuse) {
      // Each use of the byte array uses a different alias. This makes the
      // backend less likely to reuse previously computed byte array addresses,
      // improving the security of the CFI mechanism based on this pass.
      ByteArray = GlobalAlias::create(BAI->ByteArray->getValueType(), 0,
                                      GlobalValue::PrivateLinkage, "bits_use",
                                      ByteArray, M);
    }

    Value *ByteAddr = B.CreateGEP(Ty, ByteArray, BitOffset);
    Value *Byte = B.CreateLoad(ByteAddr);

    Value *ByteAndMask = B.CreateAnd(Byte, BAI->Mask);
    return B.CreateICmpNE(ByteAndMask, ConstantInt::get(Int8Ty, 0));
  }
}

/// Lower a llvm.bitset.test call to its implementation. Returns the value to
/// replace the call with.
Value *LowerBitSets::lowerBitSetCall(
    CallInst *CI, BitSetInfo &BSI, ByteArrayInfo *&BAI,
    Constant *CombinedGlobalIntAddr,
    const DenseMap<GlobalObject *, uint64_t> &GlobalLayout) {
  Value *Ptr = CI->getArgOperand(0);
  const DataLayout &DL = M->getDataLayout();

  if (BSI.containsValue(DL, GlobalLayout, Ptr))
    return ConstantInt::getTrue(M->getContext());

  Constant *OffsetedGlobalAsInt = ConstantExpr::getAdd(
      CombinedGlobalIntAddr, ConstantInt::get(IntPtrTy, BSI.ByteOffset));

  BasicBlock *InitialBB = CI->getParent();

  IRBuilder<> B(CI);

  Value *PtrAsInt = B.CreatePtrToInt(Ptr, IntPtrTy);

  if (BSI.isSingleOffset())
    return B.CreateICmpEQ(PtrAsInt, OffsetedGlobalAsInt);

  Value *PtrOffset = B.CreateSub(PtrAsInt, OffsetedGlobalAsInt);

  Value *BitOffset;
  if (BSI.AlignLog2 == 0) {
    BitOffset = PtrOffset;
  } else {
    // We need to check that the offset both falls within our range and is
    // suitably aligned. We can check both properties at the same time by
    // performing a right rotate by log2(alignment) followed by an integer
    // comparison against the bitset size. The rotate will move the lower
    // order bits that need to be zero into the higher order bits of the
    // result, causing the comparison to fail if they are nonzero. The rotate
    // also conveniently gives us a bit offset to use during the load from
    // the bitset.
    Value *OffsetSHR =
        B.CreateLShr(PtrOffset, ConstantInt::get(IntPtrTy, BSI.AlignLog2));
    Value *OffsetSHL = B.CreateShl(
        PtrOffset,
        ConstantInt::get(IntPtrTy, DL.getPointerSizeInBits(0) - BSI.AlignLog2));
    BitOffset = B.CreateOr(OffsetSHR, OffsetSHL);
  }

  Constant *BitSizeConst = ConstantInt::get(IntPtrTy, BSI.BitSize);
  Value *OffsetInRange = B.CreateICmpULT(BitOffset, BitSizeConst);

  // If the bit set is all ones, testing against it is unnecessary.
  if (BSI.isAllOnes())
    return OffsetInRange;

  TerminatorInst *Term = SplitBlockAndInsertIfThen(OffsetInRange, CI, false);
  IRBuilder<> ThenB(Term);

  // Now that we know that the offset is in range and aligned, load the
  // appropriate bit from the bitset.
  Value *Bit = createBitSetTest(ThenB, BSI, BAI, BitOffset);

  // The value we want is 0 if we came directly from the initial block
  // (having failed the range or alignment checks), or the loaded bit if
  // we came from the block in which we loaded it.
  B.SetInsertPoint(CI);
  PHINode *P = B.CreatePHI(Int1Ty, 2);
  P->addIncoming(ConstantInt::get(Int1Ty, 0), InitialBB);
  P->addIncoming(Bit, ThenB.GetInsertBlock());
  return P;
}

/// Given a disjoint set of bitsets and globals, layout the globals, build the
/// bit sets and lower the llvm.bitset.test calls.
void LowerBitSets::buildBitSetsFromGlobalVariables(
    ArrayRef<Metadata *> BitSets, ArrayRef<GlobalVariable *> Globals) {
  // Build a new global with the combined contents of the referenced globals.
  // This global is a struct whose even-indexed elements contain the original
  // contents of the referenced globals and whose odd-indexed elements contain
  // any padding required to align the next element to the next power of 2.
  std::vector<Constant *> GlobalInits;
  const DataLayout &DL = M->getDataLayout();
  for (GlobalVariable *G : Globals) {
    GlobalInits.push_back(G->getInitializer());
    uint64_t InitSize = DL.getTypeAllocSize(G->getValueType());

    // Compute the amount of padding required.
    uint64_t Padding = NextPowerOf2(InitSize - 1) - InitSize;

    // Cap at 128 was found experimentally to have a good data/instruction
    // overhead tradeoff.
    if (Padding > 128)
      Padding = alignTo(InitSize, 128) - InitSize;

    GlobalInits.push_back(
        ConstantAggregateZero::get(ArrayType::get(Int8Ty, Padding)));
  }
  if (!GlobalInits.empty())
    GlobalInits.pop_back();
  Constant *NewInit = ConstantStruct::getAnon(M->getContext(), GlobalInits);
  auto *CombinedGlobal =
      new GlobalVariable(*M, NewInit->getType(), /*isConstant=*/true,
                         GlobalValue::PrivateLinkage, NewInit);

  StructType *NewTy = cast<StructType>(NewInit->getType());
  const StructLayout *CombinedGlobalLayout = DL.getStructLayout(NewTy);

  // Compute the offsets of the original globals within the new global.
  DenseMap<GlobalObject *, uint64_t> GlobalLayout;
  for (unsigned I = 0; I != Globals.size(); ++I)
    // Multiply by 2 to account for padding elements.
    GlobalLayout[Globals[I]] = CombinedGlobalLayout->getElementOffset(I * 2);

  lowerBitSetCalls(BitSets, CombinedGlobal, GlobalLayout);

  // Build aliases pointing to offsets into the combined global for each
  // global from which we built the combined global, and replace references
  // to the original globals with references to the aliases.
  for (unsigned I = 0; I != Globals.size(); ++I) {
    // Multiply by 2 to account for padding elements.
    Constant *CombinedGlobalIdxs[] = {ConstantInt::get(Int32Ty, 0),
                                      ConstantInt::get(Int32Ty, I * 2)};
    Constant *CombinedGlobalElemPtr = ConstantExpr::getGetElementPtr(
        NewInit->getType(), CombinedGlobal, CombinedGlobalIdxs);
    if (LinkerSubsectionsViaSymbols) {
      Globals[I]->replaceAllUsesWith(CombinedGlobalElemPtr);
    } else {
      assert(Globals[I]->getType()->getAddressSpace() == 0);
      GlobalAlias *GAlias = GlobalAlias::create(NewTy->getElementType(I * 2), 0,
                                                Globals[I]->getLinkage(), "",
                                                CombinedGlobalElemPtr, M);
      GAlias->setVisibility(Globals[I]->getVisibility());
      GAlias->takeName(Globals[I]);
      Globals[I]->replaceAllUsesWith(GAlias);
    }
    Globals[I]->eraseFromParent();
  }
}

void LowerBitSets::lowerBitSetCalls(
    ArrayRef<Metadata *> BitSets, Constant *CombinedGlobalAddr,
    const DenseMap<GlobalObject *, uint64_t> &GlobalLayout) {
  Constant *CombinedGlobalIntAddr =
      ConstantExpr::getPtrToInt(CombinedGlobalAddr, IntPtrTy);

  // For each bitset in this disjoint set...
  for (Metadata *BS : BitSets) {
    // Build the bitset.
    BitSetInfo BSI = buildBitSet(BS, GlobalLayout);
    DEBUG({
      if (auto BSS = dyn_cast<MDString>(BS))
        dbgs() << BSS->getString() << ": ";
      else
        dbgs() << "<unnamed>: ";
      BSI.print(dbgs());
    });

    ByteArrayInfo *BAI = nullptr;

    // Lower each call to llvm.bitset.test for this bitset.
    for (CallInst *CI : BitSetTestCallSites[BS]) {
      ++NumBitSetCallsLowered;
      Value *Lowered =
          lowerBitSetCall(CI, BSI, BAI, CombinedGlobalIntAddr, GlobalLayout);
      CI->replaceAllUsesWith(Lowered);
      CI->eraseFromParent();
    }
  }
}

void LowerBitSets::verifyBitSetMDNode(MDNode *Op) {
  if (Op->getNumOperands() != 3)
    report_fatal_error(
        "All operands of llvm.bitsets metadata must have 3 elements");
  if (!Op->getOperand(1))
    return;

  auto OpConstMD = dyn_cast<ConstantAsMetadata>(Op->getOperand(1));
  if (!OpConstMD)
    report_fatal_error("Bit set element must be a constant");
  auto OpGlobal = dyn_cast<GlobalObject>(OpConstMD->getValue());
  if (!OpGlobal)
    return;

  if (OpGlobal->isThreadLocal())
    report_fatal_error("Bit set element may not be thread-local");
  if (isa<GlobalVariable>(OpGlobal) && OpGlobal->hasSection())
    report_fatal_error(
        "Bit set global var element may not have an explicit section");

  if (isa<GlobalVariable>(OpGlobal) && OpGlobal->isDeclarationForLinker())
    report_fatal_error("Bit set global var element must be a definition");

  auto OffsetConstMD = dyn_cast<ConstantAsMetadata>(Op->getOperand(2));
  if (!OffsetConstMD)
    report_fatal_error("Bit set element offset must be a constant");
  auto OffsetInt = dyn_cast<ConstantInt>(OffsetConstMD->getValue());
  if (!OffsetInt)
    report_fatal_error("Bit set element offset must be an integer constant");
}

static const unsigned kX86JumpTableEntrySize = 8;

unsigned LowerBitSets::getJumpTableEntrySize() {
  if (Arch != Triple::x86 && Arch != Triple::x86_64)
    report_fatal_error("Unsupported architecture for jump tables");

  return kX86JumpTableEntrySize;
}

// Create a constant representing a jump table entry for the target. This
// consists of an instruction sequence containing a relative branch to Dest. The
// constant will be laid out at address Src+(Len*Distance) where Len is the
// target-specific jump table entry size.
Constant *LowerBitSets::createJumpTableEntry(GlobalObject *Src, Function *Dest,
                                             unsigned Distance) {
  if (Arch != Triple::x86 && Arch != Triple::x86_64)
    report_fatal_error("Unsupported architecture for jump tables");

  const unsigned kJmpPCRel32Code = 0xe9;
  const unsigned kInt3Code = 0xcc;

  ConstantInt *Jmp = ConstantInt::get(Int8Ty, kJmpPCRel32Code);

  // Build a constant representing the displacement between the constant's
  // address and Dest. This will resolve to a PC32 relocation referring to Dest.
  Constant *DestInt = ConstantExpr::getPtrToInt(Dest, IntPtrTy);
  Constant *SrcInt = ConstantExpr::getPtrToInt(Src, IntPtrTy);
  Constant *Disp = ConstantExpr::getSub(DestInt, SrcInt);
  ConstantInt *DispOffset =
      ConstantInt::get(IntPtrTy, Distance * kX86JumpTableEntrySize + 5);
  Constant *OffsetedDisp = ConstantExpr::getSub(Disp, DispOffset);
  OffsetedDisp = ConstantExpr::getTruncOrBitCast(OffsetedDisp, Int32Ty);

  ConstantInt *Int3 = ConstantInt::get(Int8Ty, kInt3Code);

  Constant *Fields[] = {
      Jmp, OffsetedDisp, Int3, Int3, Int3,
  };
  return ConstantStruct::getAnon(Fields, /*Packed=*/true);
}

Type *LowerBitSets::getJumpTableEntryType() {
  if (Arch != Triple::x86 && Arch != Triple::x86_64)
    report_fatal_error("Unsupported architecture for jump tables");

  return StructType::get(M->getContext(),
                         {Int8Ty, Int32Ty, Int8Ty, Int8Ty, Int8Ty},
                         /*Packed=*/true);
}

/// Given a disjoint set of bitsets and functions, build a jump table for the
/// functions, build the bit sets and lower the llvm.bitset.test calls.
void LowerBitSets::buildBitSetsFromFunctions(ArrayRef<Metadata *> BitSets,
                                             ArrayRef<Function *> Functions) {
  // Unlike the global bitset builder, the function bitset builder cannot
  // re-arrange functions in a particular order and base its calculations on the
  // layout of the functions' entry points, as we have no idea how large a
  // particular function will end up being (the size could even depend on what
  // this pass does!) Instead, we build a jump table, which is a block of code
  // consisting of one branch instruction for each of the functions in the bit
  // set that branches to the target function, and redirect any taken function
  // addresses to the corresponding jump table entry. In the object file's
  // symbol table, the symbols for the target functions also refer to the jump
  // table entries, so that addresses taken outside the module will pass any
  // verification done inside the module.
  //
  // In more concrete terms, suppose we have three functions f, g, h which are
  // members of a single bitset, and a function foo that returns their
  // addresses:
  //
  // f:
  // mov 0, %eax
  // ret
  //
  // g:
  // mov 1, %eax
  // ret
  //
  // h:
  // mov 2, %eax
  // ret
  //
  // foo:
  // mov f, %eax
  // mov g, %edx
  // mov h, %ecx
  // ret
  //
  // To create a jump table for these functions, we instruct the LLVM code
  // generator to output a jump table in the .text section. This is done by
  // representing the instructions in the jump table as an LLVM constant and
  // placing them in a global variable in the .text section. The end result will
  // (conceptually) look like this:
  //
  // f:
  // jmp .Ltmp0 ; 5 bytes
  // int3       ; 1 byte
  // int3       ; 1 byte
  // int3       ; 1 byte
  //
  // g:
  // jmp .Ltmp1 ; 5 bytes
  // int3       ; 1 byte
  // int3       ; 1 byte
  // int3       ; 1 byte
  //
  // h:
  // jmp .Ltmp2 ; 5 bytes
  // int3       ; 1 byte
  // int3       ; 1 byte
  // int3       ; 1 byte
  //
  // .Ltmp0:
  // mov 0, %eax
  // ret
  //
  // .Ltmp1:
  // mov 1, %eax
  // ret
  //
  // .Ltmp2:
  // mov 2, %eax
  // ret
  //
  // foo:
  // mov f, %eax
  // mov g, %edx
  // mov h, %ecx
  // ret
  //
  // Because the addresses of f, g, h are evenly spaced at a power of 2, in the
  // normal case the check can be carried out using the same kind of simple
  // arithmetic that we normally use for globals.

  assert(!Functions.empty());

  // Build a simple layout based on the regular layout of jump tables.
  DenseMap<GlobalObject *, uint64_t> GlobalLayout;
  unsigned EntrySize = getJumpTableEntrySize();
  for (unsigned I = 0; I != Functions.size(); ++I)
    GlobalLayout[Functions[I]] = I * EntrySize;

  // Create a constant to hold the jump table.
  ArrayType *JumpTableType =
      ArrayType::get(getJumpTableEntryType(), Functions.size());
  auto JumpTable = new GlobalVariable(*M, JumpTableType,
                                      /*isConstant=*/true,
                                      GlobalValue::PrivateLinkage, nullptr);
  JumpTable->setSection(ObjectFormat == Triple::MachO
                            ? "__TEXT,__text,regular,pure_instructions"
                            : ".text");
  lowerBitSetCalls(BitSets, JumpTable, GlobalLayout);

  // Build aliases pointing to offsets into the jump table, and replace
  // references to the original functions with references to the aliases.
  for (unsigned I = 0; I != Functions.size(); ++I) {
    Constant *CombinedGlobalElemPtr = ConstantExpr::getBitCast(
        ConstantExpr::getGetElementPtr(
            JumpTableType, JumpTable,
            ArrayRef<Constant *>{ConstantInt::get(IntPtrTy, 0),
                                 ConstantInt::get(IntPtrTy, I)}),
        Functions[I]->getType());
    if (LinkerSubsectionsViaSymbols || Functions[I]->isDeclarationForLinker()) {
      Functions[I]->replaceAllUsesWith(CombinedGlobalElemPtr);
    } else {
      assert(Functions[I]->getType()->getAddressSpace() == 0);
      GlobalAlias *GAlias = GlobalAlias::create(Functions[I]->getValueType(), 0,
                                                Functions[I]->getLinkage(), "",
                                                CombinedGlobalElemPtr, M);
      GAlias->setVisibility(Functions[I]->getVisibility());
      GAlias->takeName(Functions[I]);
      Functions[I]->replaceAllUsesWith(GAlias);
    }
    if (!Functions[I]->isDeclarationForLinker())
      Functions[I]->setLinkage(GlobalValue::PrivateLinkage);
  }

  // Build and set the jump table's initializer.
  std::vector<Constant *> JumpTableEntries;
  for (unsigned I = 0; I != Functions.size(); ++I)
    JumpTableEntries.push_back(
        createJumpTableEntry(JumpTable, Functions[I], I));
  JumpTable->setInitializer(
      ConstantArray::get(JumpTableType, JumpTableEntries));
}

void LowerBitSets::buildBitSetsFromDisjointSet(
    ArrayRef<Metadata *> BitSets, ArrayRef<GlobalObject *> Globals) {
  llvm::DenseMap<Metadata *, uint64_t> BitSetIndices;
  llvm::DenseMap<GlobalObject *, uint64_t> GlobalIndices;
  for (unsigned I = 0; I != BitSets.size(); ++I)
    BitSetIndices[BitSets[I]] = I;
  for (unsigned I = 0; I != Globals.size(); ++I)
    GlobalIndices[Globals[I]] = I;

  // For each bitset, build a set of indices that refer to globals referenced by
  // the bitset.
  std::vector<std::set<uint64_t>> BitSetMembers(BitSets.size());
  if (BitSetNM) {
    for (MDNode *Op : BitSetNM->operands()) {
      // Op = { bitset name, global, offset }
      if (!Op->getOperand(1))
        continue;
      auto I = BitSetIndices.find(Op->getOperand(0));
      if (I == BitSetIndices.end())
        continue;

      auto OpGlobal = dyn_cast<GlobalObject>(
          cast<ConstantAsMetadata>(Op->getOperand(1))->getValue());
      if (!OpGlobal)
        continue;
      BitSetMembers[I->second].insert(GlobalIndices[OpGlobal]);
    }
  }

  // Order the sets of indices by size. The GlobalLayoutBuilder works best
  // when given small index sets first.
  std::stable_sort(
      BitSetMembers.begin(), BitSetMembers.end(),
      [](const std::set<uint64_t> &O1, const std::set<uint64_t> &O2) {
        return O1.size() < O2.size();
      });

  // Create a GlobalLayoutBuilder and provide it with index sets as layout
  // fragments. The GlobalLayoutBuilder tries to lay out members of fragments as
  // close together as possible.
  GlobalLayoutBuilder GLB(Globals.size());
  for (auto &&MemSet : BitSetMembers)
    GLB.addFragment(MemSet);

  // Build the bitsets from this disjoint set.
  if (Globals.empty() || isa<GlobalVariable>(Globals[0])) {
    // Build a vector of global variables with the computed layout.
    std::vector<GlobalVariable *> OrderedGVs(Globals.size());
    auto OGI = OrderedGVs.begin();
    for (auto &&F : GLB.Fragments) {
      for (auto &&Offset : F) {
        auto GV = dyn_cast<GlobalVariable>(Globals[Offset]);
        if (!GV)
          report_fatal_error(
              "Bit set may not contain both global variables and functions");
        *OGI++ = GV;
      }
    }

    buildBitSetsFromGlobalVariables(BitSets, OrderedGVs);
  } else {
    // Build a vector of functions with the computed layout.
    std::vector<Function *> OrderedFns(Globals.size());
    auto OFI = OrderedFns.begin();
    for (auto &&F : GLB.Fragments) {
      for (auto &&Offset : F) {
        auto Fn = dyn_cast<Function>(Globals[Offset]);
        if (!Fn)
          report_fatal_error(
              "Bit set may not contain both global variables and functions");
        *OFI++ = Fn;
      }
    }

    buildBitSetsFromFunctions(BitSets, OrderedFns);
  }
}

/// Lower all bit sets in this module.
bool LowerBitSets::buildBitSets() {
  Function *BitSetTestFunc =
      M->getFunction(Intrinsic::getName(Intrinsic::bitset_test));
  if (!BitSetTestFunc || BitSetTestFunc->use_empty())
    return false;

  // Equivalence class set containing bitsets and the globals they reference.
  // This is used to partition the set of bitsets in the module into disjoint
  // sets.
  typedef EquivalenceClasses<PointerUnion<GlobalObject *, Metadata *>>
      GlobalClassesTy;
  GlobalClassesTy GlobalClasses;

  // Verify the bitset metadata and build a mapping from bitset identifiers to
  // their last observed index in BitSetNM. This will used later to
  // deterministically order the list of bitset identifiers.
  llvm::DenseMap<Metadata *, unsigned> BitSetIdIndices;
  if (BitSetNM) {
    for (unsigned I = 0, E = BitSetNM->getNumOperands(); I != E; ++I) {
      MDNode *Op = BitSetNM->getOperand(I);
      verifyBitSetMDNode(Op);
      BitSetIdIndices[Op->getOperand(0)] = I;
    }
  }

  for (const Use &U : BitSetTestFunc->uses()) {
    auto CI = cast<CallInst>(U.getUser());

    auto BitSetMDVal = dyn_cast<MetadataAsValue>(CI->getArgOperand(1));
    if (!BitSetMDVal)
      report_fatal_error(
          "Second argument of llvm.bitset.test must be metadata");
    auto BitSet = BitSetMDVal->getMetadata();

    // Add the call site to the list of call sites for this bit set. We also use
    // BitSetTestCallSites to keep track of whether we have seen this bit set
    // before. If we have, we don't need to re-add the referenced globals to the
    // equivalence class.
    std::pair<DenseMap<Metadata *, std::vector<CallInst *>>::iterator,
              bool> Ins =
        BitSetTestCallSites.insert(
            std::make_pair(BitSet, std::vector<CallInst *>()));
    Ins.first->second.push_back(CI);
    if (!Ins.second)
      continue;

    // Add the bitset to the equivalence class.
    GlobalClassesTy::iterator GCI = GlobalClasses.insert(BitSet);
    GlobalClassesTy::member_iterator CurSet = GlobalClasses.findLeader(GCI);

    if (!BitSetNM)
      continue;

    // Add the referenced globals to the bitset's equivalence class.
    for (MDNode *Op : BitSetNM->operands()) {
      if (Op->getOperand(0) != BitSet || !Op->getOperand(1))
        continue;

      auto OpGlobal = dyn_cast<GlobalObject>(
          cast<ConstantAsMetadata>(Op->getOperand(1))->getValue());
      if (!OpGlobal)
        continue;

      CurSet = GlobalClasses.unionSets(
          CurSet, GlobalClasses.findLeader(GlobalClasses.insert(OpGlobal)));
    }
  }

  if (GlobalClasses.empty())
    return false;

  // Build a list of disjoint sets ordered by their maximum BitSetNM index
  // for determinism.
  std::vector<std::pair<GlobalClassesTy::iterator, unsigned>> Sets;
  for (GlobalClassesTy::iterator I = GlobalClasses.begin(),
                                 E = GlobalClasses.end();
       I != E; ++I) {
    if (!I->isLeader()) continue;
    ++NumBitSetDisjointSets;

    unsigned MaxIndex = 0;
    for (GlobalClassesTy::member_iterator MI = GlobalClasses.member_begin(I);
         MI != GlobalClasses.member_end(); ++MI) {
      if ((*MI).is<Metadata *>())
        MaxIndex = std::max(MaxIndex, BitSetIdIndices[MI->get<Metadata *>()]);
    }
    Sets.emplace_back(I, MaxIndex);
  }
  std::sort(Sets.begin(), Sets.end(),
            [](const std::pair<GlobalClassesTy::iterator, unsigned> &S1,
               const std::pair<GlobalClassesTy::iterator, unsigned> &S2) {
              return S1.second < S2.second;
            });

  // For each disjoint set we found...
  for (const auto &S : Sets) {
    // Build the list of bitsets in this disjoint set.
    std::vector<Metadata *> BitSets;
    std::vector<GlobalObject *> Globals;
    for (GlobalClassesTy::member_iterator MI =
             GlobalClasses.member_begin(S.first);
         MI != GlobalClasses.member_end(); ++MI) {
      if ((*MI).is<Metadata *>())
        BitSets.push_back(MI->get<Metadata *>());
      else
        Globals.push_back(MI->get<GlobalObject *>());
    }

    // Order bitsets by BitSetNM index for determinism. This ordering is stable
    // as there is a one-to-one mapping between metadata and indices.
    std::sort(BitSets.begin(), BitSets.end(), [&](Metadata *M1, Metadata *M2) {
      return BitSetIdIndices[M1] < BitSetIdIndices[M2];
    });

    // Lower the bitsets in this disjoint set.
    buildBitSetsFromDisjointSet(BitSets, Globals);
  }

  allocateByteArrays();

  return true;
}

bool LowerBitSets::eraseBitSetMetadata() {
  if (!BitSetNM)
    return false;

  M->eraseNamedMetadata(BitSetNM);
  return true;
}

bool LowerBitSets::runOnModule(Module &M) {
  if (skipModule(M))
    return false;

  bool Changed = buildBitSets();
  Changed |= eraseBitSetMetadata();
  return Changed;
}