summaryrefslogtreecommitdiff
path: root/kernel/pid.c
blob: c7346fb801fca1f468f537722f349e2225a15c62 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
/*
 * Generic pidhash and scalable, time-bounded PID allocator
 *
 * (C) 2002-2003 William Irwin, IBM
 * (C) 2004 William Irwin, Oracle
 * (C) 2002-2004 Ingo Molnar, Red Hat
 *
 * pid-structures are backing objects for tasks sharing a given ID to chain
 * against. There is very little to them aside from hashing them and
 * parking tasks using given ID's on a list.
 *
 * The hash is always changed with the tasklist_lock write-acquired,
 * and the hash is only accessed with the tasklist_lock at least
 * read-acquired, so there's no additional SMP locking needed here.
 *
 * We have a list of bitmap pages, which bitmaps represent the PID space.
 * Allocating and freeing PIDs is completely lockless. The worst-case
 * allocation scenario when all but one out of 1 million PIDs possible are
 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/bootmem.h>
#include <linux/hash.h>
#include <linux/pid_namespace.h>
#include <linux/init_task.h>

#define pid_hashfn(nr) hash_long((unsigned long)nr, pidhash_shift)
static struct hlist_head *pid_hash;
static int pidhash_shift;
struct pid init_struct_pid = INIT_STRUCT_PID;

int pid_max = PID_MAX_DEFAULT;

#define RESERVED_PIDS		300

int pid_max_min = RESERVED_PIDS + 1;
int pid_max_max = PID_MAX_LIMIT;

#define BITS_PER_PAGE		(PAGE_SIZE*8)
#define BITS_PER_PAGE_MASK	(BITS_PER_PAGE-1)

static inline int mk_pid(struct pid_namespace *pid_ns,
		struct pidmap *map, int off)
{
	return (map - pid_ns->pidmap)*BITS_PER_PAGE + off;
}

#define find_next_offset(map, off)					\
		find_next_zero_bit((map)->page, BITS_PER_PAGE, off)

/*
 * PID-map pages start out as NULL, they get allocated upon
 * first use and are never deallocated. This way a low pid_max
 * value does not cause lots of bitmaps to be allocated, but
 * the scheme scales to up to 4 million PIDs, runtime.
 */
struct pid_namespace init_pid_ns = {
	.kref = {
		.refcount       = ATOMIC_INIT(2),
	},
	.pidmap = {
		[ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL }
	},
	.last_pid = 0,
	.level = 0,
	.child_reaper = &init_task,
};

int is_global_init(struct task_struct *tsk)
{
	return tsk == init_pid_ns.child_reaper;
}

/*
 * Note: disable interrupts while the pidmap_lock is held as an
 * interrupt might come in and do read_lock(&tasklist_lock).
 *
 * If we don't disable interrupts there is a nasty deadlock between
 * detach_pid()->free_pid() and another cpu that does
 * spin_lock(&pidmap_lock) followed by an interrupt routine that does
 * read_lock(&tasklist_lock);
 *
 * After we clean up the tasklist_lock and know there are no
 * irq handlers that take it we can leave the interrupts enabled.
 * For now it is easier to be safe than to prove it can't happen.
 */

static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);

static fastcall void free_pidmap(struct pid_namespace *pid_ns, int pid)
{
	struct pidmap *map = pid_ns->pidmap + pid / BITS_PER_PAGE;
	int offset = pid & BITS_PER_PAGE_MASK;

	clear_bit(offset, map->page);
	atomic_inc(&map->nr_free);
}

static int alloc_pidmap(struct pid_namespace *pid_ns)
{
	int i, offset, max_scan, pid, last = pid_ns->last_pid;
	struct pidmap *map;

	pid = last + 1;
	if (pid >= pid_max)
		pid = RESERVED_PIDS;
	offset = pid & BITS_PER_PAGE_MASK;
	map = &pid_ns->pidmap[pid/BITS_PER_PAGE];
	max_scan = (pid_max + BITS_PER_PAGE - 1)/BITS_PER_PAGE - !offset;
	for (i = 0; i <= max_scan; ++i) {
		if (unlikely(!map->page)) {
			void *page = kzalloc(PAGE_SIZE, GFP_KERNEL);
			/*
			 * Free the page if someone raced with us
			 * installing it:
			 */
			spin_lock_irq(&pidmap_lock);
			if (map->page)
				kfree(page);
			else
				map->page = page;
			spin_unlock_irq(&pidmap_lock);
			if (unlikely(!map->page))
				break;
		}
		if (likely(atomic_read(&map->nr_free))) {
			do {
				if (!test_and_set_bit(offset, map->page)) {
					atomic_dec(&map->nr_free);
					pid_ns->last_pid = pid;
					return pid;
				}
				offset = find_next_offset(map, offset);
				pid = mk_pid(pid_ns, map, offset);
			/*
			 * find_next_offset() found a bit, the pid from it
			 * is in-bounds, and if we fell back to the last
			 * bitmap block and the final block was the same
			 * as the starting point, pid is before last_pid.
			 */
			} while (offset < BITS_PER_PAGE && pid < pid_max &&
					(i != max_scan || pid < last ||
					    !((last+1) & BITS_PER_PAGE_MASK)));
		}
		if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) {
			++map;
			offset = 0;
		} else {
			map = &pid_ns->pidmap[0];
			offset = RESERVED_PIDS;
			if (unlikely(last == offset))
				break;
		}
		pid = mk_pid(pid_ns, map, offset);
	}
	return -1;
}

static int next_pidmap(struct pid_namespace *pid_ns, int last)
{
	int offset;
	struct pidmap *map, *end;

	offset = (last + 1) & BITS_PER_PAGE_MASK;
	map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE];
	end = &pid_ns->pidmap[PIDMAP_ENTRIES];
	for (; map < end; map++, offset = 0) {
		if (unlikely(!map->page))
			continue;
		offset = find_next_bit((map)->page, BITS_PER_PAGE, offset);
		if (offset < BITS_PER_PAGE)
			return mk_pid(pid_ns, map, offset);
	}
	return -1;
}

fastcall void put_pid(struct pid *pid)
{
	struct pid_namespace *ns;

	if (!pid)
		return;

	/* FIXME - this must be the namespace this pid lives in */
	ns = &init_pid_ns;
	if ((atomic_read(&pid->count) == 1) ||
	     atomic_dec_and_test(&pid->count))
		kmem_cache_free(ns->pid_cachep, pid);
}
EXPORT_SYMBOL_GPL(put_pid);

static void delayed_put_pid(struct rcu_head *rhp)
{
	struct pid *pid = container_of(rhp, struct pid, rcu);
	put_pid(pid);
}

fastcall void free_pid(struct pid *pid)
{
	/* We can be called with write_lock_irq(&tasklist_lock) held */
	unsigned long flags;

	spin_lock_irqsave(&pidmap_lock, flags);
	hlist_del_rcu(&pid->pid_chain);
	spin_unlock_irqrestore(&pidmap_lock, flags);

	free_pidmap(&init_pid_ns, pid->nr);
	call_rcu(&pid->rcu, delayed_put_pid);
}

struct pid *alloc_pid(void)
{
	struct pid *pid;
	enum pid_type type;
	int nr = -1;
	struct pid_namespace *ns;

	ns = task_active_pid_ns(current);
	pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
	if (!pid)
		goto out;

	nr = alloc_pidmap(ns);
	if (nr < 0)
		goto out_free;

	atomic_set(&pid->count, 1);
	pid->nr = nr;
	for (type = 0; type < PIDTYPE_MAX; ++type)
		INIT_HLIST_HEAD(&pid->tasks[type]);

	spin_lock_irq(&pidmap_lock);
	hlist_add_head_rcu(&pid->pid_chain, &pid_hash[pid_hashfn(pid->nr)]);
	spin_unlock_irq(&pidmap_lock);

out:
	return pid;

out_free:
	kmem_cache_free(ns->pid_cachep, pid);
	pid = NULL;
	goto out;
}

struct pid * fastcall find_pid(int nr)
{
	struct hlist_node *elem;
	struct pid *pid;

	hlist_for_each_entry_rcu(pid, elem,
			&pid_hash[pid_hashfn(nr)], pid_chain) {
		if (pid->nr == nr)
			return pid;
	}
	return NULL;
}
EXPORT_SYMBOL_GPL(find_pid);

/*
 * attach_pid() must be called with the tasklist_lock write-held.
 */
int fastcall attach_pid(struct task_struct *task, enum pid_type type,
		struct pid *pid)
{
	struct pid_link *link;

	link = &task->pids[type];
	link->pid = pid;
	hlist_add_head_rcu(&link->node, &pid->tasks[type]);

	return 0;
}

void fastcall detach_pid(struct task_struct *task, enum pid_type type)
{
	struct pid_link *link;
	struct pid *pid;
	int tmp;

	link = &task->pids[type];
	pid = link->pid;

	hlist_del_rcu(&link->node);
	link->pid = NULL;

	for (tmp = PIDTYPE_MAX; --tmp >= 0; )
		if (!hlist_empty(&pid->tasks[tmp]))
			return;

	free_pid(pid);
}

/* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
void fastcall transfer_pid(struct task_struct *old, struct task_struct *new,
			   enum pid_type type)
{
	new->pids[type].pid = old->pids[type].pid;
	hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node);
	old->pids[type].pid = NULL;
}

struct task_struct * fastcall pid_task(struct pid *pid, enum pid_type type)
{
	struct task_struct *result = NULL;
	if (pid) {
		struct hlist_node *first;
		first = rcu_dereference(pid->tasks[type].first);
		if (first)
			result = hlist_entry(first, struct task_struct, pids[(type)].node);
	}
	return result;
}

/*
 * Must be called under rcu_read_lock() or with tasklist_lock read-held.
 */
struct task_struct *find_task_by_pid_type(int type, int nr)
{
	return pid_task(find_pid(nr), type);
}

EXPORT_SYMBOL(find_task_by_pid_type);

struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
{
	struct pid *pid;
	rcu_read_lock();
	pid = get_pid(task->pids[type].pid);
	rcu_read_unlock();
	return pid;
}

struct task_struct *fastcall get_pid_task(struct pid *pid, enum pid_type type)
{
	struct task_struct *result;
	rcu_read_lock();
	result = pid_task(pid, type);
	if (result)
		get_task_struct(result);
	rcu_read_unlock();
	return result;
}

struct pid *find_get_pid(pid_t nr)
{
	struct pid *pid;

	rcu_read_lock();
	pid = get_pid(find_pid(nr));
	rcu_read_unlock();

	return pid;
}

/*
 * Used by proc to find the first pid that is greater then or equal to nr.
 *
 * If there is a pid at nr this function is exactly the same as find_pid.
 */
struct pid *find_ge_pid(int nr)
{
	struct pid *pid;

	do {
		pid = find_pid(nr);
		if (pid)
			break;
		nr = next_pidmap(task_active_pid_ns(current), nr);
	} while (nr > 0);

	return pid;
}
EXPORT_SYMBOL_GPL(find_get_pid);

struct pid_cache {
	int nr_ids;
	char name[16];
	struct kmem_cache *cachep;
	struct list_head list;
};

static LIST_HEAD(pid_caches_lh);
static DEFINE_MUTEX(pid_caches_mutex);

/*
 * creates the kmem cache to allocate pids from.
 * @nr_ids: the number of numerical ids this pid will have to carry
 */

static struct kmem_cache *create_pid_cachep(int nr_ids)
{
	struct pid_cache *pcache;
	struct kmem_cache *cachep;

	mutex_lock(&pid_caches_mutex);
	list_for_each_entry (pcache, &pid_caches_lh, list)
		if (pcache->nr_ids == nr_ids)
			goto out;

	pcache = kmalloc(sizeof(struct pid_cache), GFP_KERNEL);
	if (pcache == NULL)
		goto err_alloc;

	snprintf(pcache->name, sizeof(pcache->name), "pid_%d", nr_ids);
	cachep = kmem_cache_create(pcache->name,
			/* FIXME add numerical ids here */
			sizeof(struct pid), 0, SLAB_HWCACHE_ALIGN, NULL);
	if (cachep == NULL)
		goto err_cachep;

	pcache->nr_ids = nr_ids;
	pcache->cachep = cachep;
	list_add(&pcache->list, &pid_caches_lh);
out:
	mutex_unlock(&pid_caches_mutex);
	return pcache->cachep;

err_cachep:
	kfree(pcache);
err_alloc:
	mutex_unlock(&pid_caches_mutex);
	return NULL;
}

struct pid_namespace *copy_pid_ns(unsigned long flags, struct pid_namespace *old_ns)
{
	BUG_ON(!old_ns);
	get_pid_ns(old_ns);
	return old_ns;
}

void free_pid_ns(struct kref *kref)
{
	struct pid_namespace *ns;

	ns = container_of(kref, struct pid_namespace, kref);
	kfree(ns);
}

/*
 * The pid hash table is scaled according to the amount of memory in the
 * machine.  From a minimum of 16 slots up to 4096 slots at one gigabyte or
 * more.
 */
void __init pidhash_init(void)
{
	int i, pidhash_size;
	unsigned long megabytes = nr_kernel_pages >> (20 - PAGE_SHIFT);

	pidhash_shift = max(4, fls(megabytes * 4));
	pidhash_shift = min(12, pidhash_shift);
	pidhash_size = 1 << pidhash_shift;

	printk("PID hash table entries: %d (order: %d, %Zd bytes)\n",
		pidhash_size, pidhash_shift,
		pidhash_size * sizeof(struct hlist_head));

	pid_hash = alloc_bootmem(pidhash_size *	sizeof(*(pid_hash)));
	if (!pid_hash)
		panic("Could not alloc pidhash!\n");
	for (i = 0; i < pidhash_size; i++)
		INIT_HLIST_HEAD(&pid_hash[i]);
}

void __init pidmap_init(void)
{
	init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
	/* Reserve PID 0. We never call free_pidmap(0) */
	set_bit(0, init_pid_ns.pidmap[0].page);
	atomic_dec(&init_pid_ns.pidmap[0].nr_free);

	init_pid_ns.pid_cachep = create_pid_cachep(1);
	if (init_pid_ns.pid_cachep == NULL)
		panic("Can't create pid_1 cachep\n");
}