From 04fd61ab36ec065e194ab5e74ae34a5240d992bb Mon Sep 17 00:00:00 2001 From: Alexei Starovoitov Date: Tue, 19 May 2015 16:59:03 -0700 Subject: bpf: allow bpf programs to tail-call other bpf programs introduce bpf_tail_call(ctx, &jmp_table, index) helper function which can be used from BPF programs like: int bpf_prog(struct pt_regs *ctx) { ... bpf_tail_call(ctx, &jmp_table, index); ... } that is roughly equivalent to: int bpf_prog(struct pt_regs *ctx) { ... if (jmp_table[index]) return (*jmp_table[index])(ctx); ... } The important detail that it's not a normal call, but a tail call. The kernel stack is precious, so this helper reuses the current stack frame and jumps into another BPF program without adding extra call frame. It's trivially done in interpreter and a bit trickier in JITs. In case of x64 JIT the bigger part of generated assembler prologue is common for all programs, so it is simply skipped while jumping. Other JITs can do similar prologue-skipping optimization or do stack unwind before jumping into the next program. bpf_tail_call() arguments: ctx - context pointer jmp_table - one of BPF_MAP_TYPE_PROG_ARRAY maps used as the jump table index - index in the jump table Since all BPF programs are idenitified by file descriptor, user space need to populate the jmp_table with FDs of other BPF programs. If jmp_table[index] is empty the bpf_tail_call() doesn't jump anywhere and program execution continues as normal. New BPF_MAP_TYPE_PROG_ARRAY map type is introduced so that user space can populate this jmp_table array with FDs of other bpf programs. Programs can share the same jmp_table array or use multiple jmp_tables. The chain of tail calls can form unpredictable dynamic loops therefore tail_call_cnt is used to limit the number of calls and currently is set to 32. Use cases: Acked-by: Daniel Borkmann ========== - simplify complex programs by splitting them into a sequence of small programs - dispatch routine For tracing and future seccomp the program may be triggered on all system calls, but processing of syscall arguments will be different. It's more efficient to implement them as: int syscall_entry(struct seccomp_data *ctx) { bpf_tail_call(ctx, &syscall_jmp_table, ctx->nr /* syscall number */); ... default: process unknown syscall ... } int sys_write_event(struct seccomp_data *ctx) {...} int sys_read_event(struct seccomp_data *ctx) {...} syscall_jmp_table[__NR_write] = sys_write_event; syscall_jmp_table[__NR_read] = sys_read_event; For networking the program may call into different parsers depending on packet format, like: int packet_parser(struct __sk_buff *skb) { ... parse L2, L3 here ... __u8 ipproto = load_byte(skb, ... offsetof(struct iphdr, protocol)); bpf_tail_call(skb, &ipproto_jmp_table, ipproto); ... default: process unknown protocol ... } int parse_tcp(struct __sk_buff *skb) {...} int parse_udp(struct __sk_buff *skb) {...} ipproto_jmp_table[IPPROTO_TCP] = parse_tcp; ipproto_jmp_table[IPPROTO_UDP] = parse_udp; - for TC use case, bpf_tail_call() allows to implement reclassify-like logic - bpf_map_update_elem/delete calls into BPF_MAP_TYPE_PROG_ARRAY jump table are atomic, so user space can build chains of BPF programs on the fly Implementation details: ======================= - high performance of bpf_tail_call() is the goal. It could have been implemented without JIT changes as a wrapper on top of BPF_PROG_RUN() macro, but with two downsides: . all programs would have to pay performance penalty for this feature and tail call itself would be slower, since mandatory stack unwind, return, stack allocate would be done for every tailcall. . tailcall would be limited to programs running preempt_disabled, since generic 'void *ctx' doesn't have room for 'tail_call_cnt' and it would need to be either global per_cpu variable accessed by helper and by wrapper or global variable protected by locks. In this implementation x64 JIT bypasses stack unwind and jumps into the callee program after prologue. - bpf_prog_array_compatible() ensures that prog_type of callee and caller are the same and JITed/non-JITed flag is the same, since calling JITed program from non-JITed is invalid, since stack frames are different. Similarly calling kprobe type program from socket type program is invalid. - jump table is implemented as BPF_MAP_TYPE_PROG_ARRAY to reuse 'map' abstraction, its user space API and all of verifier logic. It's in the existing arraymap.c file, since several functions are shared with regular array map. Signed-off-by: Alexei Starovoitov Signed-off-by: David S. Miller --- kernel/bpf/core.c | 73 ++++++++++++++++++++++++++++++++++++++++++++++++++++++- 1 file changed, 72 insertions(+), 1 deletion(-) (limited to 'kernel/bpf/core.c') diff --git a/kernel/bpf/core.c b/kernel/bpf/core.c index 54f0e7fcd0e2..d44b25cbe460 100644 --- a/kernel/bpf/core.c +++ b/kernel/bpf/core.c @@ -176,6 +176,15 @@ noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) return 0; } +const struct bpf_func_proto bpf_tail_call_proto = { + .func = NULL, + .gpl_only = false, + .ret_type = RET_VOID, + .arg1_type = ARG_PTR_TO_CTX, + .arg2_type = ARG_CONST_MAP_PTR, + .arg3_type = ARG_ANYTHING, +}; + /** * __bpf_prog_run - run eBPF program on a given context * @ctx: is the data we are operating on @@ -244,6 +253,7 @@ static unsigned int __bpf_prog_run(void *ctx, const struct bpf_insn *insn) [BPF_ALU64 | BPF_NEG] = &&ALU64_NEG, /* Call instruction */ [BPF_JMP | BPF_CALL] = &&JMP_CALL, + [BPF_JMP | BPF_CALL | BPF_X] = &&JMP_TAIL_CALL, /* Jumps */ [BPF_JMP | BPF_JA] = &&JMP_JA, [BPF_JMP | BPF_JEQ | BPF_X] = &&JMP_JEQ_X, @@ -286,6 +296,7 @@ static unsigned int __bpf_prog_run(void *ctx, const struct bpf_insn *insn) [BPF_LD | BPF_IND | BPF_B] = &&LD_IND_B, [BPF_LD | BPF_IMM | BPF_DW] = &&LD_IMM_DW, }; + u32 tail_call_cnt = 0; void *ptr; int off; @@ -431,6 +442,30 @@ select_insn: BPF_R4, BPF_R5); CONT; + JMP_TAIL_CALL: { + struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2; + struct bpf_array *array = container_of(map, struct bpf_array, map); + struct bpf_prog *prog; + u64 index = BPF_R3; + + if (unlikely(index >= array->map.max_entries)) + goto out; + + if (unlikely(tail_call_cnt > MAX_TAIL_CALL_CNT)) + goto out; + + tail_call_cnt++; + + prog = READ_ONCE(array->prog[index]); + if (unlikely(!prog)) + goto out; + + ARG1 = BPF_R1; + insn = prog->insnsi; + goto select_insn; +out: + CONT; + } /* JMP */ JMP_JA: insn += insn->off; @@ -619,6 +654,40 @@ void __weak bpf_int_jit_compile(struct bpf_prog *prog) { } +bool bpf_prog_array_compatible(struct bpf_array *array, const struct bpf_prog *fp) +{ + if (array->owner_prog_type) { + if (array->owner_prog_type != fp->type) + return false; + if (array->owner_jited != fp->jited) + return false; + } else { + array->owner_prog_type = fp->type; + array->owner_jited = fp->jited; + } + return true; +} + +static int check_tail_call(const struct bpf_prog *fp) +{ + struct bpf_prog_aux *aux = fp->aux; + int i; + + for (i = 0; i < aux->used_map_cnt; i++) { + struct bpf_array *array; + struct bpf_map *map; + + map = aux->used_maps[i]; + if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) + continue; + array = container_of(map, struct bpf_array, map); + if (!bpf_prog_array_compatible(array, fp)) + return -EINVAL; + } + + return 0; +} + /** * bpf_prog_select_runtime - select execution runtime for BPF program * @fp: bpf_prog populated with internal BPF program @@ -626,7 +695,7 @@ void __weak bpf_int_jit_compile(struct bpf_prog *prog) * try to JIT internal BPF program, if JIT is not available select interpreter * BPF program will be executed via BPF_PROG_RUN() macro */ -void bpf_prog_select_runtime(struct bpf_prog *fp) +int bpf_prog_select_runtime(struct bpf_prog *fp) { fp->bpf_func = (void *) __bpf_prog_run; @@ -634,6 +703,8 @@ void bpf_prog_select_runtime(struct bpf_prog *fp) bpf_int_jit_compile(fp); /* Lock whole bpf_prog as read-only */ bpf_prog_lock_ro(fp); + + return check_tail_call(fp); } EXPORT_SYMBOL_GPL(bpf_prog_select_runtime); -- cgit v1.2.3